Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Langmuir ; 40(9): 4801-4810, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38386540

RESUMO

Strongly attractive forces act between superhydrophobic surfaces across water due to the formation of a bridging gas capillary. Upon separation, the attraction can range up to tens of micrometers as the gas capillary grows, while gas molecules accumulate in the capillary. We argue that most of these molecules come from the pre-existing gaseous layer found at and within the superhydrophobic coating. In this study, we investigate how the capillary size and the resulting capillary forces are affected by the thickness of the gaseous layer. To this end, we prepared superhydrophobic coatings with different thicknesses by utilizing different numbers of coating cycles of a liquid flame spraying technique. Laser scanning confocal microscopy confirmed an increase in gas layer thickness with an increasing number of coating cycles. Force measurements between such coatings and a hydrophobic colloidal probe revealed attractive forces caused by bridging gas capillaries, and both the capillary size and the range of attraction increased with increasing thickness of the pre-existing gas layer. Hence, our data suggest that the amount of available gas at and in the superhydrophobic coating determines the force range and capillary growth.

2.
Phys Chem Chem Phys ; 26(4): 2780-2805, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38193529

RESUMO

Calcium carbonate, particularly in the form of calcite, is an abundant mineral widely used in both human-made products and biological systems. The calcite surface possesses a high surface energy, making it susceptible to the adsorption of organic contaminants. Moreover, the surface is also reactive towards a range of chemicals, including water. Consequently, studying and maintaining a clean and stable calcite surface is only possible under ultrahigh vacuum conditions and for limited amounts of time. When exposed to air or solution, the calcite surface undergoes rapid transformations, demanding a comprehensive understanding of the properties of calcite surfaces in different environments. Similarly, attention must also be directed towards the kinetics of changes, whether induced by fluctuating environments or at constant condition. All these aspects are encompassed in the expression "dynamic nature", and are of crucial importance in the context of the diverse applications of calcite. In many instances, the calcite surface is modified by adsorption of fatty acids to impart a desired nonpolar character. Although the binding between carboxylic acid groups and calcite surfaces is strong, the fatty acid layer used for surface modification undergoes significant alterations when exposed to water vapour and liquid water droplets. Therefore, it is also crucial to understand the dynamic nature of the adsorbed layer. This review article provides a comprehensive overview of the current understanding of both the dynamics of the calcite surface as well as when modified by fatty acid surface treatments.

3.
Langmuir ; 39(42): 14840-14852, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37824837

RESUMO

A fundamental understanding of the interactions between mineral surfaces and amphiphilic surface modification agents is needed for better control over the production and uses of mineral fillers. Here, we controlled the carboxylic acid layer formation conditions on calcite surfaces with high precision via vapor deposition. The properties of the resulting carboxylic acid layers were analyzed using surface-sensitive techniques, such as atomic force microscopy (AFM), contact angle measurements, angle resolved X-ray photoelectron spectroscopy (XPS), and vibrational sum-frequency spectroscopy. A low wettability was achieved with long hydrocarbon chain carboxylic acids such as stearic acid. The stearic acid layer formed by vapor deposition is initially patchy, but with increasing vapor exposure time, the patches grow and condense into a homogeneous layer with a thickness close to that expected for a monolayer as evaluated by AFM and XPS. The build-up process of the layer occurs more rapidly at higher temperatures due to the higher vapor pressure. The stability of the deposited fatty acid layer in the presence of a water droplet increases with the chain length and packing density in the adsorbed layer. Vibrational sum frequency spectroscopy data demonstrate that the stearic acid monolayers on calcite have their alkyl chains in an all-trans conformation and are anisotropically distributed on the plane of the surface, forming epitaxial monolayers. Vibrational spectra also show that the stearic acid molecules interact with the calcite surface through the carboxylic acid headgroup in both its protonated and deprotonated forms. The results presented provide new molecular insights into the properties of adsorbed carboxylic acid layers on calcite.

4.
Langmuir ; 37(5): 1902-1912, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33502872

RESUMO

The temperature dependence of nanomechanical properties of adsorbed poly-NIPAm microgel particles prepared by a semibatch polymerization process was investigated in an aqueous environment via indentation-based atomic force microscopy (AFM) methods. Poly-NIPAm microgel particles prepared by the classical batch process were also characterized for comparison. The local mechanical properties were measured between 26 and 35 °C, i.e., in the temperature range of the volume transition. Two different AFM tips with different shapes and end radii were utilized. The nanomechanical properties measured by the two kinds of tips showed a similar temperature dependence of the nanomechanical properties, but the actual values were found to depend on the size of the tip. The results suggest that the semibatch synthesis process results in the formation of more homogeneous microgel particles than the classical batch method. The methodological approach reported in this work is generally applicable to soft surface characterization in situ.

5.
Langmuir ; 37(48): 14135-14146, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34793681

RESUMO

A profound understanding of the properties of unmodified and saturated fatty acid-modified calcite surfaces is essential for elucidating their resistance and stability in the presence of water droplets. Additional insights can be obtained by also studying the effects of carboxylic acid-saturated aqueous solutions. We elucidate surface wettability, structure, and nanomechanical properties beneath and at the edge of a deposited droplet after its evaporation. When calcite was coated by a highly packed monolayer of stearic acid, a hydrophilic region was found at the three-phase contact line. In atomic force microscopy mapping, this region is characterized by low adhesion and a topographical hillock. The surface that previously was covered by the droplet demonstrated a patchy structure of about 6 nm height, implying stearic acid reorganization into a patchy bilayer-like structure. Our data suggest that during droplet reverse dispensing and droplet evaporation, pinning of the three-phase contact line leads to the transport of dissolved fatty carboxylic acid and possibly calcium bicarbonate Ca(HCO3)2 molecules to the contact line boundary. Compared to the surface of intrinsically hydrophobic materials, such as polystyrene, the changes in contact angle and base diameter during droplet evaporation on stearic acid-modified calcite are strikingly different. This difference is due to stearic acid reorganization on the surface and transport to the water-air interface of the droplet. An effect of the evaporating droplet is also observed on unmodified calcite due to dissolution and recrystallization of the calcite surface in the presence of water. In the case where a water droplet saturated with octanoic acid is used instead of water, the stearic acid-coated calcite remains considerably more stable. Our findings are discussed in terms of the coffee-ring effect.


Assuntos
Carbonato de Cálcio , Água , Caprilatos , Ácidos Graxos , Propriedades de Superfície
6.
Langmuir ; 37(32): 9826-9837, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34355909

RESUMO

Understanding the wear of mineral fillers is crucial for controlling industrial processes, and in the present work, we examine the wear resistance and nanomechanical properties of bare calcite and stearic acid-modified calcite surfaces under dry and humid conditions at the nanoscale. Measurements under different loads allow us to probe the situation in the absence and presence of abrasive wear. The sliding motion is in general characterized by irregular stick-slip events that at higher loads lead to abrasion of the brittle calcite surface. Bare calcite is hydrophilic, and under humid conditions, a thin water layer is present on the surface. This water layer does not affect the friction force. However, it slightly decreases the wear depth and strongly influences the distribution of wear particles. In contrast, stearic acid-modified surfaces are hydrophobic. Nevertheless, humidity affects the wear characteristics by decreasing the binding strength of stearic acid at higher humidity. A complete monolayer coverage of calcite by stearic acid results in a significant reduction in wear but only a moderate reduction in friction forces at low humidity and no reduction at 75% relative humidity (RH). Thus, our data suggest that the wear reduction does not result from a lowering of the friction force but rather from an increased ductility of the surface region as offered by the stearic acid layer. An incomplete monolayer of stearic acid on the calcite surface provides no reduction in wear regardless of the RH investigated. Clearly, the wear properties of modified calcite surfaces depend crucially on the packing density of the surface modifier and also on the air humidity.

7.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830249

RESUMO

The lubrication mechanism in synovial fluid and joints is not yet fully understood. Nevertheless, intermolecular interactions between various neutral and ionic species including large macromolecular systems and simple inorganic ions are the key to understanding the excellent lubrication performance. An important tool for characterizing the intermolecular forces and their structural consequences is molecular dynamics. Albumin is one of the major components in synovial fluid. Its electrostatic properties, including the ability to form molecular complexes, are closely related to pH, solvation, and the presence of ions. In the context of synovial fluid, it is relevant to describe the possible interactions between albumin and hyaluronate, taking into account solution composition effects. In this study, the influence of Na+, Mg2+, and Ca2+ ions on human serum albumin-hyaluronan interactions were examined using molecular dynamics tools. It was established that the presence of divalent cations, and especially Ca2+, contributes mostly to the increase of the affinity between hyaluronan and albumin, which is associated with charge compensation in negatively charged hyaluronan and albumin. Furthermore, the most probable binding sites were structurally and energetically characterized. The indicated moieties exhibit a locally positive charge which enables hyaluronate binding (direct and water mediated).


Assuntos
Cálcio/química , Ácido Hialurônico/química , Magnésio/química , Albumina Sérica Humana/química , Sódio/química , Água/química , Sítios de Ligação , Cátions Bivalentes , Cátions Monovalentes , Humanos , Ligação de Hidrogênio , Modelos Biológicos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Soluções , Líquido Sinovial/química , Termodinâmica
8.
Molecules ; 25(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867196

RESUMO

Hyaluronan is an essential physiological bio macromolecule with different functions. One prominent area is the synovial fluid which exhibits remarkable lubrication properties. However, the synovial fluid is a multi-component system where different macromolecules interact in a synergetic fashion. Within this study we focus on the interaction of hyaluronan and phospholipids, which are thought to play a key role for lubrication. We investigate how the interactions and the association structures formed by hyaluronan (HA) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) are influenced by the molecular weight of the bio polymer and the ionic composition of the solution. We combine techniques allowing us to investigate the phase behavior of lipids (differential scanning calorimetry, zeta potential and electrophoretic mobility) with structural investigation (dynamic light scattering, small angle scattering) and theoretical simulations (molecular dynamics). The interaction of hyaluronan and phospholipids depends on the molecular weight, where hyaluronan with lower molecular weight has the strongest interaction. Furthermore, the interaction is increased by the presence of calcium ions. Our simulations show that calcium ions are located close to the carboxylate groups of HA and, by this, reduce the number of formed hydrogen bonds between HA and DPPC. The observed change in the DPPC phase behavior can be attributed to a local charge inversion by calcium ions binding to the carboxylate groups as the binding distribution of hyaluronan and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine is not changed.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Cálcio/química , Ácido Hialurônico/química , Fricção , Ligação de Hidrogênio , Lubrificação , Peso Molecular , Propriedades de Superfície
9.
Langmuir ; 35(3): 653-661, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30605339

RESUMO

The adsorption of hydrophilic or amphiphilic multiblock copolymers provides a powerful means to produce well-defined "smart" surfaces, especially if one or several blocks are sensitive to external stimuli. We focus here on an A-B-A-B-A copolymer, where A is a cationic poly((3-acrylamido-propyl)-trimethylammonium chloride) (PAMPTMA) block containing 15 (end blocks) or 30 (middle block) repeat units and B is a neutral thermosensitive water-soluble poly(2-isopropyl-2-oxazoline) (PIPOZ) block with 50 repeat units. X-ray reflectivity and quartz crystal microbalance with dissipation monitoring were employed to study the adsorption of PAMPTMA15-PIPOZ50-PAMPTMA30-PIPOZ50-PAMPTMA15 on silica surfaces. The latter technique was employed at different temperatures up to 50 °C. Surface forces and friction between the two silica surfaces across aqueous pentablock copolymer solutions at different temperatures were determined with the atomic force microscopy colloidal probe force and friction measurements. The cationic pentablock copolymer was found to have a high affinity to the negatively charged silica surface, leading to a thin (2 nm) and rigid adsorbed layer. A steric force was encountered at a separation of around 3 nm from hard wall contact. A capillary condensation of a polymer-rich phase was observed at the cloud point of the solution. The friction forces were evaluated using Amontons' rule modified with an adhesion term.

10.
Soft Matter ; 15(38): 7704-7714, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31508653

RESUMO

The mechanical properties of hydrogels are of importance in many applications, including scaffolds and drug delivery vehicles where the release of drugs is controlled by water transport. While the macroscopic mechanical properties of hydrogels have been reported frequently, there are less studies devoted to the equally important nanomechanical response to local load and shear. Scanning probe methods offer the possibility to gain insight on surface nanomechanical properties with high spatial resolution, and thereby provide fundamental insights on local material property variations. In this work, we investigate the local response to load and shear of poly(2-hydroxyethyl methacrylate) hydrogels with two different cross-linking densities submerged in aqueous solution. The response of the hydrogels to purely normal loads, as well as the combined action of load and shear, was found to be complex due to viscoelastic effects. Our results show that the surface stiffness of the hydrogel samples increased with increasing load, while the tip-hydrogel adhesion was strongly affected by the load only when the cross-linking density was low. The combined action of load and shear results in the formation of a temporary sub-micrometer hill in front of the laterally moving tip. As the tip pushes against such hills, a pronounced stick-slip effect is observed for the hydrogel with low cross-linking density. No plastic deformation or permanent wear scar was found under our experimental conditions.

11.
Soft Matter ; 15(36): 7295-7304, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31483431

RESUMO

The molecular mechanisms responsible for outstanding lubrication of natural systems, like articular joints, have been the focus of scientific research for several decades. One essential aspect is the lubrication under pressure, where it is important to understand how the lubricating entities adapt under dynamic working conditions in order to fulfill their function. We made a structural investigation of a model system consisting of two of the molecules present at the cartilage interface, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and hyaluronan, at high hydrostatic pressure. Phospholipid layers are found at the cartilage surfaces and are able to considerably reduce friction. Their behavior under load and varied solution conditions is important as pressures of 180 bar are encountered during daily life activities. We focus on how divalent ions, like Ca2+, affect the interaction between DPPC and hyaluronan, as other investigations have indicated that calcium ions influence their interaction. It could be shown that already low amounts of Ca2+ strongly influence the interaction of hyaluronan with DPPC. Our results suggest that the calcium ions increase the amount of adsorbed hyaluronan indicating an increased electrostatic interaction. Most importantly, we observe a modification of the DPPC phase diagram as hyaluronan absorbs to the bilayer which results in an Lα-like structure at low temperatures and a decoupling of the leaflets forming an asymmetric bilayer structure.

12.
Soft Matter ; 14(44): 8997-9004, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30394485

RESUMO

Hyaluronic acid and phospholipids are two components in the synovial joint cavity that contribute to joint lubrication synergistically. Molecular dynamics simulations were performed and hydrogen bonds in hyaluronic acid were analyzed to identify specific sites that are responsible for its physical cross-linking. Two molecular masses of hyaluronic acid, 10 kDa and 160 kDa, were considered. We use molecular dynamics simulations and the small world network approach to investigate dynamic couplings using a distance map applied to oxygen atoms in a chain of hyaluronic acid in the presence of phospholipids and water. The distance characterizing the coupling can be defined in various ways to bring out the most evident differences between various scenarios of the polymer chain conformation We show herein a physical distance understood as H-bond length and classes of these distances which are defined in a coarse-grained picture of the molecule. Simulation results indicate that addition of phospholipids has little influence on hyaluronic acid crosslinking. However, longer chains and addition of lipids promote appreciably long lasting (resilient) networks that may be of importance in biological systems. Specific sites for hydrogen bonding of phospholipids to hyaluronic acid have also been identified.

13.
Soft Matter ; 14(47): 9730, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30480298

RESUMO

Correction for 'Physical crosslinking of hyaluronic acid in the presence of phospholipids in an aqueous nano-environment' by Piotr Beldowski et al., Soft Matter, 2018, DOI: 10.1039/c8sm01388h.

14.
Soft Matter ; 15(1): 38-46, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30516226

RESUMO

Propofol is an amphiphilic small molecule that strongly influences the function of cell membranes, yet data regarding interfacial properties of propofol remain scarce. Here we consider propofol adsorption at the air/water interface as elucidated by means of vibrational sum frequency spectroscopy (VSFS), neutron reflectometry (NR), and surface tensiometry. VSFS data show that propofol adsorbed at the air/water interface interacts with water strongly in terms of hydrogen bonding and weakly in the proximity of the hydrocarbon parts of the molecule. In the concentration range studied there is almost no change in the orientation adopted at the interface. Data from NR show that propofol forms a dense monolayer with a thickness of 8.4 Å and a limiting area per molecule of 40 Å2, close to the value extracted from surface tensiometry. The possibility that islands or multilayers of propofol form at the air/water interface is therefore excluded as long as the solubility limit is not exceeded. Additionally, measurements of the 1H NMR chemical shifts demonstrate that propofol does not form dimers or multimers in bulk water up to the solubility limit.

15.
Langmuir ; 33(18): 4386-4395, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28431467

RESUMO

Interfacial properties of two brush-with-anchor mucins, C-P55 and C-PSLex, have been investigated at the aqueous solution/poly(methyl methacrylate) (PMMA) interface. Both are recombinant mucin-type fusion proteins, produced by fusing the glycosylated mucin part of P-selectin glycoprotein ligand-1 (PSLG-1) to the Fc part of a mouse immunoglobulin in two different cells. They are mainly expressed as dimers upon production. Analysis of the O-glycans shows that the C-PSLex mucin has the longer and more branched side chains, but C-P55 has slightly higher sialic acid content. The adsorption of the mucins to PMMA surfaces was studied by quartz crystal microbalance with dissipation. The sensed mass, including the adsorbed mucin and water trapped in the layer, was found to be similar for these two mucin layers. Atomic force microscopy with colloidal probe was employed to study surface and friction forces between mucin-coated PMMA surfaces. Purely repulsive forces of steric origin were observed between mucin layers on compression, whereas a small adhesion was detected between both mucin layers on decompression. This was attributed to chain entanglement. The friction force between C-PSLex-coated PMMA is lower than that between C-P55-coated PMMA at low loads, but vice versa at high loads. We discuss our results in terms of the differences in the glycosylation composition of these two mucins.


Assuntos
Mucinas/química , Adsorção , Animais , Fricção , Glicosilação , Camundongos , Propriedades de Superfície
16.
Phys Chem Chem Phys ; 19(35): 23677-23689, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28681896

RESUMO

To slide surfaces against each other with application of a minimum force and minimum wear has been important since ancient times, and it remains equally important today. The use of oil-soluble lubricants is widely spread in technology, whereas living organisms have developed water-soluble lubricants to facilitate sliding motions. In this perspective article we focus on water-based lubrication in the boundary lubrication regime, and particularly lubrication synergies. This focus has, of course, found inspiration from the outstanding lubrication properties of synovial joints. It has ignited significant amount of research, mostly aimed at answering the question: Which molecule is the magic biolubricant? Different research groups have advocated different answers, and the debate has been intensive. In this article we argue that the question in itself is inappropriate. The relevant question is rather the following: How do molecules work in synergy to provide superior lubrication?

17.
Phys Chem Chem Phys ; 19(35): 23642-23657, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28589979

RESUMO

Surface science, which spans the fields of chemistry, physics, biology and materials science, requires information to be obtained on the local properties and property variations across a surface. This has resulted in the development of different scanning probe methods that allow the measurement of local chemical composition and local electrical and mechanical properties. These techniques have led to rapid advancement in fundamental science with applications in areas such as composite materials, corrosion protection and wear resistance. In this perspective article, we focussed on the branch of scanning probe methods that allows the determination of surface nanomechanical properties. We discussed some different AFM-based modes that were used for these measurements and provided illustrative examples of the type of information that could be obtained. We also discussed some of the difficulties encountered during such studies.

18.
Langmuir ; 32(17): 4194-202, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27064661

RESUMO

The hydration water of hydrophilic polymers freezes at subzero temperatures. The adsorption of such polymers will result in a hydrophilic surface layer that strongly binds water. Provided this interfacial hydration water remains liquidlike at subzero temperatures, its presence could possibly reduce ice adhesion, in particular, if the liquidlike layer is thicker than or comparable to the surface roughness. To explore this idea, a diblock copolymer, having one branched bottle-brush block of poly(ethylene oxide) and one linear cationic block, was electrostatically anchored on flat silica surfaces. The shear ice adhesion strength on such polymer-coated surfaces was investigated down to -25 °C using a homebuilt device. In addition, the temperature dependence of the ice adhesion on surfaces coated with only the cationic block, only the branched bottle-brush block, and with linear poly(ethylene oxide) was investigated. Significant ice adhesion reduction, in particular, at temperatures above -15 °C, was observed on silica surfaces coated with the electrostatically anchored diblock copolymer. Differential scanning calorimetry measurements on bulk polymer solutions demonstrate different thermal transitions of water interacting with branched and linear poly(ethylene oxide) (with hydration water melting points of about -18 and -10 °C, respectively). This difference is consistent with the low shear ice adhesion strength measured on surfaces carrying branched bottle-brush structured poly(ethylene oxide) at -10 °C, whereas no significant adhesion reduction was obtained with linear poly(ethylene oxide) at this temperature. We propose a lubrication effect of the hydration water bound to the branched bottle-brush structured poly(ethylene oxide), which, in the bulk, does not freeze until -18 °C.

19.
Langmuir ; 31(10): 3039-48, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25686020

RESUMO

Thermoresponsive polymer layers on silica surfaces have been obtained by utilizing electrostatically driven adsorption of a cationic-nonionic diblock copolymer. The cationic block provides strong anchoring to the surface for the nonionic block of poly(2-isopropyl-2-oxazoline), referred to as PIPOZ. The PIPOZ chain interacts favorably with water at low temperatures, but above 46 °C aqueous solutions of PIPOZ phase separate as water becomes a poor solvent for the polymer. We explore how a change in solvent condition affects interactions between such adsorbed layers and report temperature effects on both normal forces and friction forces. To gain further insight, we utilize self-consistent lattice mean-field theory to follow how changes in temperature affect the polymer segment density distributions and to calculate surface force curves. We find that with worsening of the solvent condition an attraction develops between the adsorbed PIPOZ layers, and this observation is in good agreement with predictions of the mean-field theory. The modeling also demonstrates that the segment density profile and the degree of chain interpenetration under a given load between two PIPOZ-coated surfaces rise significantly with increasing temperature.


Assuntos
Microscopia de Força Atômica , Modelos Moleculares , Poliaminas/química , Polímeros/química , Temperatura , Adsorção , Conformação Molecular , Dióxido de Silício/química , Propriedades de Superfície
20.
Langmuir ; 30(29): 8878-88, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25006685

RESUMO

Responsive biomaterial hydrogels attract significant attention due to their biocompatibility and degradability. In order to make chitosan based gels, we first graft one layer of chitosan to silica, and then build a chitosan/poly(acrylic acid) multilayer using the layer-by-layer approach. After cross-linking the chitosan present in the polyelectrolyte multilayer, poly(acrylic acid) is partly removed by exposing the multilayer structure to a concentrated carbonate buffer solution at a high pH, leaving a surface-grafted cross-linked gel. Chemical cross-linking enhances the gel stability against detachment and decomposition. The chemical reaction between gluteraldehyde, the cross-linking agent, and chitosan was followed in situ using total internal reflection Raman (TIRR) spectroscopy, which provided a molecular insight into the complex reaction mechanism, as well as the means to quantify the cross-linking density. The amount of poly(acrylic acid) trapped inside the surface grafted films was found to decrease with decreasing cross-linking density, as confirmed in situ using TIRR, and ex situ by Fourier transform infrared (FTIR) measurements on dried films. The responsiveness of the chitosan-based gels with respect to pH changes was probed by quartz crystal microbalance with dissipation (QCM-D) and TIRR. Highly cross-linked gels show a small and fully reversible behavior when the solution pH is switched between pH 2.7 and 5.7. In contrast, low cross-linked gels are more responsive to pH changes, but the response is fully reversible only after the first exposure to the acidic solution, once an internal restructuring of the gel has taken place. Two distinct pKa's for both chitosan and poly(acrylic acid), were determined for the cross-linked structure using TIRR. They are associated with populations of chargeable groups displaying either a bulk like dissociation behavior or forming ionic complexes inside the hydrogel film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA