Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
Mol Cell ; 80(1): 164-174.e4, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877642

RESUMO

SARS-CoV-2 infections are rapidly spreading around the globe. The rapid development of therapies is of major importance. However, our lack of understanding of the molecular processes and host cell signaling events underlying SARS-CoV-2 infection hinders therapy development. We use a SARS-CoV-2 infection system in permissible human cells to study signaling changes by phosphoproteomics. We identify viral protein phosphorylation and define phosphorylation-driven host cell signaling changes upon infection. Growth factor receptor (GFR) signaling and downstream pathways are activated. Drug-protein network analyses revealed GFR signaling as key pathways targetable by approved drugs. The inhibition of GFR downstream signaling by five compounds prevents SARS-CoV-2 replication in cells, assessed by cytopathic effect, viral dsRNA production, and viral RNA release into the supernatant. This study describes host cell signaling events upon SARS-CoV-2 infection and reveals GFR signaling as a central pathway essential for SARS-CoV-2 replication. It provides novel strategies for COVID-19 treatment.


Assuntos
Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/genética , Fosfatidilinositol 3-Quinase/genética , Receptores de Fatores de Crescimento/genética , Proteínas Virais/genética , Corticosteroides/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , Células CACO-2 , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Receptores de Fatores de Crescimento/antagonistas & inibidores , Receptores de Fatores de Crescimento/metabolismo , SARS-CoV-2 , Transdução de Sinais , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
2.
Nature ; 583(7816): 469-472, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32408336

RESUMO

A new coronavirus was recently discovered and named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Infection with SARS-CoV-2 in humans causes coronavirus disease 2019 (COVID-19) and has been rapidly spreading around the globe1,2. SARS-CoV-2 shows some similarities to other coronaviruses; however, treatment options and an understanding of how SARS-CoV-2 infects cells are lacking. Here we identify the host cell pathways that are modulated by SARS-CoV-2 and show that inhibition of these pathways prevents viral replication in human cells. We established a human cell-culture model for infection with a clinical isolate of SARS-CoV-2. Using this cell-culture system, we determined the infection profile of SARS-CoV-2 by translatome3 and proteome proteomics at different times after infection. These analyses revealed that SARS-CoV-2 reshapes central cellular pathways such as translation, splicing, carbon metabolism, protein homeostasis (proteostasis) and nucleic acid metabolism. Small-molecule inhibitors that target these pathways prevented viral replication in cells. Our results reveal the cellular infection profile of SARS-CoV-2 and have enabled the identification of drugs that inhibit viral replication. We anticipate that our results will guide efforts to understand the molecular mechanisms that underlie the modulation of host cells after infection with SARS-CoV-2. Furthermore, our findings provide insights for the development of therapies for the treatment of COVID-19.


Assuntos
Betacoronavirus/efeitos dos fármacos , Betacoronavirus/metabolismo , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/metabolismo , Terapia de Alvo Molecular , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/metabolismo , Proteômica , Betacoronavirus/genética , Betacoronavirus/crescimento & desenvolvimento , COVID-19 , Células CACO-2 , Carbono/metabolismo , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Avaliação Pré-Clínica de Medicamentos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Técnicas In Vitro , Cinética , Pandemias , Pneumonia Viral/genética , Pneumonia Viral/virologia , Biossíntese de Proteínas/efeitos dos fármacos , Proteoma/metabolismo , Proteostase , Splicing de RNA , SARS-CoV-2 , Fatores de Tempo , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
3.
Nature ; 587(7835): 657-662, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32726803

RESUMO

The papain-like protease PLpro is an essential coronavirus enzyme that is required for processing viral polyproteins to generate a functional replicase complex and enable viral spread1,2. PLpro is also implicated in cleaving proteinaceous post-translational modifications on host proteins as an evasion mechanism against host antiviral immune responses3-5. Here we perform biochemical, structural and functional characterization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PLpro (SCoV2-PLpro) and outline differences with SARS-CoV PLpro (SCoV-PLpro) in regulation of host interferon and NF-κB pathways. SCoV2-PLpro and SCoV-PLpro share 83% sequence identity but exhibit different host substrate preferences; SCoV2-PLpro preferentially cleaves the ubiquitin-like interferon-stimulated gene 15 protein (ISG15), whereas SCoV-PLpro predominantly targets ubiquitin chains. The crystal structure of SCoV2-PLpro in complex with ISG15 reveals distinctive interactions with the amino-terminal ubiquitin-like domain of ISG15, highlighting the high affinity and specificity of these interactions. Furthermore, upon infection, SCoV2-PLpro contributes to the cleavage of ISG15 from interferon responsive factor 3 (IRF3) and attenuates type I interferon responses. Notably, inhibition of SCoV2-PLpro with GRL-0617 impairs the virus-induced cytopathogenic effect, maintains the antiviral interferon pathway and reduces viral replication in infected cells. These results highlight a potential dual therapeutic strategy in which targeting of SCoV2-PLpro can suppress SARS-CoV-2 infection and promote antiviral immunity.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Imunidade Inata , SARS-CoV-2/enzimologia , SARS-CoV-2/imunologia , Animais , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Citocinas/química , Citocinas/metabolismo , Enzimas Desubiquitinantes/antagonistas & inibidores , Enzimas Desubiquitinantes/química , Enzimas Desubiquitinantes/metabolismo , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferons/imunologia , Interferons/metabolismo , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , NF-kappa B/imunologia , NF-kappa B/metabolismo , Ligação Proteica , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Ubiquitinação , Ubiquitinas/química , Ubiquitinas/metabolismo , Tratamento Farmacológico da COVID-19
4.
Mol Cell Proteomics ; 22(5): 100537, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37001587

RESUMO

The ancestral SARS-CoV-2 strain that initiated the Covid-19 pandemic at the end of 2019 has rapidly mutated into multiple variants of concern with variable pathogenicity and increasing immune escape strategies. However, differences in host cellular antiviral responses upon infection with SARS-CoV-2 variants remain elusive. Leveraging whole-cell proteomics, we determined host signaling pathways that are differentially modulated upon infection with the clinical isolates of the ancestral SARS-CoV-2 B.1 and the variants of concern Delta and Omicron BA.1. Our findings illustrate alterations in the global host proteome landscape upon infection with SARS-CoV-2 variants and the resulting host immune responses. Additionally, viral proteome kinetics reveal declining levels of viral protein expression during Omicron BA.1 infection when compared to ancestral B.1 and Delta variants, consistent with its reduced replication rates. Moreover, molecular assays reveal deferral activation of specific host antiviral signaling upon Omicron BA.1 and BA.2 infections. Our study provides an overview of host proteome profile of multiple SARS-CoV-2 variants and brings forth a better understanding of the instigation of key immune signaling pathways causative for the differential pathogenicity of SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteoma , Pandemias , Antivirais , Anticorpos Neutralizantes
5.
J Med Virol ; 96(1): e29354, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180134

RESUMO

The Mpox virus can cause severe disease in the susceptible population with dermatologic and systemic manifestations. Furthermore, ophthalmic manifestations of mpox infection are well documented. Topical trifluridine (TFT) eye drops have been used for therapy of ophthalmic mpox infection in patients, however, its efficacy against mpox virus infection in this scenario has not been previously shown. In the present study, we have established ophthalmic cell models suitable for the infection with mpox virus. We show, that TFT is effective against a broad range of mpox isolates in conjunctival epithelial cells and keratocytes. Further, TFT remained effective against a tecovirimat-resistant virus strain. In the context of drug combinations, a nearly additive effect was observed for TFT combinations with brincidofovir and tecovirimat in conjunctival epithelial cells, while a slight antagonism was observed for both combinations in keratocytes. Altogether, our findings demonstrate TFT as a promising drug for treatment of ophthalmic mpox infection able to overcome tecovirimat resistance. However, conflicting results regarding the effect of drug combinations with approved compounds warrant close monitoring of such use in patients.


Assuntos
Mpox , Trifluridina , Humanos , Trifluridina/farmacologia , Trifluridina/uso terapêutico , Olho , Combinação de Medicamentos , Benzamidas , Isoindóis , Monkeypox virus
6.
Br J Cancer ; 129(10): 1667-1678, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37723317

RESUMO

BACKGROUND: Neuroblastoma is a paediatric cancer that is characterised by poor prognosis for chemoresistant disease, highlighting the need for better treatment options. Here, we asked whether BH3-mimetics inhibiting BCL2 proteins may eliminate chemoresistant neuroblastoma cells. METHODS: We utilised cisplatin-adapted neuroblastoma cell lines as well as patient tissues before and after relapse to study alterations of BCL2 proteins upon chemoresistance. RESULTS: In a direct comparison of cisplatin-resistant cells we identified a prominent loss of sensitivity to BCL2/BCL-XL inhibitors that is associated with an increase in MCL1 dependency and high expression of MCL1 in patient tumour tissues. Screening of FDA-approved anti-cancer drugs in chemoresistant cells identified therapeutics that may be beneficial in combination with the clinically tested BH3-mimetic ABT263, but no synergistic drug interactions with the selective MCL1 inhibitor S63845. Further exploration of potential treatment options for chemoresistant neuroblastoma identified immunotherapy based on NK cells as highly promising, since NK cells are able to efficiently kill both parental and chemoresistant cells. CONCLUSIONS: These data highlight that the application of BH3-mimetics may differ between first line treatment and relapsed disease. Combination of NK cell-based immunotherapy with BH3-mimetics may further increase killing of chemoresistant neuroblastoma, outlining a new treatment strategy for relapsed neuroblastoma.


Assuntos
Antineoplásicos , Neuroblastoma , Criança , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Cisplatino/farmacologia , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neuroblastoma/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose
7.
J Med Virol ; 95(3): e28686, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36938992

RESUMO

Recent findings in permanent cell lines suggested that SARS-CoV-2 Omicron BA.1 induces a stronger interferon response than Delta. Here, we show that BA.1 and BA.5 but not Delta induce an antiviral state in air-liquid interface cultures of primary human bronchial epithelial cells and primary human monocytes. Both Omicron subvariants caused the production of biologically active types I (α/ß) and III (λ) interferons and protected cells from super-infection with influenza A viruses. Notably, abortive Omicron infection of monocytes was sufficient to protect monocytes from influenza A virus infection. Interestingly, while influenza-like illnesses surged during the Delta wave in England, their spread rapidly declined upon the emergence of Omicron. Mechanistically, Omicron-induced interferon signaling was mediated via double-stranded RNA recognition by MDA5, as MDA5 knockout prevented it. The JAK/STAT inhibitor baricitinib inhibited the Omicron-mediated antiviral response, suggesting it is caused by MDA5-mediated interferon production, which activates interferon receptors that then trigger JAK/STAT signaling. In conclusion, our study (1) demonstrates that only Omicron but not Delta induces a substantial interferon response in physiologically relevant models, (2) shows that Omicron infection protects cells from influenza A virus super-infection, and (3) indicates that BA.1 and BA.5 induce comparable antiviral states.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Inibidores de Janus Quinases , Humanos , SARS-CoV-2 , Interferons , Antivirais
8.
J Med Virol ; 95(3): e28652, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36897017

RESUMO

The antiviral drugs tecovirimat, brincidofovir, and cidofovir are considered for mpox (monkeypox) treatment despite a lack of clinical evidence. Moreover, their use is affected by toxic side-effects (brincidofovir, cidofovir), limited availability (tecovirimat), and potentially by resistance formation. Hence, additional, readily available drugs are needed. Here, therapeutic concentrations of nitroxoline, a hydroxyquinoline antibiotic with a favourable safety profile in humans, inhibited the replication of 12 mpox virus isolates from the current outbreak in primary cultures of human keratinocytes and fibroblasts and a skin explant model by interference with host cell signalling. Tecovirimat, but not nitroxoline, treatment resulted in rapid resistance development. Nitroxoline remained effective against the tecovirimat-resistant strain and increased the anti-mpox virus activity of tecovirimat and brincidofovir. Moreover, nitroxoline inhibited bacterial and viral pathogens that are often co-transmitted with mpox. In conclusion, nitroxoline is a repurposing candidate for the treatment of mpox due to both antiviral and antimicrobial activity.


Assuntos
Reposicionamento de Medicamentos , Mpox , Nitroquinolinas , Humanos , Antibacterianos/farmacologia , Antivirais/farmacologia , Cidofovir , Mpox/tratamento farmacológico , Nitroquinolinas/farmacologia
9.
Cancer Invest ; 41(2): 173-182, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36318235

RESUMO

Neuroblastoma (NB) is a pediatric solid cancer with high fatality, relapses, and acquired resistance to chemotherapy, that requires new therapeutic approaches to improve survival. LGR5 is a receptor that potentiates WNT/signaling pathway and has been reported to promote development and survival in several adult cancers. In this study we investigated LGR5 expression in a panel of NB cell lines with acquired resistance to vincristine or doxorubicin. We show LGR5-LRP6 cooperation with enhanced expression in drug resistant NB cell lines compared to parental cells, suggesting a role for LGR5 in the emergence of drug resistance, warranting further investigation.


Assuntos
Neuroblastoma , Via de Sinalização Wnt , Criança , Humanos , Proteínas Wnt/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/uso terapêutico
10.
J Nat Prod ; 86(2): 264-275, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36651644

RESUMO

In this study, an integrated in silico-in vitro approach was employed to discover natural products (NPs) active against SARS-CoV-2. The two SARS-CoV-2 viral proteases, i.e., main protease (Mpro) and papain-like protease (PLpro), were selected as targets for the in silico study. Virtual hits were obtained by docking more than 140,000 NPs and NP derivatives available in-house and from commercial sources, and 38 virtual hits were experimentally validated in vitro using two enzyme-based assays. Five inhibited the enzyme activity of SARS-CoV-2 Mpro by more than 60% at a concentration of 20 µM, and four of them with high potency (IC50 < 10 µM). These hit compounds were further evaluated for their antiviral activity against SARS-CoV-2 in Calu-3 cells. The results from the cell-based assay revealed three mulberry Diels-Alder-type adducts (MDAAs) from Morus alba with pronounced anti-SARS-CoV-2 activities. Sanggenons C (12), O (13), and G (15) showed IC50 values of 4.6, 8.0, and 7.6 µM and selectivity index values of 5.1, 3.1 and 6.5, respectively. The docking poses of MDAAs in SARS-CoV-2 Mpro proposed a butterfly-shaped binding conformation, which was supported by the results of saturation transfer difference NMR experiments and competitive 1H relaxation dispersion NMR spectroscopy.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , Proteases Virais , SARS-CoV-2 , Peptídeo Hidrolases , Antivirais , Simulação de Acoplamento Molecular , Inibidores de Proteases
11.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834189

RESUMO

Despite recent advances in the treatment of non-small cell lung cancer (NSCLC), acquired drug resistance to targeted therapy remains a major obstacle. Epithelial-mesenchymal transition (EMT) has been identified as a key resistance mechanism in NSCLC. Here, we investigated the mechanistic role of key EMT-regulating small non-coding microRNAs (miRNAs) in sublines of the NSCLC cell line HCC4006 adapted to afatinib, erlotinib, gefitinib, or osimertinib. The most differentially expressed miRNAs derived from extracellular vesicles were associated with EMT, and their predicted target ZEB1 was significantly overexpressed in all resistant cell lines. Transfection of a miR-205-5p mimic partially reversed EMT by inhibiting ZEB1, restoring CDH1 expression, and inhibiting migration in erlotinib-resistant cells. Gene expression of EMT-markers, transcription factors, and miRNAs were correlated during stepwise osimertinib adaptation of HCC4006 cells. Temporally relieving cells of osimertinib reversed transition trends, suggesting that the implementation of treatment pauses could provide prolonged benefits for patients. Our results provide new insights into the contribution of miRNAs to drug-resistant NSCLC harboring EGFR-activating mutations and highlight their role as potential biomarkers and therapeutic targets.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , MicroRNAs/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Cloridrato de Erlotinib/uso terapêutico , Transição Epitelial-Mesenquimal/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores ErbB/genética , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Mutação , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
12.
J Biol Chem ; 297(2): 100925, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34214498

RESUMO

Apart from prevention using vaccinations, the management options for COVID-19 remain limited. In retrospective cohort studies, use of famotidine, a specific oral H2 receptor antagonist (antihistamine), has been associated with reduced risk of intubation and death in patients hospitalized with COVID-19. In a case series, nonhospitalized patients with COVID-19 experienced rapid symptom resolution after taking famotidine, but the molecular basis of these observations remains elusive. Here we show using biochemical, cellular, and functional assays that famotidine has no effect on viral replication or viral protease activity. However, famotidine can affect histamine-induced signaling processes in infected Caco2 cells. Specifically, famotidine treatment inhibits histamine-induced expression of Toll-like receptor 3 (TLR3) in SARS-CoV-2 infected cells and can reduce TLR3-dependent signaling processes that culminate in activation of IRF3 and the NF-κB pathway, subsequently controlling antiviral and inflammatory responses. SARS-CoV-2-infected cells treated with famotidine demonstrate reduced expression levels of the inflammatory mediators CCL-2 and IL6, drivers of the cytokine release syndrome that precipitates poor outcome for patients with COVID-19. Given that pharmacokinetic studies indicate that famotidine can reach concentrations in blood that suffice to antagonize histamine H2 receptors expressed in mast cells, neutrophils, and eosinophils, these observations explain how famotidine may contribute to the reduced histamine-induced inflammation and cytokine release, thereby improving the outcome for patients with COVID-19.


Assuntos
Famotidina/farmacologia , Antagonistas dos Receptores Histamínicos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Receptor 3 Toll-Like/metabolismo , Células A549 , Sítios de Ligação , Células CACO-2 , Quimiocina CCL2/metabolismo , Proteases 3C de Coronavírus/metabolismo , Células HeLa , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Ligação Proteica , SARS-CoV-2/fisiologia , Transdução de Sinais , Receptor 3 Toll-Like/química , Replicação Viral
13.
Bioinformatics ; 37(16): 2282-2288, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-33560365

RESUMO

MOTIVATION: SARS-CoV-2 is a novel coronavirus currently causing a pandemic. Here, we performed a combined in-silico and cell culture comparison of SARS-CoV-2 and the closely related SARS-CoV. RESULTS: Many amino acid positions are differentially conserved between SARS-CoV-2 and SARS-CoV, which reflects the discrepancies in virus behaviour, i.e. more effective human-to-human transmission of SARS-CoV-2 and higher mortality associated with SARS-CoV. Variations in the S protein (mediates virus entry) were associated with differences in its interaction with ACE2 (cellular S receptor) and sensitivity to TMPRSS2 (enables virus entry via S cleavage) inhibition. Anti-ACE2 antibodies more strongly inhibited SARS-CoV than SARS-CoV-2 infection, probably due to a stronger SARS-CoV-2 S-ACE2 affinity relative to SARS-CoV S. Moreover, SARS-CoV-2 and SARS-CoV displayed differences in cell tropism. Cellular ACE2 and TMPRSS2 levels did not indicate susceptibility to SARS-CoV-2. In conclusion, we identified genomic variation between SARS-CoV-2 and SARS-CoV that may reflect the differences in their clinical and biological behaviour. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

14.
J Med Virol ; 94(7): 3101-3111, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35229317

RESUMO

Although vaccines are currently used to control the coronavirus disease 2019 (COVID-19) pandemic, treatment options are urgently needed for those who cannot be vaccinated and for future outbreaks involving new severe acute respiratory syndrome coronavirus virus 2 (SARS-CoV-2) strains or coronaviruses not covered by current vaccines. Thus far, few existing antivirals are known to be effective against SARS-CoV-2 and clinically successful against COVID-19. As part of an immediate response to the COVID-19 pandemic, a high-throughput, high content imaging-based SARS-CoV-2 infection assay was developed in VeroE6 African green monkey kidney epithelial cells expressing a stable enhanced green fluorescent protein (VeroE6-eGFP cells) and was used to screen a library of 5676 compounds that passed Phase 1 clinical trials. Eight drugs (nelfinavir, RG-12915, itraconazole, chloroquine, hydroxychloroquine, sematilide, remdesivir, and doxorubicin) were identified as inhibitors of in vitro anti-SARS-CoV-2 activity in VeroE6-eGFP and/or Caco-2 cell lines. However, apart from remdesivir, toxicity and pharmacokinetic data did not support further clinical development of these compounds for COVID-19 treatment.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Humanos , Antivirais/farmacologia , Células CACO-2 , Chlorocebus aethiops , Ensaios de Triagem em Larga Escala , Pandemias
15.
BMC Cancer ; 22(1): 1352, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564761

RESUMO

BACKGROUND/INTRODUCTION: Penile cancer is a rare disease in demand for new therapeutic options. Frequently used combination chemotherapy with 5 fluorouracil (5-FU) and cisplatin (CDDP) in patients with metastatic penile cancer mostly results in the development of acquired drug resistance. Availability of cell culture models with acquired resistance against standard therapy could help to understand molecular mechanisms underlying chemotherapy resistance and to identify candidate treatments for an efficient second line therapy. METHODS: We generated a cell line from a humanpapilloma virus (HPV) negative penile squamous cell carcinoma (UKF-PEC-1). This cell line was subject to chronic exposure to chemotherapy with CDDP and / or 5-FU to induce acquired resistance in the newly established chemo-resistant sublines (PEC-1rCDDP2500, adapted to 2500 ng/ml CDDP; UKF-PEC-1r5-FU500, adapted to 500 ng/ml 5- FU; UKF-PEC1rCDDP2500/r5-FU500, adapted to 2500 ng/ml CDDP and 500 ng/ml 5 -FU). Afterwards cell line pellets were formalin-fixed, paraffin embedded and subject to sequencing as well as testing for homologous recombination deficiency (HRD). Additionally, exemplary immunohistochemical stainings for p53 and gammaH2AX were applied for verification purposes. Finally, UKF-PEC-1rCDDP2500, UKF-PEC-1r5-FU500, UKF-PEC1rCDDP2500/r5-FU500, and UKF-PEC-3 (an alternative penis cancer cell line) were tested for sensitivity to paclitaxel, docetaxel, olaparib, and rucaparib. RESULTS AND CONCLUSIONS: The chemo-resistant sublines differed in their mutational landscapes. UKF-PEC-1rCDDP2500 was characterized by an increased HRD score, which is supposed to be associated with increased PARP inhibitor and immune checkpoint inhibitor sensitivity in cancer. However, UKF-PEC-1rCDDP2500 did not display sensitivity to PARP inhibitors.


Assuntos
Cisplatino , Neoplasias Penianas , Humanos , Masculino , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Penianas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Linhagem Celular Tumoral , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia
16.
BMC Urol ; 22(1): 10, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093044

RESUMO

BACKGROUND: Routine human papillomavirus (HPV) testing is performed in cervival cancer and is required for classification of some head and neck cancers. In penile cancer a statement on HPV association of the carcinoma is required. In most cases p16 immunohistochemistry as a surrogate marker is applied in this setting. Since differing clinical outcomes for HPV positive and HPV negative tumors are described we await HPV testing to be requested more frequently by clinicians, also in the context of HPV vaccination, where other HPV subtypes are expected to emerge. METHOD: Therefore, a cohort of archived, formalin-fixed paraffin embedded (FFPE) penile neoplasias was stained for p16 and thereafter tested for HPV infection status via PCR based methods. Additionally to Sanger sequencing, we chose LCD-Array technique (HPV 3.5 LCD-Array Kit, Chipron; LCD-Array) for the detection of HPV in our probes expecting a less time consuming and sensitive HPV test for our probes. RESULTS: We found that LCD-Array is a sensitive and feasible method for HPV testing in routine diagnostics applicable to FFPE material in our cohort. Our cohort of penile carcinomas and carcinomas in situ was associated with HPV infection in 61% of cases. We detected no significant association between HPV infection status and histomorphological tumor characteristics as well as overall survival. CONCLUSIONS: We showed usability of molecular HPV testing on a cohort of archived penile carcinomas. To the best of our knowledge, this is the first study investigating LCD-Array technique on a cohort of penile neoplasias.


Assuntos
Papillomaviridae/classificação , Infecções por Papillomavirus/complicações , Neoplasias Penianas/virologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Penianas/diagnóstico , Virologia/métodos
17.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232303

RESUMO

Combined cisplatin-gemcitabine treatment causes rapid resistance development in patients with advanced urothelial carcinoma. The present study investigated the potential of the natural isothiocyanates (ITCs) allyl-isothiocyanate (AITC), butyl-isothiocyanate (BITC), and phenylethyl-isothiocyanate (PEITC) to suppress growth and proliferation of gemcitabine- and cisplatin-resistant bladder cancer cells lines. Sensitive and gemcitabine- and cisplatin-resistant RT112, T24, and TCCSUP cells were treated with the ITCs, and tumor cell growth, proliferation, and clone formation were evaluated. Apoptosis induction and cell cycle progression were investigated as well. The molecular mode of action was investigated by evaluating cell cycle-regulating proteins (cyclin-dependent kinases (CDKs) and cyclins A and B) and the mechanistic target of the rapamycin (mTOR)-AKT signaling pathway. The ITCs significantly inhibited growth, proliferation and clone formation of all tumor cell lines (sensitive and resistant). Cells were arrested in the G2/M phase, independent of the type of resistance. Alterations of both the CDK-cyclin axis and the Akt-mTOR signaling pathway were observed in AITC-treated T24 cells with minor effects on apoptosis induction. In contrast, AITC de-activated Akt-mTOR signaling and induced apoptosis in RT112 cells, with only minor effects on CDK expression. It is concluded that AITC, BITC, and PEITC exert tumor-suppressive properties on cisplatin- and gemcitabine-resistant bladder cancer cells, whereby the molecular action may differ among the cell lines. The integration of these ITCs into the gemcitabine-/cisplatin-based treatment regimen might optimize bladder cancer therapy.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Apoptose , Linhagem Celular Tumoral , Cisplatino/farmacologia , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Desoxicitidina/análogos & derivados , Humanos , Isotiocianatos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Gencitabina
18.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35162972

RESUMO

SARS-CoV-2 uses the human cell surface protein angiotensin converting enzyme 2 (ACE2) as the receptor by which it gains access into lung and other tissue. Early in the pandemic, there was speculation that a number of commonly used medications-including ibuprofen and other non-steroidal anti-inflammatory drugs (NSAIDs)-have the potential to upregulate ACE2, thereby possibly facilitating viral entry and increasing the severity of COVID-19. We investigated the influence of the NSAIDS with a range of cyclooxygenase (COX)1 and COX2 selectivity (ibuprofen, flurbiprofen, etoricoxib) and paracetamol on the level of ACE2 mRNA/protein expression and activity as well as their influence on SARS-CoV-2 infection levels in a Caco-2 cell model. We also analysed the ACE2 mRNA/protein levels and activity in lung, heart and aorta in ibuprofen treated mice. The drugs had no effect on ACE2 mRNA/protein expression and activity in the Caco-2 cell model. There was no up-regulation of ACE2 mRNA/protein expression and activity in lung, heart and aorta tissue in ibuprofen-treated mice in comparison to untreated mice. Viral load was significantly reduced by both flurbiprofen and ibuprofen at high concentrations. Ibuprofen, flurbiprofen, etoricoxib and paracetamol demonstrated no effects on ACE2 expression or activity in vitro or in vivo. Higher concentrations of ibuprofen and flurbiprofen reduced SARS-CoV-2 replication in vitro.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anti-Inflamatórios não Esteroides/farmacologia , COVID-19/genética , Acetaminofen/farmacologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , COVID-19/patologia , Células CACO-2 , Progressão da Doença , Ativação Enzimática/efeitos dos fármacos , Etoricoxib/farmacologia , Flurbiprofeno/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Ibuprofeno/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Internalização do Vírus/efeitos dos fármacos
19.
Curr Issues Mol Biol ; 43(3): 1212-1225, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34698067

RESUMO

The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Most SARS-CoV-2 infections are mild or even asymptomatic. However, a small fraction of infected individuals develops severe, life-threatening disease, which is caused by an uncontrolled immune response resulting in hyperinflammation. However, the factors predisposing individuals to severe disease remain poorly understood. Here, we show that levels of CD47, which is known to mediate immune escape in cancer and virus-infected cells, are elevated in SARS-CoV-2-infected Caco-2 cells, Calu-3 cells, and air-liquid interface cultures of primary human bronchial epithelial cells. Moreover, SARS-CoV-2 infection increases SIRPalpha levels, the binding partner of CD47, on primary human monocytes. Systematic literature searches further indicated that known risk factors such as older age and diabetes are associated with increased CD47 levels. High CD47 levels contribute to vascular disease, vasoconstriction, and hypertension, conditions that may predispose SARS-CoV-2-infected individuals to COVID-19-related complications such as pulmonary hypertension, lung fibrosis, myocardial injury, stroke, and acute kidney injury. Hence, age-related and virus-induced CD47 expression is a candidate mechanism potentially contributing to severe COVID-19, as well as a therapeutic target, which may be addressed by antibodies and small molecules. Further research will be needed to investigate the potential involvement of CD47 and SIRPalpha in COVID-19 pathology. Our data should encourage other research groups to consider the potential relevance of the CD47/ SIRPalpha axis in their COVID-19 research.


Assuntos
Antígenos de Diferenciação/metabolismo , Antígeno CD47/metabolismo , COVID-19/epidemiologia , COVID-19/metabolismo , Pandemias , Receptores Imunológicos/metabolismo , SARS-CoV-2/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais/imunologia , Doadores de Sangue , Western Blotting/métodos , Brônquios/citologia , COVID-19/patologia , COVID-19/virologia , Células CACO-2 , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Voluntários Saudáveis , Humanos , Monócitos/metabolismo , Monócitos/virologia , Reação em Cadeia da Polimerase/métodos , RNA Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA