Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 358: 120910, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636422

RESUMO

Due to its unique physicochemical properties, palladium is widely used in several industry applications (e.g., vehicle emission control). In view of the circular economy, it is essential to explore secondary sources of palladium, such as urban mines. Current technologies for effective palladium recovery involve high energy consumption and severe environmental impact. More recently, a novel green method for recovering palladium from spent catalysts through a combination of mild acidic leaching and photodeposition on ZnO nanoparticles was proposed on a laboratory scale. In the present study, the environmental impacts of this recovery method, properly upscaled and modelled, was assessed by employing the LCA approach. Specifically, a comparative LCA was carried out for the process with as well as without recycling key components, such as Cu (II) and NaCl for the leaching solution and ZnO. The outcomes identified critical areas and drove the investigation of alternative process configurations to reduce its environmental footprint, such as the use of carbon dioxide in the photodeposition process with the aim of decreasing the resulting terrestrial ecotoxicity. This study marks a significant step forward in advancing research toward industrial-scale implementation of palladium recovery. It provides valuable insights for researchers in the field of green physicochemical processes for metal recovery, thus offering guidance for future decision-making towards more sustainable practices.


Assuntos
Paládio , Paládio/química , Catálise , Reciclagem/métodos , Óxido de Zinco/química
2.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768327

RESUMO

The existing literature survey reports rare and conflicting studies on the effect of the preparation method of metal-based semiconductor photocatalysts on structural/morphological features, electronic properties, and kinetics regulating the photocatalytic H2 generation reaction. In this investigation, we compare the different copper/titania-based photocatalysts for H2 generation synthesized via distinct methods (i.e., photodeposition and impregnation). Our study aims to establish a stringent correlation between physicochemical/electronic properties and photocatalytic performances for H2 generation based on material characterization and kinetic modeling of the experimental outcomes. Estimating unknown kinetic parameters, such as charge recombination rate and quantum yield, suggests a mechanism regulating charge carrier lifetime depending on copper distribution on the TiO2 surface. We demonstrate that H2 generation photoefficiency recorded over impregnated CuxOy/TiO2 is related to an even distribution of Cu(0)/Cu(I) on TiO2, and the formation of an Ohmic junction concertedly extended charge carrier lifetime and separation. The outcomes of the kinetic analysis and the related modeling investigation underpin photocatalyst physicochemical and electronic properties. Overall, the present study lays the groundwork for the future design of metal-based semiconductor photocatalysts with high photoefficiencies for H2 evolution.

3.
J Environ Manage ; 330: 117075, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603248

RESUMO

Silver is extensively used in electronics, industrial catalysis, and biomedical sector owing to its enhanced physicochemical properties. E-waste recycling may contribute significantly to enhance silver recovery in the view of a circular economy and limit the depletion of mineral sources. In this scenario, hydrometallurgical routes represent the most widely used techniques for silver extraction/recovery and require strong acidic solutions, high temperatures, and multiple operating units. An alternative sustainable route for silver recovery from leaching solutions used for silver extraction in industrial applications is herein proposed for the first time. The novel green process of silver recovery is based on the UV/vis light-driven photocatalytic deposition of pure metallic silver over low-cost and non-toxic ZnO photocatalyst. In the second step, ZnO is dissolved by slight acidification and pure metallic silver is easily recovered. Low environmental impact, mild operating conditions, and economic viability are among the major perks of the new silver recovery process developed. In the view of a full-scale implementation, several operating conditions of the recovery process (i.e., photocatalyst load, starting silver concentration, type of hole scavenger and irradiation) were thoroughly investigated. A mathematical model capable of describing the system behaviour under different operating conditions was also developed and allowed to estimate unknown kinetic parameters for the Ag-photodeposition process.


Assuntos
Óxido de Zinco , Óxido de Zinco/química , Prata/química , Cloretos , Catálise , Raios Ultravioleta
4.
Heliyon ; 9(12): e22633, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076140

RESUMO

After decades of industrial exploitation of the coast and consequent contamination of the sites and marine sediments, it became essential to recover the marine ecosystem by remediation methods to remove toxic contaminants. In this work, a remediation method was developed to clean marine sediments contaminated by arsenic (As) and mercury (Hg). The method can be applied to mobile platforms and is based on an environmentally friendly approach designed to minimise further contamination. The method was tested on two artificially contaminated sediments and two real samples collected from two highly contaminated sites in southern Italy, Augusta Bay and Bagnoli Gulf, characterised by high Hg and As concentrations, respectively. The method consists of four steps: washing with sodium hydroxide (NaOH) to remove metals associated with humic acid; Fenton-reaction using α-CycloDextrin (aCD) to stabilise Fe(II) at natural pH and oxidise As (III) and Hg (0 or I); complexation reaction with aCD; and complexation with sodium sulfide (Na2S) to remove Hg as soluble Hg-polysulfides. Compared to other remediation experiences in literature, this technique provides the best removal efficiency for As and Hg (ranging between 26 -71 % and 57-95 %, respectively). Considering the residual concentrations of As and Hg and the contamination threshold fixed by European Regulation for re-use, the treated sediment can be used in several civil and industrial contexts. The presented method operates in line with the principles of the circular economy to preserve natural resources, prevent secondary pollution, and promote the effective re-use of clean environmental matrices (soils, sediments and aqueous solutions), thus minimising landfill waste.

5.
ACS Omega ; 5(1): 406-421, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31956788

RESUMO

Hybrid nanoarchitectures of AgInS2 and TiO2 photocatalysts were prepared by using a modified sol-gel method. The experimental results reveal that these nanocomposites display enhanced visible light absorption and effective charge carrier separation compared to their pristine parent samples (AgInS2 or TiO2). 0.5 wt % AgInS2 loading was found to be the optimum concentration for photocatalytic applications. More than 95% of doxycycline degradation was achieved within 180 min of solar light illumination. Similarly, the dopant concentrations at lower values (<2 wt %) exhibited 300 times higher H2 generation rate under visible light irradiation compared to AgInS2 and TiO2. The microbial strains (Escherichia coli and Staphylococcus aureus) exhibited a 99.999% reduction within half an hour of simulated solar light illumination. The computational investigation was employed to understand the structural, electronic, and the dielectric properties of AgInS2 and TiO2 composites. The improved photocatalytic results are explained as a result of the decreased rate of exciton recombination. The current investigation opens up new insights into the use of novel ternary heterostructure nanocomposites for improved visible light activity.

6.
Environ Sci Pollut Res Int ; 24(7): 6353-6360, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27044292

RESUMO

Contaminated soil has become a growing issue in recent years. The most common technique used to remove contaminants (such as metals) from the soil is the soil washing process. However, this process produces a final effluent containing chelating agents (i.e., ethylenediaminedisuccinic acid, also known as EDDS) and extracted metals (i.e., Cu, Fe, and Zn) at concentrations higher than discharge limits allowed by the Italian and Brazilian environmental law. Therefore, it is necessary to develop further treatments before its proper disposal or reuse. In the present study, soil washing tests were carried out through two sequential paths. Moreover, different artificial sunlight-driven photocatalytic treatments were used to remove Cu, Zn, Fe, and EDDS from soil washing effluents. Metal concentrations after the additional treatment were within the Brazilian and Italian regulatory limits for discharging in public sewers. The combined TiO2-photocatalytic processes applied were enough to decontaminate the effluents, allowing their reuse in soil washing treatment. Ecotoxicological assessment using different living organisms was carried out to assess the impact of the proposed two-step photocatalytic process on the effluent ecotoxicity. Graphical Abstract ᅟ.


Assuntos
Descontaminação/métodos , Processos Fotoquímicos , Poluentes do Solo/química , Poluentes do Solo/isolamento & purificação , Solo/química , Luz Solar , Catálise , Etilenodiaminas/química , Etilenodiaminas/isolamento & purificação , Etilenodiaminas/toxicidade , Metais Pesados/química , Metais Pesados/isolamento & purificação , Metais Pesados/toxicidade , Poluentes do Solo/toxicidade , Succinatos/química , Succinatos/isolamento & purificação , Succinatos/toxicidade
7.
Environ Sci Pollut Res Int ; 24(6): 5898-5907, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28064394

RESUMO

The photocatalytic removal of nitrate with simultaneous hydrogen generation was demonstrated using zero-valent nano-copper-modified titania (P25) as photocatalyst in the presence of UV-A-Vis radiation. Glycerol, a by-product in biodiesel production, was chosen as a hole scavenger. Under the adopted experimental conditions, a nitrate removal efficiency up to 100% and a simultaneous hydrogen production up to 14 µmol/L of H2 were achieved (catalyst load = 150 mg/L, initial concentration of nitrate = 50 mg/L, initial concentration of glycerol = 0.8 mol/L). The reaction rates were independent of the starting glycerol concentration. This process allows accomplishing nitrate removal, with the additional benefit of producing hydrogen under artificial UV-A radiation. A kinetic model was also developed and it may represent a benchmark for a detailed understanding of the process kinetics. A set of acute and chronic bioassays (Vibrio fischeri, Raphidocelis subcapitata, and Daphnia magna) was performed to evaluate the potential ecotoxicity of the nitrate/by-product mixture formed during the photocatalytic process. The ecotoxicological assessment indicated an ecotoxic effect of oxidation intermediates and by-products produced during the process.


Assuntos
Cobre/química , Hidrogênio/química , Nanopartículas Metálicas/química , Nitratos/isolamento & purificação , Titânio/química , Poluentes Químicos da Água/isolamento & purificação , Aliivibrio fischeri/efeitos dos fármacos , Animais , Catálise , Clorófitas/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Ecotoxicologia , Glicerol/química , Cinética , Nitratos/química , Nitratos/farmacologia , Oxirredução , Tamanho da Partícula , Processos Fotoquímicos , Soluções , Raios Ultravioleta , Poluentes Químicos da Água/química , Poluentes Químicos da Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA