Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(10): e2311720121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408234

RESUMO

Inner ear morphogenesis requires tightly regulated epigenetic and transcriptional control of gene expression. CHD7, an ATP-dependent chromodomain helicase DNA-binding protein, and SOX2, an SRY-related HMG box pioneer transcription factor, are known to contribute to vestibular and auditory system development, but their genetic interactions in the ear have not been explored. Here, we analyzed inner ear development and the transcriptional regulatory landscapes in mice with variable dosages of Chd7 and/or Sox2. We show that combined haploinsufficiency for Chd7 and Sox2 results in reduced otic cell proliferation, severe malformations of semicircular canals, and shortened cochleae with ectopic hair cells. Examination of mice with conditional, inducible Chd7 loss by Sox2CreER reveals a critical period (~E9.5) of susceptibility in the inner ear to combined Chd7 and Sox2 loss. Data from genome-wide RNA-sequencing and CUT&Tag studies in the otocyst show that CHD7 regulates Sox2 expression and acts early in a gene regulatory network to control expression of key otic patterning genes, including Pax2 and Otx2. CHD7 and SOX2 directly bind independently and cooperatively at transcription start sites and enhancers to regulate otic progenitor cell gene expression. Together, our findings reveal essential roles for Chd7 and Sox2 in early inner ear development and may be applicable for syndromic and other forms of hearing or balance disorders.


Assuntos
Redes Reguladoras de Genes , Vestíbulo do Labirinto , Animais , Camundongos , Cóclea , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos , Canais Semicirculares , Fatores de Transcrição
2.
Dev Biol ; 477: 11-21, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34004180

RESUMO

Epigenetic regulation of gene transcription by chromatin remodeling proteins has recently emerged as an important contributing factor in inner ear development. Pathogenic variants in CHD7, the gene encoding Chromodomain Helicase DNA binding protein 7, cause CHARGE syndrome, which presents with malformations in the developing ear. Chd7 is broadly expressed in the developing mouse otocyst and mature auditory epithelium, yet the pathogenic effects of Chd7 loss in the cochlea are not well understood. Here we characterized cochlear epithelial phenotypes in mice with deletion of Chd7 throughout the otocyst (using Foxg1Cre/+ and Pax2Cre), in the otic mesenchyme (using TCre), in hair cells (using Atoh1Cre), in developing neuroblasts (using NgnCre), or in spiral ganglion neurons (using ShhCre/+). Pan-otic deletion of Chd7 resulted in shortened cochleae with aberrant projections and axonal looping, disorganized, supernumerary hair cells at the apical turn and a narrowed epithelium with missing hair cells in the middle region. Deletion of Chd7 in the otic mesenchyme had no effect on overall cochlear morphology. Loss of Chd7 in hair cells did not disrupt their formation or organization of the auditory epithelium. Similarly, absence of Chd7 in spiral ganglion neurons had no effect on axonal projections. In contrast, deletion of Chd7 in developing neuroblasts led to smaller spiral ganglia and disorganized cochlear neurites. Together, these observations reveal dosage-, tissue-, and time-sensitive cell autonomous roles for Chd7 in cochlear elongation and cochlear neuron organization, with minimal functions for Chd7 in hair cells. These studies provide novel information about roles for Chd7 in development of auditory neurons.


Assuntos
Padronização Corporal , Cóclea/embriologia , Proteínas de Ligação a DNA/fisiologia , Animais , Cóclea/citologia , Cóclea/inervação , Proteínas de Ligação a DNA/genética , Deleção de Genes , Células Ciliadas Auditivas/fisiologia , Camundongos , Camundongos Knockout , Morfogênese/genética , Morfogênese/fisiologia , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/embriologia
3.
Histochem Cell Biol ; 140(2): 119-35, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23542924

RESUMO

The motor protein, prestin, situated in the basolateral plasma membrane of cochlear outer hair cells (OHCs), underlies the generation of somatic, voltage-driven mechanical force, the basis for the exquisite sensitivity, frequency selectivity and dynamic range of mammalian hearing. The molecular and structural basis of the ontogenetic development of this electromechanical force has remained elusive. The present study demonstrates that this force is significantly reduced when the immature subcellular distribution of prestin found along the entire plasma membrane persists into maturity, as has been described in previous studies under hypothyroidism. This observation suggests that cochlear amplification is critically dependent on the surface expression and distribution of prestin. Searching for proteins involved in organizing the subcellular localization of prestin to the basolateral plasma membrane, we identified cochlear expression of a novel truncated prestin splice isoform named prestin 9b (Slc26A5d) that contains a putative PDZ domain-binding motif. Using prestin 9b as the bait in a yeast two-hybrid assay, we identified a calcium/calmodulin-dependent serine protein kinase (CASK) as an interaction partner of prestin. Co-immunoprecipitation assays showed that CASK and prestin 9b can interact with full-length prestin. CASK was co-localized with prestin in a membrane domain where prestin-expressing OHC membrane abuts prestin-free OHC membrane, but was absent from this area for thyroid hormone deficiency. These findings suggest that CASK and the truncated prestin splice isoform contribute to confinement of prestin to the basolateral region of the plasma membrane. By means of such an interaction, the basal junction region between the OHC and its Deiter's cell may contribute to efficient generation of somatic electromechanical force.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Eletricidade , Guanilato Quinases/metabolismo , Células Ciliadas Auditivas Externas/fisiologia , Fenômenos Mecânicos , Núcleo Vestibular Lateral/citologia , Núcleo Vestibular Lateral/metabolismo , Animais , Proteínas de Transporte de Ânions/análise , Proteínas de Transporte de Ânions/genética , Células Cultivadas , Feminino , Guanilato Quinases/análise , Guanilato Quinases/genética , Células HEK293 , Células Ciliadas Auditivas Externas/química , Células Ciliadas Auditivas Externas/citologia , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos , Proteínas Motores Moleculares/análise , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Ratos , Ratos Wistar , Transportadores de Sulfato , Núcleo Vestibular Lateral/química
4.
Mol Ther Methods Clin Dev ; 23: 319-333, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34729379

RESUMO

Pathogenic variants in GJB2, the gene encoding connexin 26, are the most common cause of autosomal-recessive hereditary deafness. Despite this high prevalence, pathogenic mechanisms leading to GJB2-related deafness are not well understood, and cures are absent. Humans with GJB2-related deafness retain at least some auditory hair cells and neurons, and their deafness is usually stable. In contrast, mice with conditional loss of Gjb2 in supporting cells exhibit extensive loss of hair cells and neurons and rapidly progress to profound deafness, precluding the application of therapies that require intact cochlear cells. In an attempt to design a less severe Gjb2 animal model, we generated mice with inducible Sox10iCre ERT2 -mediated loss of Gjb2. Tamoxifen injection led to reduced connexin 26 expression and impaired function, but cochlear hair cells and neurons survived for 2 months, allowing phenotypic rescue attempts within this time. AAV-mediated gene transfer of GJB2 in mature mutant ears did not demonstrate threshold improvement and in some animals exacerbated hearing loss and resulted in hair cell loss. We conclude that Sox10iCre ERT2 ;Gjb2 flox/flox mice are valuable for studying the biology of connexin 26 in the cochlea. In particular, these mice may be useful for evaluating gene therapy vectors and development of therapies for GJB2-related deafness.

5.
Novartis Found Symp ; 273: 19-30; discussion 30-41, 261-4, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17120759

RESUMO

The 10-member SLC26 gene family encodes anion exchangers of which SLC26A5 appears to be restricted to the outer hair cells of the inner ear. Here, the so-called prestin protein acts as a molecular motor, thought to be responsible for active mechanical amplification in the mammalian cochlea. We introduce special characteristics of SLC26A5 which may have relevance for other members of the family as well. As such, data point to a characteristic transcriptional control mechanism of which thyroid hormone surprisingly takes a role not only as an enhancer of expression, but also as a regulator of the subcellular redistribution of the prestin protein. Of significance for other members of the SLC26 family may be the observation that the failure of the subcellular redistribution of prestin protein prior to the onset of hearing leads to severe deficit of mature prestin function. Data will furthermore be argued in the context that prestin-related SLC26 proteins in the auditory organs of non-mammalian vertebrates and insects are widespread, possibly ancestral constituents of auditory organs and are likely to serve salient roles in mammals and across taxa.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Insetos/metabolismo , Homologia de Sequência , Vertebrados/metabolismo , Animais , Cóclea/citologia , Éxons/genética , Regulação da Expressão Gênica , Camundongos , Transporte Proteico , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Elementos de Resposta/genética , Transportadores de Sulfato , Transcrição Gênica , Peixe-Zebra
6.
PLoS One ; 7(5): e36066, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22570694

RESUMO

In the adult mammalian auditory epithelium, the organ of Corti, loss of sensory hair cells results in permanent hearing loss. The underlying cause for the lack of regenerative response is the depletion of otic progenitors in the cell pool of the sensory epithelium. Here, we show that an increase in the sequence-specific methylation of the otic Sox2 enhancers NOP1 and NOP2 is correlated with a reduced self-renewal potential in vivo and in vitro; additionally, the degree of methylation of NOP1 and NOP2 is correlated with the dedifferentiation potential of postmitotic supporting cells into otic stem cells. Thus, the stemness the organ of Corti is related to the epigenetic status of the otic Sox2 enhancers. These observations validate the continued exploration of treatment strategies for dedifferentiating or reprogramming of differentiated supporting cells into progenitors to regenerate the damaged organ of Corti.


Assuntos
Elementos Facilitadores Genéticos , Epigênese Genética , Órgão Espiral/metabolismo , Fatores de Transcrição SOXB1/genética , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Análise por Conglomerados , Metilação de DNA , Fator de Crescimento Epidérmico/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Órgão Espiral/embriologia , Receptores Opioides/genética , Células-Tronco/citologia , Receptor de Nociceptina
7.
Neurobiol Aging ; 28(4): 586-601, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16580094

RESUMO

A decline in neuronal plasticity during the adult life span has been proposed to be associated with a reduced level of the effectors of plasticity responses (e.g., BDNF). Alteration of plasticity is also correlated with age-related hearing loss (presbycusis), but to date no detailed studies of BDNF expression have been performed in the young or aging mature cochlea. We have used rat and gerbil animal models for presbycusis, which displayed hearing loss in the final third of the animals' natural life span. We demonstrate for the first time a co-localization of BDNF protein, transcripts III and IV in cochlear neurons with a declining distribution towards low-frequency processing cochlear turns. BDNF protein was also found within the neuronal projections of the cochlea. A significant reduction of BDNF transcripts in high-frequency processing cochlear neurons was observed during aging, though this did not coincide with a major reduction of BDNF protein. In contrast, BDNF protein in peripheral and central projections was drastically reduced. Our results suggest that reduced BDNF protein levels in auditory nerves over age may be a crucial factor in the altered brainstem plasticity observed during presbycusis.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Presbiacusia/metabolismo , RNA Mensageiro/metabolismo , Fatores Etários , Animais , Contagem de Células/métodos , Cóclea/patologia , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Imunofluorescência/métodos , Gerbillinae , Hibridização In Situ/métodos , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Presbiacusia/genética , Presbiacusia/patologia , Presbiacusia/fisiopatologia , Ratos , Ratos Endogâmicos F344 , Receptor trkB/deficiência , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Gânglio Espiral da Cóclea/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA