Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 48(22): 6068-6071, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966791

RESUMO

We report on a new sensing concept based on resonances supported by a one-dimensional photonic crystal (1DPhC) microcavity resonator in the Kretschmann configuration. For a 1DPhC comprising six bilayers of TiO2/SiO2 with a termination layer of TiO2 employed to form a microcavity, we show that when the angle of incidence is changed, the Bloch surface waves (BSWs) can be transformed into cavity-mode resonances exhibiting an ultrahigh sensitivity and a figure of merit. Using wavelength interrogation, we demonstrate that Bloch surface TE wave excitation shows up as a sharp dip in the reflectance spectrum with a sensitivity and a figure of merit (FOM) of 70 nm per refractive index unit (RIU) and 19.5 RIU-1, respectively. When the angle of incidence decreases, cavity-mode resonances for both TE and TM waves are resolved for RI in a range of 1.0001-1.0005. The sensitivity and FOM can reach 52,300 nm/RIU and 402,300 RIU-1 for the TE wave, and 14,000 nm/RIU and 2154 RIU-1 for the TM wave, respectively. In addition, resonances are confirmed experimentally for a humid air with a sensitivity of 0.073 nm per percent of the relative humidity (%RH) for BSW resonance and is enhanced to 1.367 nm/%RH for the TM cavity-mode resonance. This research, to the best of the authors' knowledge, is the first demonstration of a new BSW-like response that can be utilized in a simple sensing of a wide range of gaseous analytes.

2.
Sensors (Basel) ; 22(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35632032

RESUMO

Spectral-domain resonances for cavities formed by two distributed Bragg reflectors (DBRs) were analyzed theoretically and experimentally. We model the reflectance and transmittance spectra of the cavity at the normal incidence of light when DBRs are represented by a one-dimensional photonic crystal (1DPhC) comprising six bilayers of TiO2/SiO2 with a termination layer of TiO2. Using a new approach based on the reference reflectance, we model the reflectance ratio as a function of both the cavity thickness and its refractive index (RI) and show that narrow dips within the 1DPhC band gap can easily be resolved. We revealed that the sensitivity and figure of merit (FOM) are as high as 610 nm/RIU and 938 RIU-1, respectively. The transmittance spectra include narrow peaks within the 1DPhC band gap and their amplitude and spacing depend on the cavity's thickness. We experimentally demonstrated the sensitivity to variations of relative humidity (RH) of moist air and FOM as high as 0.156 nm/%RH and 0.047 %RH-1, respectively. In addition, we show that, due to the transmittance spectra, the DBRs with air cavity can be employed as spectral filters, and this is demonstrated for two LED sources for which their spectra are filtered at wavelengths 680 nm and 780 nm, respectively, to widths as narrow as 2.3 nm. The DBR-based resonators, thus, represent an effective alternative to both sensors and optical filters, with advantages including the normal incidence of light and narrow-spectral-width resonances.

3.
Sensors (Basel) ; 21(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34640853

RESUMO

Interferometric methods of optical sensing based on the phase shift of the Bloch surface waves (BSWs) and guided waves (GWs) supported by a one-dimensional photonic crystal are presented. The photonic crystal, composed of six SiO2/TiO2 bilayers with a termination layer of TiO2, is employed in the Kretschmann configuration. Under resonance condition, an abrupt phase change is revealed, and the corresponding phase shift is measured by interferometric techniques applied in both the spectral and spatial domains. The spectral interferometric technique employing a birefringent quartz crystal is used to obtain interference of projections of p- and s-polarized light waves reflected from the photonic crystal. The phase shifts are retrieved by processing the spectral interferograms recorded for various values of relative humidity (RH) of air, giving the sensitivity to the RH as high as 0.029 rad/%RH and 0.012 rad/%RH for the BSW and GW, respectively. The spatial interferometric technique employs a Wollaston prism and an analyzer to generate an interference pattern, which is processed to retrieve the phase difference, and results are in good agreement with those obtained by sensing the phase shift in the spectral domain. In addition, from the derivative of the spectral phase shifts, the peak positions are obtained, and their changes with the RH give the sensitivities of 0.094 nm/%RH and 0.061 nm/%RH for the BSW and GW, respectively. These experimental results demonstrate an efficient optical sensing with a lot of applications in various research areas.

4.
Opt Express ; 28(20): 28954-28960, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33114803

RESUMO

We report on a highly sensitive measurement of the relative humidity of air, which utilizes a guided-mode resonance (GMR) of a multilayer dielectric structure (MDS) and the spectral interference of s- and p-polarized waves reflected from the MDS. We employ the MDS represented by four bilayers of TiO2/SiO2 with a termination layer of TiO2 and demonstrate that the GMR shows up as a shallow and asymmetric dip. The GMR enables us to measure the relative humidity (RH) of air with sensitivities of 0.031-0.114 nm/%RH. In addition, by employing a birefringent crystal of mica, which modifies the phase difference between the polarized waves, the GMR is transformed into the resonance with a sharp dip, and the measured sensitivity is enhanced to 0.120 nm/%RH at 81 %RH. We also determined the sensitivity to the refractive index and the figure of merit as high as 8000 nm/refractive index unit (RIU) and 702 RIU-1, respectively. The results demonstrate that the GMR based sensor employing the MDS and the spectral interference of polarized waves with their phase difference appropriately adjusted enables a highly sensitive, hysteresis-free humidity measurement, characterized by a high FOM. Humidity sensors employing dielectric multilayers thus represent an effective alternative to available sensors, with advantages such as better mechanical and chemical stability.

5.
Opt Lett ; 45(5): 1096-1099, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32108779

RESUMO

We report on a new, to the best of our knowledge, sensing concept based on Bloch surface waves (BSWs) and wavelength interrogation that utilizes the interference of $ s $s- and $ p $p-polarized waves from a one-dimensional photonic crystal (1DPhC), represented by a multilayer structure comprising a glass substrate and four bilayers of $ {{\rm TiO}_2}/{{\rm SiO}_2} $TiO2/SiO2 with a termination layer of $ {{\rm TiO}_2} $TiO2. We show that when a standard approach based on measurement of the reflectance of a $ p $p- or $ s $s-polarized wave in the Kretschmann configuration fails to confirm the excitation of the BSW, a new approach is successful. We demonstrate that the BSW excitation shows up as a dip with maximum depth, and resonance thus obtained is comparable in magnitude with resonance commonly exhibited by surface plasmon resonance (SPR). The new sensing concept is verified experimentally for ethanol vapors. The BSW resonances are resolved within two band gaps of the 1DPhC with sensitivities of 3272 nm/RIU and 1403 nm/RIU, and figures of merit of $ 43.7 \;{{\rm RIU}^{ - 1}} $43.7RIU-1 and $ 173.2 \;{{\rm RIU}^{ - 1}} $173.2RIU-1, respectively. This research, to the best of the authors' knowledge, is the first demonstration of a new SPR-like response that can be utilized in a wide range of sensing applications.

6.
Sensors (Basel) ; 20(6)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183244

RESUMO

Spatial phase modulation in an imaging interferometer is utilized in surface plasmon resonance (SPR) based sensing of liquid analytes. In the interferometer, a collimated light beam from a laser diode irradiating at 637.1 nm is passing through a polarizer and is reflected from a plasmonic structure of SF10/Cr/Au attached to a prism in the Kretschmann configuration. The beam passes through a combination of a Wollaston prism, a polarizer and a lens, and forms an interference pattern on a CCD sensor of a color camera. Interference patterns obtained for different liquid analytes are acquired and transferred to the computer for data processing. The sensing concept is based on the detection of a refractive index change, which is transformed via the SPR phenomenon into an interference fringe phase shift. By calculating the phase shift for the plasmonic structure of SF10/Cr/Au of known parameters we demonstrate that this technique can detect different weight concentrations of ethanol diluted in water, or equivalently, different changes in the refractive index. The sensitivity to the refractive index and the detection limit obtained are -278 rad/refractive-index-unit (RIU) and 3.6 × 10 - 6 RIU, respectively. The technique is demonstrated in experiments with the same liquid analytes as in the theory. Applying an original approach in retrieving the fringe phase shift, we revealed good agreement between experiment and theory, and the measured sensitivity to the refractive index and the detection limit reached -226 rad/RIU and 4.4 × 10 - 6 RIU, respectively. These results suggest that the SPR interferometer with the detection of a fringe phase shift is particularly useful in applications that require measuring refractive index changes with high sensitivity.

7.
Sensors (Basel) ; 20(18)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911784

RESUMO

We report on a highly sensitive measurement of the relative humidity (RH) of moist air using both the surface plasmon resonance (SPR) and Bloch surface wave resonance (BSWR). Both resonances are resolved in the Kretschmann configuration when the wavelength interrogation method is utilized. The SPR is revealed for a multilayer plasmonic structure of SF10/Cr/Au, while the BSWR is resolved for a multilayer dielectric structure (MDS) comprising four bilayers of TiO2/SiO2 with a rough termination layer of TiO2. The SPR effect is manifested by a dip in the reflectance of a p-polarized wave, and a shift of the dip with the change in the RH, or equivalently with the change in the refractive index of moist air is revealed, giving a sensitivity in a range of 0.042-0.072 nm/%RH. The BSWR effect is manifested by a dip in the reflectance of the spectral interference of s- and p-polarized waves, which represents an effective approach in resolving the resonance with maximum depth. For the MDS under study, the BSWRs were resolved within two band gaps, and for moist air we obtained sensitivities of 0.021-0.038 nm/%RH and 0.046-0.065 nm/%RH, respectively. We also revealed that the SPR based RH measurement is with the figure of merit (FOM) up to 4.7 × 10-4 %RH-1, while BSWR based measurements have FOMs as high as 3.0 × 10-3 %RH-1 and 1.1 × 10-3 %RH-1, respectively. The obtained spectral interferometry based results demonstrate that the BSWR based sensor employing the available MDS has a similar sensitivity as the SPR based sensor, but outperforms it in the FOM. BSW based sensors employing dielectrics thus represent an effective alternative with a number of advantages, including better mechanical and chemical stability than metal films used in SPR sensing.

8.
Opt Lett ; 44(22): 5602-5605, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730117

RESUMO

We demonstrate an ultrahigh-sensitive plasmonic sensing of gas, employing a two-dimensional (2D) dielectric grating fabricated by laser interference lithography. The 2D grating was designed with the period of 500 nm and prepared in an AZ1505 photoresist layer on a gold film of 20 nm thickness deposited on a fused silica glass substrate. The surface plasmon resonance (SPR) in the Kretschmann configuration with spectral interrogation was utilized to measure the response of the sensor to vapors of aqueous solution of ethanol. Based on measurement of the gas refractive indices with the reference Au/Cr/SF10 sample, the resonance wavelength dependence was obtained. The SPR response of the structure in a spectral range of 1.68-1.85 µm with a sensitivity of 8200-111,000 nm/RIU was revealed. The sensor provides significantly higher sensitivity in comparison to conventional and grating-based SPR sensors.

9.
Sensors (Basel) ; 18(11)2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380788

RESUMO

A spectral method based on surface plasmon resonance (SPR) in air is used to measure the dielectric function of a thin metal film. The method utilizes the spectral dependence of the ratio of the reflectances of p- and s-polarized waves measured in the Kretschmann configuration at different angles of incidence. By processing these dependences in the vicinity of a dip, or equivalently near the resonance wavelength, and using the dispersion characteristics of a metal film according to a proposed physical model, the real and imaginary parts of the dielectric function of the metal can be determined. The corresponding dielectric function of the metal is obtained by a least squares method for such a thickness minimizing the difference between the measured and theoretical dependence of the resonance wavelength on the the angle of incidence. The feasibility of the method is demonstrated in measuring the dielectric function of a gold film of an SPR structure comprising an SF10 glass prism and a gold coated SF10 slide with an adhesion film of chromium. The dielectric function according to the Drude⁻Lorentz model with two additional Lorentzian terms was determined in a wavelength range from 534 to 908 nm, and the results show that the gold film is composed of homogenous and rough layers with thicknesses 42.8 nm and 2.0 nm, respectively. This method is particularly useful in measuring the thickness and dielectric function of a thin metal film of SPR structures, directly in the Kretschmann configuration.

10.
Opt Lett ; 35(10): 1566-8, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20479810

RESUMO

We report on a simple method for retrieving the wavelength dependence of the phase birefringence in a polarization-maintaining fiber or a birefringent crystal from a channeled spectrum. The method utilizes interference of polarized modes or waves resolved as the channeled spectrum and its processing by a windowed Fourier transform to reconstruct precisely the phase as a function of wavelength. The ambiguity of the phase is removed provided that we know both the approximative function for the birefringence dispersion and the length of the fiber or the thickness of the crystal. The method is used in measuring the wavelength dependence of the phase birefringence in an elliptical-core fiber or in a quartz crystal in a range from 500 to 900 nm. The dependences are compared with those resulting from the available data, and very good agreement is confirmed.

11.
Opt Lett ; 34(17): 2661-3, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19724524

RESUMO

A two-step white-light spectral interferometric technique is used to retrieve the ellipsometric phase of a thin-film structure from the spectral interferograms recorded in a polarimetry configuration with a birefringent crystal. In the first step, the phase difference between p- and s-polarized waves propagating in the crystal alone is retrieved. In the second step, the additional phase change that the polarized waves undergo on reflection from the thin-film structure is retrieved. The new method is used in determining the thin-film thickness from ellipsometric phase measured for SiO(2) thin film on a Si substrate in a range from 550 to 900 nm. The thicknesses of three different samples obtained are compared with those resulting from polarimetric measurements, and good agreement is confirmed.

12.
Opt Express ; 15(25): 17019-24, 2007 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19550993

RESUMO

We report on a new and simple method for measuring the wavelength dependence of phase modal birefringence in a polarizationmaintaining fiber. The method is based on application of a lateral pointlike force on the fiber that causes strong coupling between polarization modes and utilizes their interference resolved as the channeled spectrum. The change of the phase retrieved from two recorded channeled spectra that are associated with the known displacement of coupling point is used to determine the phase modal birefringence as a function of wavelength. A windowed Fourier transform is applied to reconstruct precisely the phase change and the phase ambiguity is removed provided that we know the phase change of the spectral fringes at one specific wavelength. The measured wavelength dependence of phase modal birefringence is compared with that resulting from the group modal birefringence measurement.

13.
Opt Express ; 14(8): 3114-28, 2006 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19516453

RESUMO

Anisotropic lamellar sub-wavelength gratings (nanogratings) are described by Effective Medium Approximation (EMA). Analytical formulas for effective medium optical parameters of nanogratings from arbitrary anisotropic materials are derived using approximation of zero-order diffraction mode. The method is based on Rigorous Coupled Wave Analysis (RCWA) combined with proper Fourier factorization method. Good agreement between EMA and the rigorous model is observed, where slight differences are explained by the influence of evanescent higher Fourier harmonics in the nanograting.

14.
Opt Lett ; 34(10): 1564-6, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19448822

RESUMO

A white-light spectral interferometric technique is used to retrieve a relative spectral phase and group delay of a multilayer mirror from the spectral interferograms recorded in a dispersive Michelson interferometer. The phase retrieval is based on the use of a windowed Fourier transform in the wavelength domain, and characterization of the multilayer mirror is completed by a three-step measurement of the reflectance spectrum of the mirror in the same interferometer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA