RESUMO
The stability and resilience of the Earth system and human well-being are inseparably linked1-3, yet their interdependencies are generally under-recognized; consequently, they are often treated independently4,5. Here, we use modelling and literature assessment to quantify safe and just Earth system boundaries (ESBs) for climate, the biosphere, water and nutrient cycles, and aerosols at global and subglobal scales. We propose ESBs for maintaining the resilience and stability of the Earth system (safe ESBs) and minimizing exposure to significant harm to humans from Earth system change (a necessary but not sufficient condition for justice)4. The stricter of the safe or just boundaries sets the integrated safe and just ESB. Our findings show that justice considerations constrain the integrated ESBs more than safety considerations for climate and atmospheric aerosol loading. Seven of eight globally quantified safe and just ESBs and at least two regional safe and just ESBs in over half of global land area are already exceeded. We propose that our assessment provides a quantitative foundation for safeguarding the global commons for all people now and into the future.
Assuntos
Mudança Climática , Planeta Terra , Justiça Ambiental , Internacionalidade , Segurança , Humanos , Aerossóis/metabolismo , Clima , Água/metabolismo , Nutrientes/metabolismo , Segurança/legislação & jurisprudência , Segurança/normasRESUMO
Mammalian evolution has been influenced by viruses for millions of years, leaving signatures of adaptive evolution within genes encoding for viral interacting proteins. Synaptogyrin-2 (SYNGR2) is a transmembrane protein implicated in promoting bacterial and viral infections. A genome-wide association study of pigs experimentally infected with porcine circovirus type 2b (PCV2b) uncovered a missense mutation (SYNGR2 p.Arg63Cys) associated with viral load. In this study, CRISPR/Cas9-mediated gene editing of the porcine kidney 15 (PK15, wtSYNGR2+p.63Arg) cell line generated clones homozygous for the favorable SYNGR2 p.63Cys allele (emSYNGR2+p.63Cys). Infection of edited clones resulted in decreased PCV2 replication compared to wildtype PK15 (P<0.05), with consistent effects across genetically distinct PCV2b and PCV2d isolates. Sequence analyses of wild and domestic pigs (n>700) revealed the favorable SYNGR2 p.63Cys allele is unique to domestic pigs and more predominant in European than Asian breeds. A haplotype defined by the SYNGR2 p.63Cys allele was likely derived from an ancestral haplotype nearly fixed within European (0.977) but absent from Asian wild boar. We hypothesize that the SYNGR2 p.63Cys allele arose post-domestication in ancestral European swine. Decreased genetic diversity in homozygotes for the SYNGR2 p.63Cys allele compared to SYNGR2 p.63Arg, corroborates a rapid increase in frequency of SYGNR2 p.63Cys via positive selection. Signatures of adaptive evolution across mammalian species were also identified within SYNGR2 intraluminal loop domains, coinciding with the location of SYNGR2 p.Arg63Cys. Therefore, SYNGR2 may reflect a novel component of the host-virus evolutionary arms race across mammals with SYNGR2 p.Arg63Cys representing a species-specific example of putative adaptive evolution.
Assuntos
Circovirus , Doenças dos Suínos , Suínos/genética , Animais , Circovirus/genética , Sinaptogirinas/genética , Estudo de Associação Genômica Ampla , Doenças dos Suínos/genética , Genótipo , Sus scrofa/genéticaRESUMO
Porcine circovirus 2 (PCV2) is a circular single-stranded DNA virus responsible for a group of diseases collectively known as PCV2 Associated Diseases (PCVAD). Variation in the incidence and severity of PCVAD exists between pigs suggesting a host genetic component involved in pathogenesis. A large-scale genome-wide association study of experimentally infected pigs (n = 974), provided evidence of a host genetic role in PCV2 viremia, immune response and growth during challenge. Host genotype explained 64% of the phenotypic variation for overall viral load, with two major Quantitative Trait Loci (QTL) identified on chromosome 7 (SSC7) near the swine leukocyte antigen complex class II locus and on the proximal end of chromosome 12 (SSC12). The SNP having the strongest association, ALGA0110477 (SSC12), explained 9.3% of the genetic and 6.2% of the phenotypic variance for viral load. Dissection of the SSC12 QTL based on gene annotation, genomic and RNA-sequencing, suggested that a missense mutation in the SYNGR2 (SYNGR2 p.Arg63Cys) gene is potentially responsible for the variation in viremia. This polymorphism, located within a protein domain conserved across mammals, results in an amino acid variant SYNGR2 p.63Cys only observed in swine. PCV2 titer in PK15 cells decreased when the expression of SYNGR2 was silenced by specific-siRNA, indicating a role of SYNGR2 in viral replication. Additionally, a PK15 edited clone generated by CRISPR-Cas9, carrying a partial deletion of the second exon that harbors a key domain and the SYNGR2 p.Arg63Cys, was associated with a lower viral titer compared to wildtype PK15 cells (>24 hpi) and supernatant (>48hpi)(P < 0.05). Identification of a non-conservative substitution in this key domain of SYNGR2 suggests that the SYNGR2 p.Arg63Cys variant may underlie the observed genetic effect on viral load.
Assuntos
Circovirus/genética , Sinaptogirinas/genética , Sinaptogirinas/metabolismo , Animais , Circovirus/patogenicidade , Replicação do DNA , Estudo de Associação Genômica Ampla , Suínos/genética , Sinaptogirinas/fisiologia , Carga Viral/genética , Viremia/genética , Replicação Viral/genéticaRESUMO
Congenital or juvenile cataract is a disease condition in which opacification of the lenses is present at birth or manifests early in life. It has been attributed to different monogenic factors with a high degree of heterogeneity and is often studied using mouse models. A spontaneous mutation was identified in a mouse line selected for heat loss that influenced lens formation and resulted in juvenile cataracts in mice homozygous for the recessive allele. Genetic dissection of this selection line by combining high-density genotypes and homozygosity mapping uncovered a 906 kb fragment on MMU7 encompassing 21 SNPs split into two groups of consecutive, homozygous segments specific to the cataract phenotype. Haplotype analysis revealed a 197.5 kb segment unique to cataract-affected mice that included a single known transcript consisting of the first 14 exons of Sipa1l3. In this region, we discovered a deletion of 1114 bp at the mRNA level, spanning four coding exons, predicted to produce a truncated Sipa1l3 protein lacking a portion of a Rap-GAP domain and two other potentially vital domains. At the genome level, the deletion consisted of 16,733 bp. Genotyping across different samples confirmed that only affected mice were homozygous for the deletion and normal mice were either heterozygous or homozygous for the wild-type allele. Further studies will be required to determine the impact of the truncated Sipa1l3 domains on eye development.
Assuntos
Catarata/genética , Proteínas Ativadoras de GTPase/genética , Deleção de Sequência/genética , Alelos , Animais , Éxons/genética , Feminino , Genótipo , Heterozigoto , Homozigoto , Cristalino/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
BACKGROUND: Porcine circovirus 2 is the primary agent responsible for inducing a group of associated diseases known as Porcine Circovirus Associated Diseases (PCVAD), which can have detrimental effects on production efficiency as well as causing significant mortality. The objective of this study was to evaluate variation in viral replication, immune response and growth across pigs (n = 974) from different crossbred lines. The approach used in this study was experimental infection with a PCV2b strain of pigs at an average of 43 days of age. RESULTS: The sequence of the PCV2b isolate used in the challenge was similar with a cluster of PCV2b isolates known to induce PCVAD and increased mortality rates. The swine leukocyte antigen class II (SLAII) profile of the population was diverse, with nine DQB1 haplotypes being present. Individual viremia and antibody profiles during challenge demonstrate variation in magnitude and time of viral surge and immune response. The correlations between PCV2 specific antibodies and average daily gain (ADG) were relatively low and varied between - 0.14 to 0.08 for IgM and -0.02 and 0.11 for IgG. In contrast, PCV2 viremia was an important driver of ADG decline following infection; a moderate negative correlation was observed between viral load and overall ADG (r = - 0.35, P < 0.001). The pigs with the lowest 10% level of viral load maintained a steady increase in weekly ADG (P < 0.0001) compared to the pigs that had the 10% greatest viral load (P < 0.55). In addition, the highly viremic group expressed higher IgM and IgG starting with d 14 and d 21 respectively, and higher tumor necrosis factor - alpha (TNF-α) at d 21 (P < 0.005), compared to low viremic group. CONCLUSIONS: Molecular sources of the observed differences in viremia and immune response could provide a better understanding of the host factors that influence the development of PCVAD and lead to improved knowledge of swine immunity.
Assuntos
Infecções por Circoviridae/veterinária , Circovirus/imunologia , Doenças dos Suínos/virologia , Viremia/veterinária , Animais , Infecções por Circoviridae/imunologia , Infecções por Circoviridae/virologia , Circovirus/patogenicidade , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/veterinária , Suscetibilidade a Doenças/virologia , Imunidade/imunologia , Suínos/crescimento & desenvolvimento , Suínos/virologia , Doenças dos Suínos/imunologia , Fatores de Tempo , Carga Viral/veterinária , Viremia/imunologia , Viremia/virologia , Replicação ViralRESUMO
Neuronal populations display conspicuous variability in their size among individuals, but the genetic sources of this variation are largely undefined. We demonstrate a large and highly heritable variation in neuron number within the mouse retina, affecting a critical population of interneurons, the horizontal cells. Variation in the size of this population maps to the distal end of chromosome (Chr) 13, a region homologous to human Chr 5q11.1-11.2. This region contains two genes known to modulate retinal cell number. Using conditional knock-out mice, we demonstrate that one of these genes, the LIM homeodomain gene Islet-1 (Isl1), plays a role in regulating horizontal cell number. Genetic differences in Isl1 expression are high during the period of horizontal cell production, and cis-regulation of Isl1 expression within the retina is demonstrated directly. We identify a single nucleotide polymorphism in the 5' UTR of Isl1 that creates an E-box sequence as a candidate causal variant contributing to this variation in horizontal cell number.
Assuntos
Embrião de Mamíferos/metabolismo , Proteínas de Homeodomínio/genética , Retina/metabolismo , Regiões 5' não Traduzidas/genética , Animais , Contagem de Células , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Feminino , Imunofluorescência , Folistatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Homeodomínio LIM , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único , Gravidez , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas/genética , Retina/citologia , Retina/embriologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Fatores de TranscriçãoRESUMO
Cattle are reared in diverse environments and collecting phenotypic body temperature (BT) measurements to characterize BT variation across diverse environments is difficult and expensive. To better understand the genetic basis of BT regulation, a genome-wide association study was conducted utilizing crossbred steers and heifers totaling 239 animals of unknown pedigree and breed fraction. During predicted extreme heat and cold stress events, hourly tympanic and vaginal BT devices were placed in steers and heifers, respectively. Individuals were genotyped with the BovineSNP50K_v2 assay and data analyzed using Bayesian models for area under the curve (AUC), a measure of BT over time, using hourly BT observations summed across 5-days (AUC summer 5-day (AUCS5D) and AUC winter 5-day (AUCW5D)). Posterior heritability estimates were moderate to high and were estimated to be 0.68 and 0.21 for AUCS5D and AUCW5D, respectively. Moderately positive correlations between direct genomic values for AUCS5D and AUCW5D (0.40) were found, although a small percentage of the top 5% 1-Mb windows were in common. Different sets of genes were associated with BT during winter and summer, thus simultaneous selection for animals tolerant to both heat and cold appears possible.
Assuntos
Temperatura Corporal/genética , Bovinos/genética , Temperatura Baixa/efeitos adversos , Temperatura Alta/efeitos adversos , Estresse Fisiológico/genética , Animais , Área Sob a Curva , Bovinos/fisiologia , Feminino , Estudo de Associação Genômica Ampla , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Estações do AnoRESUMO
Replication of porcine circovirus type 2 (PCV2), an important worldwide swine pathogen, has been demonstrated to be influenced by host genotype. Specifically, a missense DNA polymorphism (SYNGR2 p.Arg63Cys) within the SYNGR2 gene was demonstrated to contribute to variation in PCV2b viral load and subsequent immune response following infection. PCV2 is known to induce immunosuppression leading to an increase in susceptibility to subsequent infections with other viral pathogens such as porcine reproductive and respiratory syndrome virus (PRRSV). In order to assess the role of SYNGR2 p.Arg63Cys in co-infections, pigs homozygous for the favorable SYNGR2 p.63Cys (N = 30) and unfavorable SYNGR2 p.63Arg (N = 29) alleles were infected with PCV2b followed a week later by a challenge with PRRSV. A lower PCV2b viremia (P < 0.001) and PCV2-specific IgM antibodies (P < 0.005) were observed in SYNGR2 p.63Cys compared to SYNGR2 p.63Arg genotypes. No significant differences in PRRSV viremia and specific IgG antibodies were observed between SYNGR2 genotypes. Lung histology score, an indicator of disease severity, was lower in the pigs with SYNGR2 p.63Cys genotypes (P < 0.05). Variation in the lung histology scores within SYNGR2 genotypes suggests that additional factors, environmental and/or genetic, could be involved in disease severity.
Porcine circovirus type 2 (PCV2) is an important virus involved in the onset of a group of severe disease symptoms commonly known as porcine circovirus associated diseases (PCVAD). Vaccination options exist for PCV2, though the severity of PCVAD can be influenced by the presence of additional co-infecting pathogens, such as porcine reproductive and respiratory syndrome virus (PRRSV), for which vaccination is still a challenge. Host genetic resistance is a potential avenue for solving this problem. Previously, a genetic polymorphism in the SYNGR2 gene was found to be associated with PCV2b viremia and immune response. The aim of this study was to determine the impact of this polymorphism in pigs experimentally co-infected with PCV2b and PRRSV. Pigs were weighed, and blood was collected at various days following infection to measure viremia and antibodies. Histological analysis was performed at the experiment completion to assess disease severity in lungs and lymph nodes. The results showed that variation within the SYNGR2 gene is involved in PCV2b disease progression including lung histology scores, but no evidence was seen in response to PRRSV infection.
Assuntos
Infecções por Circoviridae , Circovirus , Coinfecção , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Doenças dos Suínos/patologia , Viremia/veterinária , Coinfecção/veterinária , Anticorpos Antivirais , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/patologia , Circovirus/genéticaRESUMO
Longevity and reproductive performance are economically important traits in the swine industry that are largely influenced by nutrition and other environmental factors. Reproductive performance and longevity through 4 parities was assessed in gilts of 2 genetic lines developed on ad libitum access to feed or restricted to 75% of ad libitum intake. A total of 661 gilts were used in a 2 × 2 factorial with half of the gilts allocated to an ad libitum diet (AL; n = 330), while the other half were energy restricted by 25% (R; n = 331) from 123 to 235 d of age. All gilts were sired by an industry maternal line. Dams of the gilts were from either a Large White (W) by Landrace (L) industry maternal line or Nebraska Selection Line 45X, producing gilts designated as W × L (n = 355) and L45X (n = 306), respectively. Daily estrus detection began at 140 d of age to obtain age at puberty (AP). Gilts (n = 510) were mated on their second or later estrus, beginning at 240 d of age. Sow weight and backfat were recorded at 110 d of gestation and weaning of each parity. Number of live-born, stillborn, and mummified pigs per litter and piglet birth and weaning weights were recorded through 4 parities. More L45X than W × L and more AL than R gilts reached puberty by 230 d of age (P < 0.01). Dietary treatment did not affect probability to produce parities 1 to 4 or any litter trait analyzed. The L45X females tended to be more likely to produce parities 1 (P < 0.08) and 3 (P < 0.06), while W × L had heavier litters at birth (P < 0.01) and weaning (P = 0.01). Treatment by parity interactions (P < 0.01) existed for weight and backfat prior to farrowing and backfat at weaning, and weight at weaning exhibited a line by treatment by parity interaction (P = 0.04) as R sows had lower weights and backfats in earlier parities, but caught up to AL sows in later parities. A treatment by parity interaction (P < 0.01) was also present for backfat loss from farrowing to weaning as R gilts lost less backfat than AL in parities 1 and 2, but more in parities 3 and 4. No significant differences were detected between lines or treatments for lifetime production traits. The populations of pigs and data presented here provide a framework for a diverse array of further studies. Alternative approaches to restrict energy have been assessed in addition to methods of marker-assisted and genomic selection for improvement of litter size and sow longevity.
Assuntos
Longevidade , Reprodução , Animais , Feminino , Lactação , Tamanho da Ninhada de Vivíparos , Paridade , Gravidez , Sus scrofa , Suínos , DesmameRESUMO
DNA methylation (DNAm) has been considered a promising indicator of biological age in mammals and could be useful to increase the accuracy of phenotypic prediction in livestock. The objectives of this study were to estimate the heritability and age effects of site-specific DNAm (DNAm level) and cumulative DNAm across all sites (DNAm load) in beef cattle. Blood samples were collected from cows ranging from 217 to 3,192 days (0.6 to 8.7 years) of age (n = 136). All animals were genotyped, and DNAm was obtained using the Infinium array HorvathMammalMethylChip40. Genetic parameters for DNAm were obtained from an animal model based on the genomic relationship matrix, including the fixed effects of age and breed composition. Heritability estimates of DNAm levels ranged from 0.18 to 0.72, with a similar average across all regions and chromosomes. Heritability estimate of DNAm load was 0.45. The average age effect on DNAm level varied among genomic regions. The DNAm level across the genome increased with age in the promoter and 5' UTR and decreased in the exonic, intronic, 3' UTR, and intergenic regions. In addition, DNAm level increased with age in regions enriched in CpG and decreased in regions deficient in CpG. Results suggest DNAm profiles are influenced by both genetics and the environmental effect of age in beef cattle.
Assuntos
Metilação de DNA , Genômica , Animais , Bovinos/genética , Ilhas de CpG/genética , Epigênese Genética , Feminino , Genoma , Mamíferos/genética , Regiões Promotoras GenéticasRESUMO
Atypical porcine pestivirus (APPV), an RNA virus member of the Flaviviridae family, has been associated with congenital tremor in newborn piglets. Previously reported quantitative polymerase chain reaction (qPCR)-based assays were unable to detect APPV in novel cases of congenital tremor originated from multiple farms from U.S. Midwest (MW). These assays targeted the viral polyprotein coding genes, which were shown to display substantial variation, with sequence identity ranging from 58.2% to 70.7% among 15 global APPV strains. In contrast, the 5'-untranslated region (5' UTR) was found to have a much higher degree of sequence conservation. In order to obtain the complete 5' UTR of the APPV strains originated from MW, the 5' end of the viral cDNA was obtained by using template switching approach followed by amplification and dideoxy sequencing. Eighty one percent of the 5' UTR was identical across 14 global and 5 MW strains with complete or relatively complete 5' UTR. Notably, some of the most highly conserved 5' UTR segments overlapped with potentially important regions of an internal ribosome entry site (IRES), suggesting their functional role in viral protein translation. A newly designed single qPCR assay, targeting 100% conserved 5' UTR regions across 19 strains, was able to detect APPV in samples of well documented cases of congenital tremor which originated from five MW farm sites (1-18 samples/site). As these fully conserved 5' UTR sequences may have functional importance, we expect that assays targeting this region would broadly detect APPV strains that are diverse in space and time.
Assuntos
Infecções por Pestivirus , Pestivirus , Doenças dos Suínos , Animais , Variação Genética , Pestivirus/genética , Infecções por Pestivirus/epidemiologia , Infecções por Pestivirus/veterinária , Filogenia , Suínos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/epidemiologiaRESUMO
Stress is a major risk factor for numerous neuropsychiatric diseases. However, susceptibility to stress and the qualitative nature of stress effects on behavior differ markedly among individuals. This is partly because of the moderating influence of genetic factors. Inbred mouse strains provide a relatively stable and restricted range of genetic and environmental variability that is valuable for disentangling gene-stress interactions. Here, we screened a panel of inbred strains for anxiety- and depression-related phenotypes at baseline (trait) and after exposure to repeated restraint. Two strains, DBA/2J and C57BL/6J, differed in trait and restraint-induced anxiety-related behavior (dark/light exploration, elevated plus maze). Gene expression analysis of amygdala, medial prefrontal cortex, and hippocampus revealed divergent expression in DBA/2J and C57BL/6J both at baseline and after repeated restraint. Restraint produced strain-dependent expression alterations in various genes including glutamate receptors (e.g., Grin1, Grik1). To elucidate neuronal correlates of these strain differences, we performed ex vivo analysis of glutamate excitatory neurotransmission in amygdala principal neurons. Repeated restraint augmented amygdala excitatory postsynaptic signaling and altered metaplasticity (temporal summation of NMDA receptor currents) in DBA/2J but not C57BL/6J. Furthermore, we found that the C57BL/6J-like changes in anxiety-related behavior after restraint were absent in null mutants lacking the modulatory NMDA receptor subunit Grin2a, but not the AMPA receptor subunit Gria1. Grin2a null mutants exhibited significant ( approximately 30%) loss of dendritic spines on amygdala principal neurons under nonrestraint conditions. Collectively, our data support a model in which genetic variation in glutamatergic neuroplasticity in corticolimbic circuitry underlies phenotypic variation in responsivity to stress.
Assuntos
Tonsila do Cerebelo/fisiopatologia , Ácido Glutâmico/metabolismo , Neurônios/fisiologia , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia , Animais , Espinhas Dendríticas/fisiologia , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Expressão Gênica , Hipocampo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/fisiopatologia , Receptores de AMPA/deficiência , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/deficiência , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Restrição Física , Especificidade da Espécie , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologiaRESUMO
A remarkably diverse set of traits maps to a region on mouse distal chromosome 1 (Chr 1) that corresponds to human Chr 1q21-q23. This region is highly enriched in quantitative trait loci (QTLs) that control neural and behavioral phenotypes, including motor behavior, escape latency, emotionality, seizure susceptibility (Szs1), and responses to ethanol, caffeine, pentobarbital, and haloperidol. This region also controls the expression of a remarkably large number of genes, including genes that are associated with some of the classical traits that map to distal Chr 1 (e.g., seizure susceptibility). Here, we ask whether this QTL-rich region on Chr 1 (Qrr1) consists of a single master locus or a mixture of linked, but functionally unrelated, QTLs. To answer this question and to evaluate candidate genes, we generated and analyzed several gene expression, haplotype, and sequence datasets. We exploited six complementary mouse crosses, and combed through 18 expression datasets to determine class membership of genes modulated by Qrr1. Qrr1 can be broadly divided into a proximal part (Qrr1p) and a distal part (Qrr1d), each associated with the expression of distinct subsets of genes. Qrr1d controls RNA metabolism and protein synthesis, including the expression of approximately 20 aminoacyl-tRNA synthetases. Qrr1d contains a tRNA cluster, and this is a functionally pertinent candidate for the tRNA synthetases. Rgs7 and Fmn2 are other strong candidates in Qrr1d. FMN2 protein has pronounced expression in neurons, including in the dendrites, and deletion of Fmn2 had a strong effect on the expression of few genes modulated by Qrr1d. Our analysis revealed a highly complex gene expression regulatory interval in Qrr1, composed of multiple loci modulating the expression of functionally cognate sets of genes.
Assuntos
Comportamento , Sistema Nervoso Central/metabolismo , Cromossomos de Mamíferos/genética , Expressão Gênica , Camundongos/genética , Locos de Características Quantitativas , Aminoacil-tRNA Sintetases/genética , Animais , Mapeamento Cromossômico , Cromossomos de Mamíferos/metabolismo , Cruzamentos Genéticos , Bases de Dados Genéticas , Feminino , Predisposição Genética para Doença , Masculino , Camundongos Endogâmicos , Fenótipo , Proteínas RGS/genética , Proteínas RGS/metabolismo , RNA/genética , RNA/metabolismoRESUMO
Sow fertility traits, such as litter size and the number of lifetime parities produced (reproductive longevity), are economically important. Selection for these traits is difficult because they are lowly heritable and expressed late in life. Age at puberty (AP) is an early indicator of reproductive longevity. Here, we utilized a custom Affymetrix single-nucleotide polymorphisms (SNPs) array (SowPro90) enriched with positional candidate genetic variants for AP and a haplotype-based genome-wide association study to fine map the genetic sources associated with AP and other fertility traits in research (University of Nebraska-Lincoln [UNL]) and commercial sow populations. Five major quantitative trait loci (QTL) located on four Sus scrofa chromosomes (SSC2, SSC7, SSC14, and SSC18) were discovered for AP in the UNL population. Negative correlations (r = -0.96 to -0.10; P < 0.0001) were observed at each QTL between genomic estimated breeding values for AP and reproductive longevity measured as lifetime number of parities (LTNP). Some of the SNPs discovered in the major QTL regions for AP were located in candidate genes with fertility-associated gene ontologies (e.g., P2RX3, NR2F2, OAS1, and PTPN11). These SNPs showed significant (P < 0.05) or suggestive (P < 0.15) associations with AP, reproductive longevity, and litter size traits in the UNL population and litter size traits in the commercial sows. For example, in the UNL population, when the number of favorable alleles of an SNP located in the 3' untranslated region of PTPN11 (SSC14) increased, AP decreased (P < 0.0001), while LTNP increased (P < 0.10). Additionally, a suggestive difference in the observed NR2F2 isoforms usage was hypothesized to be the source of the QTL for puberty onset mapped on SSC7. It will be beneficial to further characterize these candidate SNPs and genes to understand their impact on protein sequence and function, gene expression, splicing process, and how these changes affect the phenotypic variation of fertility traits.
Assuntos
Fertilidade/genética , Estudo de Associação Genômica Ampla/veterinária , Genômica , Locos de Características Quantitativas/genética , Reprodução/genética , Sus scrofa/genética , Alelos , Animais , Cruzamento , Mapeamento Cromossômico/veterinária , Feminino , Genótipo , Haplótipos , Tamanho da Ninhada de Vivíparos/genética , Análise de Sequência com Séries de Oligonucleotídeos/veterinária , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Gravidez , Sus scrofa/fisiologiaRESUMO
Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen that continues to threaten swine industry sustainability. The complexity and high genetic diversity of PRRSV has prevented vaccines from conferring adequate protection against disease outbreaks. Genome-wide association analyses of PRRSV experimentally infected pigs representing two genetic lines (n = 174 to 176) revealed two major genomic regions accounting for ~1.2% of the genetic variation in PRRSV-specific antibody level in serum or lung. The major region for serum antibody was mapped to SSC7 near the SLAII complex, which has also been implicated in susceptibility to other swine viral pathogens. Haplotype substitution analysis uncovered potential DQB1 haplotypes associated with divergent effects. A novel major region for lung antibody was mapped to the proximal end of SSC17 with the top SNP overlapping two genes, PRAG1 and LONRF1. Sequencing LONRF1 uncovered polymorphisms within the coding region that may play a role in regulating PRRSV-specific antibody production in lung tissue following PRRSV infection. These data implicate novel host genomic regions (SSC17) that influence PRRSV-specific immune response as well as a common region (SSC7) potentially involved in susceptibility to multiple viral pathogens.
Assuntos
Anticorpos Antivirais/genética , Suscetibilidade a Doenças/veterinária , Estudo de Associação Genômica Ampla/veterinária , Genoma/genética , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Animais , Anticorpos Antivirais/sangue , Feminino , Variação Genética , Genética Populacional , Haplótipos , Imunidade Humoral , Pulmão/imunologia , Pulmão/virologia , Masculino , Fenótipo , Síndrome Respiratória e Reprodutiva Suína/virologia , Distribuição Aleatória , SuínosRESUMO
Understanding early predictors of sow fertility has the potential to improve genomic predictions. A custom SNP array (SowPro90 produced by Affymetrix) was developed to include genetic variants overlapping quantitative trait loci for age at puberty, one of the earliest indicators of sow fertility, as well as variants related to innate and adaptive immunity. The polymorphisms included in the custom genotyping array were identified using multiple genomic approaches including deep genomic and transcriptomic sequencing and genome-wide associations. Animals from research and commercial populations (n = 2,586) were genotyped for 103,476 SNPs included in SowPro90. To assess the quality of data generated, genotype concordance was evaluated between the SowPro90 and Porcine SNP60 BeadArray using a subset of common SNP (n = 44,708) and animals (n = 277). The mean genotype concordance rate per SNP was 98.4%. Differences in distribution of data quality were observed between the platforms indicating the need for platform specific thresholds for quality parameters. The optimal thresholds for SowPro90 (≥97% SNP and ≥93% sample call rate) were obtained by analyzing the data quality distribution and genotype concordance per SNP across platforms. At ≥97% SNP call rate, there were 42,151 SNPs (94.3%) retained with a mean genotype concordance of 98.6% across platforms. Similarly, ≥94% SNPs and ≥85% sample call rates were established as thresholds for Porcine SNP60 BeadArray. At ≥94% SNPs call rate, there were 41,043 SNPs (91.8%) retained with a mean genotype concordance of 98.6% across platforms. Final evaluation of SowPro90 array content (n = 103,476) at ≥97% SNPs and ≥93% sample call rates allowed retention of 89,040 SNPs (86%) for downstream analysis. The findings and strategy for quality control could be helpful in identifying consistent, high-quality genotypes for genomic evaluations, especially when integrating genotype data from different platforms.
Assuntos
Genômica , Análise de Sequência com Séries de Oligonucleotídeos/veterinária , Polimorfismo de Nucleotídeo Único/genética , Reprodução/genética , Maturidade Sexual/genética , Suínos/genética , Animais , Análise por Conglomerados , Dieta/veterinária , Feminino , Variação Genética , Genótipo , Locos de Características Quantitativas/genética , Suínos/fisiologiaRESUMO
Recently, piglets from a high-health status farm began exhibiting congenital tremors, high preweaning mortality and incidence of splayed legs. Postmortem histological examination identified a small number of scattered white matter vacuoles in the cerebellum and underlying brainstem of affected piglets. Presence of potential viral sources associated with this neurologic condition was initially infirmed using quantitative PCR for atypical porcine pestivirus (APPV), porcine teschovirus, and porcine sapelovirus. Using metagenomic analysis, APPV was identified as the main microbial species in serum obtained from piglets affected by congenital tremor. These piglets had higher preweaning mortality rates (46.4% vs. 15.3%) and incidence of splayed legs (33.0% vs. 0.8 %) compared to unaffected piglets. Piglets affected by congenital tremor had higher viral titer (P < 0.15) and larger birth weights (P < 0.05) compared to normal litter mates. Whole-genome sequencing and genome assembly of the novel APPV strain (MK728876) was carried out using Oxford Nanopore and related bioinformatics pipelines. Phylogenic analysis demonstrated that this strain along with other completely sequenced APPV strains were grouped into 2 clades, both including strains-inducing congenital tremor. Strains appear to cluster based on region but there were still significant differences within regions. Future research needs to address potential underdiagnosis due to genetic diversity but also to understand mode of transmission, variation in virulence, and the role of host genetics in APPV susceptibility.
Assuntos
Infecções por Pestivirus/veterinária , Pestivirus/genética , Doenças dos Suínos/congênito , Animais , Animais Recém-Nascidos , Sequência de Bases , Peso ao Nascer , Tronco Encefálico/patologia , Cerebelo/patologia , Variação Genética , Genoma Viral , Nível de Saúde , Incidência , Deformidades Congênitas dos Membros/epidemiologia , Deformidades Congênitas dos Membros/veterinária , Pestivirus/classificação , Pestivirus/isolamento & purificação , Pestivirus/patogenicidade , Infecções por Pestivirus/congênito , Infecções por Pestivirus/mortalidade , Fenótipo , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Suínos , Doenças dos Suínos/mortalidade , Doenças dos Suínos/virologia , Tremor/veterinária , Carga Viral/veterinária , VirulênciaRESUMO
The BXD family has become one of the preeminent genetic reference populations to understand the genetic and environmental control of phenotypic variation. Here we evaluate the responses to different levels of fat in the diet using both chow diet (CD, 13-18% fat) and a high-fat diet (HFD, 45-60% fat). We studied cohorts of BXD strains, both inbred parents C57BL/6J and DBA/2J (commonly known as B6 and D2, respectively), as well as B6D2 and D2B6 reciprocal F1 hybrids. The comparative impact of genetic and dietary factors was analyzed by profiling a range of phenotypes, most prominently their cecum bacterial composition. The parents of the BXDs and F1 hybrids express limited differences in terms of weight and body fat gain on CD. In contrast, the strain differences on HFD are substantial for percent body fat, with DBA/2J accumulating 12.5% more fat than C57BL/6J (P < 0.0001). The F1 hybrids born to DBA/2J dams (D2B6F1) have 10.6% more body fat (P < 0.001) than those born to C57BL/6J dams. Sequence analysis of the cecum microbiota reveals important differences in bacterial composition among BXD family members with a substantial shift in composition caused by HFD. Relative to CD, the HFD induces a decline in diversity at the phylum level with a substantial increase in Firmicutes (+13.8%) and a reduction in Actinobacteria (-7.9%). In the majority of BXD strains, the HFD also increases cecal sIgA (P < 0.0001)-an important component of the adaptive immunity response against microbial pathogens. Host genetics modulates variation in cecum bacterial composition at the genus level in CD, with significant quantitative trait loci (QTLs) for Oscillibacter mapped to Chr 3 (18.7-19.2 Mb, LRS = 21.4) and for Bifidobacterium mapped to Chr 6 (89.21-89.37 Mb, LRS = 19.4). Introduction of HFD served as an environmental suppressor of these QTLs due to a reduction in the contribution of both genera (P < 0.001). Relations among liver metabolites and cecum bacterial composition were predominant in CD cohort, but these correlations do not persist following the shift to HFD. Overall, these findings demonstrate the important impact of environmental/dietary manipulation on the relationships between host genetics, gastrointestinal bacterial composition, immunological parameters, and metabolites-knowledge that will help in the understanding of the causal sources of metabolic disorders.
Assuntos
Ceco/microbiologia , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/genética , Genética Populacional , Fígado/metabolismo , Obesidade/patologia , Animais , Bifidobacterium/classificação , Bifidobacterium/fisiologia , Peso Corporal , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Obesidade/etiologia , Obesidade/metabolismo , Fenótipo , Locos de Características QuantitativasRESUMO
We analyzed 82 patients with colorectal cancer (CRC) [75 patients with mucinous adenocarcinoma (ADK) and seven patients with "signet ring cell" ADK] using multi-cytokeratin (CK) AE1∕AE3 immunohistochemical assay. In order to determine the mucinous nature of some of the lymph node metastases of the mucinous colorectal ADKs studied, Periodic Acid Schiff-Alcian Blue (PAS-AB) histochemical staining was used. The counting results were systematized in the following ranges: 0 budding areas; between 1-4 budding areas; between 5-9 budding areas; and =10 tumor budding (TB) areas. The statistical analysis was performed using the Student's t-test. More than half of the cases of mucinous ADK revealed an increased intensity of TB, whereas in the case of "signet ring cell" ADK, an average intensity of this phenomenon. Mucinous ADKs, which were pT3 staged, showed an increased intensity of TB, and those in pT2 stage demonstrated, in the vast majority of cases, the absence of TB. There was a predominance of TB intensity in the absence of vascular-lymphatic invasion. Our study shows the existence of a concordance between tumor progression, the histological type of CRC, vascular-lymphatic invasion and the phenomenon of TB.