Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928364

RESUMO

Triple-negative breast cancer (TNBC) remains one of the most challenging subtypes since it is initially characterized by the absence of specific biomarkers and corresponding targeted therapies. Advances in methodology, translational informatics, genomics, and proteomics have significantly contributed to the identification of therapeutic targets. The development of innovative treatments, such as antibody-drug conjugates and immune checkpoint inhibitors, alongside chemotherapy, has now become the standard of care. However, the quest for biomarkers defining therapy outcomes is still ongoing. Peroxiporins, which comprise a subgroup of aquaporins, which are membrane pores facilitating the transport of water, glycerol, and hydrogen peroxide, have emerged as potential biomarkers for therapy response. Research on peroxiporins reveals their involvement beyond traditional channeling activities, which is also reflected in their cellular localization and roles in cellular signaling pathways. This research on peroxiporins provides fresh insights into the mechanisms of therapy resistance in tumors, offering potential avenues for predicting treatment outcomes and tailoring successful TNBC therapies.


Assuntos
Biomarcadores Tumorais , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/terapia , Biomarcadores Tumorais/metabolismo , Feminino , Aquaporinas/metabolismo , Transdução de Sinais , Animais
2.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125952

RESUMO

Peroxiporins are a specialized subset of aquaporins, which are integral membrane proteins primarily known for facilitating water transport across cell membranes. In addition to the classical water transport function, peroxiporins have the unique capability to transport hydrogen peroxide (H2O2), a reactive oxygen species involved in various cellular signaling pathways and regulation of oxidative stress responses. The regulation of H2O2 levels is crucial for maintaining cellular homeostasis, and peroxiporins play a significant role in this process by modulating its intracellular and extracellular concentrations. This ability to facilitate the passage of H2O2 positions peroxiporins as key players in redox biology and cellular signaling, with implications for understanding and treating various diseases linked to oxidative stress and inflammation. This review provides updated information on the physiological roles of peroxiporins and their implications in disease, emphasizing their potential as novel biomarkers and drug targets in conditions where they are dysregulated, such as inflammation and cancer.


Assuntos
Aquaporinas , Inflamação , Neoplasias , Estresse Oxidativo , Humanos , Inflamação/metabolismo , Neoplasias/metabolismo , Animais , Aquaporinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Transdução de Sinais , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
3.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445860

RESUMO

Breast cancer (BC) and ovarian cancer (OC) are among the most common and deadly cancers affecting women worldwide. Both are complex diseases with marked heterogeneity. Despite the induction of screening programs that increase the frequency of earlier diagnosis of BC, at a stage when the cancer is more likely to respond to therapy, which does not exist for OC, more than 50% of both cancers are diagnosed at an advanced stage. Initial therapy can put the cancer into remission. However, recurrences occur frequently in both BC and OC, which are highly cancer-subtype dependent. Therapy resistance is mainly attributed to a rare subpopulation of cells, named cancer stem cells (CSC) or tumor-initiating cells, as they are capable of self-renewal, tumor initiation, and regrowth of tumor bulk. In this review, we will discuss the distinctive markers and signaling pathways that characterize CSC, their interactions with the tumor microenvironment, and the strategies they employ to evade immune surveillance. Our focus will be on identifying the common features of breast cancer stem cells (BCSC) and ovarian cancer stem cells (OCSC) and suggesting potential therapeutic approaches.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Feminino , Humanos , Mama/metabolismo , Neoplasias da Mama/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/metabolismo , Microambiente Tumoral
4.
Int J Mol Sci ; 24(9)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37175840

RESUMO

Aquaporin 3 (AQP3) is a peroxiporin, a membrane protein that channels hydrogen peroxide in addition to water and glycerol. AQP3 expression also correlates with tumor progression and malignancy and is, therefore, a potential target in breast cancer therapy. In addition, epithelial growth factor receptor (EGFR) plays an important role in breast cancer. Therefore, we investigated whether disruption of the lipid raft harboring EGFR could affect AQP3 expression, and conversely, whether AQP3 silencing would affect the EGFR/phosphoinositide-3-kinase (PI3K)/Protein kinase B (PKB or Akt) signaling pathway in breast cancer cell lines with different malignant capacities. We evaluated H2O2 uptake, cell migratory capacity, and expression of PI3K, pAkt/Akt in three breast cancer cell lines, MCF7, SkBr3, and SUM159PT, and in the nontumorigenic breast epithelial cell line MCF10A. Our results show different responses between the tested cell lines, especially when compared to the nontumorigenic cell line. Neither lipid raft disruption nor EGF stimuli had an effect on PI3K/Akt pathway in MCF10A cell line. AQP3-silencing in SkBr3 and SUM159PT showed that AQP3 can modulate PI3K/Akt activation in these cells. Interestingly, SUM159PT cells increase nuclear factor-E2-related factor 2 (NRF2) in response to lipid raft disruption and EGF stimuli, suggesting an oxidative-dependent response to these treatments. These results suggest that in breast cancer cell lines, AQP3 is not directly related to PI3K/Akt pathway but rather in a cell-line-dependent manner.


Assuntos
Aquaporina 3 , Neoplasias da Mama , Proteínas Proto-Oncogênicas c-akt , Feminino , Humanos , Aquaporina 3/genética , Aquaporina 3/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36430852

RESUMO

Blood brain barrier (BBB) is a dynamic interface responsible for proper functioning of brain, but also a major obstacle for effective treatment of neurological diseases. Increased levels of free radicals, in high ferrous and high lipid content surrounding, induce lipid peroxidation, leading to production of 4-hydroxynonenal (HNE). HNE modifies all key proteins responsible for proper brain functioning thus playing a major role in the onset of neurological diseases. To investigate HNE effects on BBB permeability, we developed two in vitro BBB models-'physiological' and 'pathological'. The latter mimicked HNE modified extracellular matrix under oxidative stress conditions in brain pathologies. We showed that exogenous HNE induce activation of antioxidative defense systems by increasing catalase activity and glutathione content as well as reducing lipid peroxide levels in endothelial cells and astrocytes of 'physiological' model. While in 'pathological' model, exogenous HNE further increased lipid peroxidation levels of endothelial cells and astrocytes, followed by increase in Nrf2 and glutathione levels in endothelial cells. At lipid composition level, HNE caused increase in ω3 polyunsaturated fatty acid (PUFA) level in endothelial cells, followed by decrease in ω3 PUFA level and increase in monounsaturated fatty acid level in astrocytes. Using these models, we showed for the first time that HNE in 'pathological' model can reduce BBB permeability.


Assuntos
Astrócitos , Barreira Hematoencefálica , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Permeabilidade , Glutationa/metabolismo , Estresse Oxidativo/fisiologia , Antioxidantes/metabolismo , Peróxidos Lipídicos
6.
Molecules ; 27(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35268568

RESUMO

Oxidative stress and its end-products, such as 4-hydroxynonenal (HNE), initiate activation of the Nuclear Factor Erythroid 2-Related Factor 2 (NRF2)/Kelch Like ECH Associated Protein 1 (KEAP1) signaling pathway that plays a crucial role in the maintenance of cellular redox homeostasis. However, an involvement of 4-HNE and NRF2 in processes associated with the initiation of cancer, its progression, and response to therapy includes numerous, highly complex events. They occur through interactions between cancer and stromal cells. These events are dependent on many cell-type specific features. They start with the extent of NRF2 binding to its cytoplasmic repressor, KEAP1, and extend to the permissiveness of chromatin for transcription of Antioxidant Response Element (ARE)-containing genes that are NRF2 targets. This review will explore epigenetic molecular mechanisms of NRF2 transcription through the specific molecular anatomy of its promoter. It will explain the role of NRF2 in cancer stem cells, with respect to cancer therapy resistance. Additionally, it also discusses NRF2 involvement at the cross-roads of communication between tumor associated inflammatory and stromal cells, which is also an important factor involved in the response to therapy.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch
7.
Molecules ; 26(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947079

RESUMO

Breast cancer is still one of the leading causes of mortality in the female population. Despite the campaigns for early detection, the improvement in procedures and treatment, drastic improvement in survival rate is omitted. Discovery of aquaporins, at first described as cellular plumbing system, opened new insights in processes which contribute to cancer cell motility and proliferation. As we discover new pathways activated by aquaporins, the more we realize the complexity of biological processes and the necessity to fully understand the pathways affected by specific aquaporin in order to gain the desired outcome-remission of the disease. Among the 13 human aquaporins, AQP3 and AQP5 were shown to be significantly upregulated in breast cancer indicating their role in the development of this malignancy. Therefore, these two aquaporins will be discussed for their involvement in breast cancer development, regulation of oxidative stress and redox signalling pathways leading to possibly targeting them for new therapies.


Assuntos
Aquaporina 3/metabolismo , Aquaporina 5/metabolismo , Neoplasias da Mama/metabolismo , Oxirredução , Animais , Antioxidantes/metabolismo , Aquaporina 3/genética , Aquaporina 5/genética , Biomarcadores , Neoplasias da Mama/etiologia , Neoplasias da Mama/patologia , Suscetibilidade a Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Família Multigênica , Estresse Oxidativo
8.
Int J Mol Sci ; 21(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456148

RESUMO

Plants have been used for centuries to treat several illnesses. The Plectranthus genus has a vast variety of species that has allowed the isolation of cytotoxic compounds with notable activities. The abietane diterpenes 6,7-dehydroroyleanone (DeRoy, 1), 7α-acetoxy-6ß-hydroxyroyleanone (Roy, 2), and Parvifloron D (ParvD, 3) were obtained from Plectranthus spp. and showed promising biological activities, such as cytotoxicity. The inhibitory effects of the different natural abietanes (1-3) were compared in MFC7, SkBr3, and SUM159 cell lines, as well as SUM159 grown in cancer stem cell-inducing conditions. Based on the royleanones' bioactivity, the derivatives RoyBz (4), RoyBzCl (5), RoyPr2 (6), and DihydroxyRoy (7), previously obtained from 2, were selected for further studies. Protein kinases C (PKCs) are involved in several carcinogenic processes. Thus, PKCs are potential targets for cancer therapy. To date, the portfolio of available PKC modulators remains very limited due to the difficulty of designing isozyme-selective PKC modulators. As such, molecular docking was used to evaluate royleanones 1-6 as predicted isozyme-selective PKC binders. Subtle changes in the binding site of each PKC isoform change the predicted interaction profiles of the ligands. Subtle changes in royleanone substitution patterns, such as a double substitution only with non-substituted phenyls, or hydroxybenzoate at position four that flips the binding mode of ParvD (3), can increase the predicted interactions in certain PKC subtypes.


Assuntos
Abietanos/química , Antineoplásicos/química , Proteína Quinase C/metabolismo , Abietanos/farmacologia , Antineoplásicos/farmacologia , Sítios de Ligação , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Células MCF-7 , Simulação de Acoplamento Molecular , Ligação Proteica , Proteína Quinase C/química
9.
Molecules ; 24(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340589

RESUMO

Developing new antibiotics is currently very important since antibiotic resistance is one of the biggest problems of global health today. In the search for a new class of potential antimicrobial agents, ten new compounds were designed and synthesized based on the quinuclidinium heterocyclic core and the oxime functional group. The antimicrobial activity was assessed against a panel of representative gram-positive and gram-negative bacteria. All compounds demonstrated potent activity against the tested microorganisms, with the minimum inhibitory concentration (MIC) values ranging from 0.25 to 256.00 µg/mL. Among the tested compounds, two quaternary compounds, para-N-chlorobenzyl and meta-N-bromobenzyl quinuclidinium oximes, displayed the most potent and broad-spectrum activity against both gram-positive and gram-negative bacterial strains (MIC values from 0.25 to 4.00 µg/mL), with the lowest value for the important multidrug resistant gram-negative pathogen Pseudomonas aeruginosa. In the case of Klebsiella pneumoniae, activity of those compounds are 256-fold and 16-fold better than gentamicin, respectively. MTT assays showed that compounds are nontoxic for human cell lines. Multi-way analysis was used to separately reduce dimensionality of quantum chemical data and biological activity data to obtain a regression model and the required parameters for the enhancement of biological activity.


Assuntos
Antibacterianos/síntese química , Desenho de Fármacos , Oximas/síntese química , Quinuclidinas/síntese química , Antibacterianos/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/crescimento & desenvolvimento , Clostridium perfringens/efeitos dos fármacos , Clostridium perfringens/crescimento & desenvolvimento , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Gentamicinas/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Redução Dimensional com Múltiplos Fatores , Oximas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Quinuclidinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
10.
Mol Carcinog ; 56(4): 1214-1226, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27805282

RESUMO

Toll-like receptor 3 (TLR3) has a dual role in cancer; its activation can trigger apoptosis as well as stimulate cancer cell survival, proliferation, and progression. We have shown here that TLR3 activation can induce metabolic reprogramming in a pharyngeal cancer cell line, leading to increased aerobic glycolysis, cell migration, elevated levels of reactive oxidative species (ROS), and decreased anti-oxidative response. Key proteins in these signaling pathways are heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), pyruvate kinase M2 (PKM2), and CD44 variants, which were over-expressed after TLR3 stimulation. TLR3 activation also induced upregulation of different genes involved in cancer progression (VEGF, MMP9, uPAR) and enzymes involved in glycolytic pathway. Most of the observed effects were Myc-dependent; however, some of them were also connected with MAPK and HIF signaling pathways. Since TLR3 agonists are being investigated as potential novel cancer therapy adjuvants and apoptosis inducers, alone or in combination with other therapeutic options, data presented here suggest extreme caution before their introduction into clinical practice. The fact that TLR3 ligands [poly(I:C) and poly(A:U)] can also aid cancer survival and progression, through induction of metabolic reprogramming, emphasizes the need to investigate this particular topic. Our data suggest that the combination of TLR3 ligands with Myc or MAPK inhibitors may be a way to neutralize their undesirable effects while enhancing their anti-tumor effect. © 2016 Wiley Periodicals, Inc.


Assuntos
Fator 1 Induzível por Hipóxia/metabolismo , Sistema de Sinalização das MAP Quinases , Neoplasias Faríngeas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Receptor 3 Toll-Like/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Glicólise , Humanos , Estresse Oxidativo , Neoplasias Faríngeas/patologia , Faringe/metabolismo , Faringe/patologia , Poli I-C/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
IUBMB Life ; 69(5): 355-362, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28337841

RESUMO

Reactive oxygen species, especially hydrogen peroxide (H2 O2 ), contribute to functional molecular impairment and cellular damage, but also are necessary in normal cellular metabolism, and in low doses play stimulatory role in cell proliferation and stress resistance. In parallel, reactive aldehydes such as 4-hydroxynonenal (HNE), are lipid peroxidation breakdown products which also contribute to regulation of numerous cellular processes. Recently, channeling of H2 O2 by some mammalian aquaporin isoforms has been reported and suggested to contribute to aquaporin involvement in cancer malignancies, although the mechanism by which these membrane water channels are implicated in oxidative stress is not clear. In this study, two yeast models with increased levels of membrane polyunsaturated fatty acids (PUFAs) and aquaporin AQY1 overexpression, respectively, were used to evaluate their interplay in cell's oxidative status. In particular, the aim of the study was to investigate if HNE accumulation could affect aquaporin function with an outcome in oxidative stress response. The data showed that induction of aquaporin expression by PUFAs results in increased water permeability in yeast membranes and that AQY1 activity is impaired by HNE. Moreover, AQY1 expression increases cellular sensitivity to oxidative stress by facilitating H2 O2 influx. On the other hand, AQY1 expression has no influence on the cellular antioxidant GSH levels and catalase activity. These results strongly suggest that aquaporins are important players in oxidative stress response and could contribute to regulation of cellular processes by regulation of H2 O2 influx. © 2017 IUBMB Life, 69(5):355-362, 2017.


Assuntos
Aldeídos/metabolismo , Aquaporinas/metabolismo , Estresse Oxidativo/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Aldeídos/farmacologia , Antioxidantes/metabolismo , Aquaporinas/genética , Permeabilidade da Membrana Celular , Ácidos Graxos Insaturados/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
12.
Int J Mol Sci ; 17(12)2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27983600

RESUMO

Aquaporin-5 (AQP5) is a membrane water channel widely distributed in human tissues that was found up-regulated in different tumors and considered implicated in carcinogenesis in different organs and systems. Despite its wide distribution pattern and physiological importance, AQP5 short-term regulation was not reported and mechanisms underlying its involvement in cancer are not well defined. In this work, we expressed rat AQP5 in yeast and investigated mechanisms of gating, as well as AQP5's ability to facilitate H2O2 plasma membrane diffusion. We found that AQP5 can be gated by extracellular pH in a phosphorylation-dependent manner, with higher activity at physiological pH 7.4. Moreover, similar to other mammalian AQPs, AQP5 is able to increase extracellular H2O2 influx and to affect oxidative cell response with dual effects: whereas in acute oxidative stress conditions AQP5 induces an initial higher sensitivity, in chronic stress AQP5 expressing cells show improved cell survival and resistance. Our findings support the involvement of AQP5 in oxidative stress and suggest AQP5 modulation by phosphorylation as a novel tool for therapeutics.


Assuntos
Aquaporina 5/metabolismo , Estresse Oxidativo , Animais , Aquaporina 5/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Glucose/farmacologia , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Concentração de Íons de Hidrogênio , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/metabolismo , Água/metabolismo
13.
Mol Cell Biochem ; 399(1-2): 27-37, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25280400

RESUMO

Pathophysiology of polyunsaturated fatty acids (PUFAs) is associated with aberrant lipid and oxygen metabolism. In particular, under oxidative stress, PUFAs are prone to autocatalytic degradation via peroxidation, leading to formation of reactive aldehydes with numerous potentially harmful effects. However, the pathological and compensatory mechanisms induced by lipid peroxidation are very complex and not sufficiently understood. In our study, we have used yeast capable of endogenous PUFA synthesis in order to understand the effects triggered by PUFA accumulation on cellular physiology of a eukaryotic organism. The mechanisms induced by PUFA accumulation in S. cerevisiae expressing Hevea brasiliensis Δ12-fatty acid desaturase include down-regulation of components of electron transport chain in mitochondria as well as up-regulation of pentose-phosphate pathway and fatty acid ß-oxidation at the transcriptional level. Interestingly, while no changes were observed at the transcriptional level, activities of two important enzymatic antioxidants, catalase and glutathione-S-transferase, were altered in response to PUFA accumulation. Increased intracellular glutathione levels further suggest an endogenous oxidative stress and activation of antioxidative defense mechanisms under conditions of PUFA accumulation. Finally, our data suggest that PUFA in cell membrane causes metabolic changes which in turn lead to adaptation to endogenous oxidative stress.


Assuntos
Ácidos Graxos Insaturados/fisiologia , Saccharomyces cerevisiae/metabolismo , Adaptação Fisiológica , Catalase/metabolismo , Ácidos Graxos Dessaturases/biossíntese , Ácidos Graxos Dessaturases/genética , Hevea/enzimologia , Peroxidação de Lipídeos , Estresse Oxidativo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcriptoma
14.
Antioxidants (Basel) ; 13(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38929065

RESUMO

Aquaporins are membrane pores regulating the transport of water, glycerol, and other small molecules across membranes. Among 13 human aquaporins, six have been shown to transport H2O2 and are therefore called peroxiporins. Peroxiporins are implicated in cancer development and progression, partly due to their involvement in H2O2 transport. Oxidative stress is linked to breast cancer development but is also a mechanism of action for conventional chemotherapy. The aim of this study is to investigate the effects of prolonged oxidative stress on Aquaporin 3 (AQP3), Aquaporin 5 (AQP5), and signaling pathways in breast cancer cell lines of different malignancies alongside a non-tumorigenic breast cell line. The prolonged oxidative stress caused responses in viability only in the cancer cell lines, while it affected cell migration in the MCF7 cell line. Changes in the localization of NRF2, a transcription factor involved in oxidative stress response, were observed only in the cancer cell lines, and no effects were recorded on its downstream target proteins. Moreover, the prolonged oxidative stress caused changes in AQP3 and AQP5 expression only in the cancer cell lines, in contrast to their non-malignant counterparts. These results suggest peroxiporins are potential therapeutic targets in cancer treatment. However, further research is needed to elucidate their role in the modulation of therapy response, highlighting the importance of research on this topic.

15.
Eur J Med Chem ; 270: 116363, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593587

RESUMO

Overcoming multidrug resistance (MDR) is one of the major challenges in cancer therapy. In this respect, Schiff base-related compounds (bearing a R1R2CNR3 bond) gained high interest during the past decades. Schiff bases are considered privileged ligands for various reasons, including the easiness of their preparation and the possibility to form complexes with almost all transition metal ions. Schiff bases and their metal complexes exhibit many types of biological activities and are used for the treatment and diagnosis of various diseases. Until now, 13 Schiff bases have been investigated in clinical trials for cancer treatment and hypoxia imaging. This review represents the first collection of Schiff bases and their complexes which demonstrated MDR-reversal activity. The areas of drug resistance covered in this article involve: 1) Modulation of ABC transporter function, 2) Targeting lysosomal ABCB1 overexpression, 3) Circumvention of ABC transporter-mediated drug efflux by alternative routes of drug uptake, 4) Selective activity against MDR cancer models (collateral sensitivity), 5) Targeting GSH-detoxifying systems, 6) Overcoming apoptosis resistance by inducing necrosis and paraptosis, 7) Reactivation of mutated p53, 8) Restoration of sensitivity to DNA-damaging anticancer therapy, and 9) Overcoming drug resistance through modulation of the immune system. Through this approach, we would like to draw attention to Schiff bases and their metal complexes representing highly interesting anticancer drug candidates with the ability to overcome MDR.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Bases de Schiff/farmacologia , Bases de Schiff/química , Resistência a Múltiplos Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias/tratamento farmacológico
16.
Cancers (Basel) ; 15(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38136293

RESUMO

Breast cancer is still the leading cause of death in women of all ages. The reason for this is therapy resistance, which leads to the progression of the disease and the formation of metastases. Multidrug resistance (MDR) is a multifactorial process that leads to therapy failure. MDR involves multiple processes and many signaling pathways that support each other, making it difficult to overcome once established. Here, we discuss cellular-oxidative-stress-modulating factors focusing on transcription factors NRF2, FOXO family, and peroxiporins, as well as their possible contribution to MDR. This is significant because oxidative stress is a consequence of radiotherapy, chemotherapy, and immunotherapy, and the activation of detoxification pathways could modulate the cellular response to therapy and could support MDR. These proteins are not directly responsible for MDR, but they support the survival of cancer cells under stress conditions.

17.
Pathol Res Pract ; 250: 154826, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37742477

RESUMO

OBJECTIVE: To evaluate the level of oxidative stress and antioxidative response in the transplanted liver and its role in acute cellular rejection (ACR). Particular attention was paid to ACR diagnosis in patients with hepatitis C (HCV), as histopathological features of ACR and viral disease recurrence overlap. METHODS: This retrospective study included 40 liver transplant patients who underwent liver transplantation with two consecutive liver biopsies performed during one hospitalization period: 1.) initial biopsy of the donor liver (before implantation) and 2.) indication biopsy (after suspected ACR). Based on the etiology, patients were divided into two groups: 22 patients with alcoholic liver cirrhosis (EtOH group) and 18 patients with hepatitis C cirrhosis (HCV group). We analyzed the presence of acrolein, HNE (4-hydroxynonenal), and the major antioxidant transcription factor NRF2 (nuclear factor erythroid 2-related factor 2) in both biopsies. RESULTS: The presence of acrolein and HNE in both biopsies indicates increased oxidative stress, while the decrease in these aldehydes in the indication biopsies indicates a decrease in oxidative stress over time, reflecting liver graft recovery. The absence of NRF2 in both biopsies reflects significantly reduced antioxidant protection in patients undergoing liver transplantation. CONCLUSION: The results support the role of oxidative stress in the pathogenesis of ACR. The presence of acrolein and the absence of HNE in the indication biopsy in patients with ACR could contribute to the diagnosis of ACR in clinical practice when functional antibodies are tested in the clinical setting.

18.
Pathol Res Pract ; 248: 154662, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37421843

RESUMO

Breast cancer is one of the leading causes of cancer-related mortality in women. During tumor growth, periods of hypoxia are followed by reoxygenation due to neovascularisation leading to disturbed redox homeostasis. ROS (Reactive Oxygen Species) produced under hypoxia activate HIF1α. ROS can also activate the major antioxidant transcription factor NRF2, but also cause damage to biomolecules. Lipids are susceptible to peroxidation, as evidenced by the formation of reactive aldehydes, among which, HNE (4-hydroxynonenal) is the most studied one. Knowing that HIF1α (Hypoxia Inducing Factor 1α) is associated with breast cancer malignancy, we aimed to investigate its correlation with HNE and NRF2 (Nuclear factor erythroid 2-related factor 2). Our results show that HIF1α is activated in breast cancer, indicating an increase in ROS but not followed by HNE production. On the other hand, NRF2 was increased in all types of breast cancer suggesting that oxidative stress is present in these pathologies, but also supporting HIF1α. Interestingly, NRF2 was activated in HER2 positive and TNBC, indicating the role of stromal NRF2 in breast cancer malignancy.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/patologia , Espécies Reativas de Oxigênio , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Hipóxia
19.
Antioxidants (Basel) ; 10(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34829727

RESUMO

Oxidative stress can induce genetic instability and change cellular processes, resulting in colorectal cancer. Additionally, adaptation of oxidative defense causes therapy resistance, a major obstacle in successful cancer treatment. Peroxiporins are aquaporin membrane channels that facilitate H2O2 membrane permeation, crucial for regulating cell proliferation and antioxidative defense. Here, we investigated four colon cancer cell lines (Caco-2, HT-29, SW620, and HCT 116) for their sensitivity to H2O2, cellular antioxidative status, and ROS intracellular accumulation after H2O2 treatment. The expression of peroxiporins AQP1, AQP3, and AQP5 and levels of NRF2, the antioxidant transcription factor, and PPARγ, a transcription factor that regulates lipid metabolism, were evaluated before and after oxidative insult. Of the four tested cell lines, HT-29 was the most resistant and showed the highest expression of all tested peroxiporins and the lowest levels of intracellular ROS, without differences in GSH levels, catalase activity, nor NF2 and PPARγ levels. Caco-2 shows high expression of AQP3 and similar resistance as HT-29. These results imply that oxidative stress resistance can be obtained by several mechanisms other than the antioxidant defense system. Regulation of intracellular ROS through modulation of peroxiporin expression may represent an additional strategy to target the therapy resistance of cancer cells.

20.
J Clin Med ; 10(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669707

RESUMO

Infertility is one of the major medical problems nowadays. Couples who opt for In Vitro Fertilization (IVF) face a great deal of stress which certainly affects the outcome of the procedure. Therefore, we aimed to reduce the stress during the oocyte retrieval procedure by applying midazolam. Total oxidant (TOC) and antioxidant (TAC) capacities of serum, as well as glutathione (GSH) content and catalase activity, were measured in both control and midazolam groups. Follicular fluid was also tested for oxidant capacity and IL1ß. Results implied that the midazolam group increased TAC at the end of the procedure. At the same time, the control group decreased GSH at the beginning of the procedure, and both groups decreased catalase activity at the end of the procedure. The results imply that stress during the procedure affects oxidative and antioxidative parameters of the patients, but did not affect the frequency of the pregnancy at the end of this pilot study. Yet, the results imply that oxidative and antioxidative mechanisms during IVF should be investigated in detail as they could affect the outcome of IVF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA