Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Pediatr Diabetes ; 19(5): 985-992, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29573523

RESUMO

OBJECTIVE: This study examines temporal trends in treatment-related outcomes surrounding a diabetic ketoacidosis (DKA) performance improvement intervention consisting of mandated intensive care unit admission and implementation of a standardized management pathway, and identifies physical and biochemical characteristics associated with outcomes in this population. METHODS: A retrospective cohort of 1225 children with DKA were identified in the electronic health record by international classification of diseases codes and a minimum pH less than 7.3 during hospitalization at a quaternary children's hospital between April, 2009 and May, 2016. Multivariable regression examined predictors and trends of hypoglycemia, central venous line placement, severe hyperchloremia, head computed tomography (CT) utilization, treated cerebral edema and hospital length of stay (LOS). RESULTS: The incidence of severe hyperchloremia and head CT utilization decreased during the study period. Among patients with severe DKA (presenting pH < 7.1), the intervention was associated with decreasing LOS and less variability in LOS. Lower pH at presentation was independently associated with increased risk for all outcomes except hypoglycemia, which was associated with higher pH. Patients treated for cerebral edema had a lower presenting mean systolic blood pressure z score (0.58 [95% confidence interval (CI) -0.02-1.17] vs 1.23 [1.13-1.33]) and a higher maximum mean systolic blood pressure (SBP) z score during hospitalization (3.75 [3.19-4.31] vs 2.48 [2.38-2.58]) compared to patients not receiving cerebral edema treatment. Blood pressure and cerebral edema remained significantly associated after covariate adjustment. CONCLUSION: Treatment-related outcomes improved over the entire study period and following a performance improvement intervention. The association of SBP with cerebral edema warrants further study.


Assuntos
Cetoacidose Diabética/terapia , Adolescente , Pressão Sanguínea , Edema Encefálico/etiologia , Criança , Procedimentos Clínicos , Cetoacidose Diabética/complicações , Feminino , Humanos , Masculino , Estudos Retrospectivos , Resultado do Tratamento
2.
J Cereb Blood Flow Metab ; 42(12): 2255-2269, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35854408

RESUMO

Epinephrine is the principal resuscitation therapy for pediatric cardiac arrest (CA). Clinical data suggest that although epinephrine increases the rate of resuscitation, it fails to improve neurological outcome, possibly secondary to reductions in microvascular flow. We characterized the effect of epinephrine vs. placebo administered at resuscitation from pediatric asphyxial CA on microvascular and macrovascular cortical perfusion assessed using in vivo multiphoton microscopy and laser speckle flowmetry, respectively, and on brain tissue oxygenation (PbO2), behavioral outcomes, and neuropathology in 16-18-day-old rats. Epinephrine-treated rats had a more rapid return of spontaneous circulation and brisk immediate cortical reperfusion during 1-3 min post-CA vs. placebo. However, at the microvascular level, epinephrine-treated rats had penetrating arteriole constriction and increases in both capillary stalling (no-reflow) and cortical capillary transit time 30-60 min post-CA vs. placebo. Placebo-treated rats had increased capillary diameters post-CA. The cortex was hypoxic post-CA in both groups. Epinephrine treatment worsened reference memory performance vs. shams. Hippocampal neuron counts did not differ between groups. Resuscitation with epinephrine enhanced immediate reperfusion but produced microvascular alterations during the first hour post-resuscitation, characterized by vasoconstriction, capillary stasis, prolonged cortical transit time, and absence of compensatory cortical vasodilation. Targeted therapies mitigating the deleterious microvascular effects of epinephrine are needed.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Animais , Ratos , Microscopia , Circulação Cerebrovascular/fisiologia , Parada Cardíaca/tratamento farmacológico , Parada Cardíaca/complicações , Epinefrina/farmacologia , Epinefrina/uso terapêutico , Ressuscitação
3.
J Cereb Blood Flow Metab ; 39(5): 913-925, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29192562

RESUMO

Decreased cerebral blood flow (CBF) after cardiac arrest (CA) contributes to secondary ischemic injury in infants and children. We previously reported cortical hypoperfusion with tissue hypoxia early in a pediatric rat model of asphyxial CA. In order to identify specific alterations as potential therapeutic targets to improve cortical hypoperfusion post-CA, we characterize the CBF alterations at the cortical microvascular level in vivo using multiphoton microscopy. We hypothesize that microvascular constriction and disturbances of capillary red blood cell (RBC) flow contribute to cortical hypoperfusion post-CA. After resuscitation from 9 min asphyxial CA, transient dilation of capillaries and venules at 5 min was followed by pial arteriolar constriction at 30 and 60 min (19.6 ± 1.3, 19.3 ± 1.2 µm at 30, 60 min vs. 22.0 ± 1.2 µm at baseline, p < 0.05). At the capillary level, microcirculatory disturbances were highly heterogeneous, with RBC stasis observed in 25.4% of capillaries at 30 min post-CA. Overall, the capillary plasma mean transit time was increased post-CA by 139.7 ± 51.5%, p < 0.05. In conclusion, pial arteriolar constriction, the no-reflow phenomenon and increased plasma transit time were observed post-CA. Our results detail the microvascular disturbances in a pediatric asphyxial CA model and provide a powerful platform for assessing specific vascular-targeted therapies.


Assuntos
Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Parada Cardíaca/complicações , Microcirculação , Fenômeno de não Refluxo/etiologia , Animais , Encéfalo/fisiopatologia , Parada Cardíaca/fisiopatologia , Masculino , Fenômeno de não Refluxo/fisiopatologia , Ratos Sprague-Dawley , Vasodilatação
4.
Pharmacogenomics ; 18(15): 1413-1425, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28975867

RESUMO

Pharmacotherapy for traumatic brain injury (TBI) is focused on resuscitation, prevention of secondary injury, rehabilitation and recovery. Pharmacogenomics may play a role in TBI for predicting therapies for sedation, analgesia, seizure prevention, intracranial pressure-directed therapy and neurobehavioral/psychiatric symptoms. Research into genetic predictors of outcomes and susceptibility to complications may also help clinicians to tailor therapeutics for high-risk individuals. Additionally, the expanding use of genomics in the drug development pipeline has provided insight to novel investigational and repurposed medications that may be useful in the treatment of TBI and its complications. Genomics in the context of treatment and prognostication for patients with TBI is a promising area for clinical progress of pharmacogenomics.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/genética , Animais , Humanos , Farmacogenética/métodos , Risco
5.
J Cereb Blood Flow Metab ; 35(11): 1757-63, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26058691

RESUMO

Vasoconstrictive and vasodilatory eicosanoids generated after cardiac arrest (CA) may contribute to cerebral vasomotor disturbances and neurodegeneration. We evaluated the balance of vasodilator/vasoconstrictor eicosanoids produced by cytochrome P450 (CYP) metabolism, and determined their role on cortical perfusion, functional outcome, and neurodegeneration after pediatric asphyxial CA. Cardiac arrest of 9 and 12 minutes was induced in 16- to 18-day-old rats. At 5 and 120 minutes after CA, we quantified the concentration of CYP eicosanoids in the cortex and subcortical areas. In separate rats, we inhibited 20-hydroxyeicosatetraenoic acid (20-HETE) synthesis after CA and assessed cortical cerebral blood flow (CBF), neurologic deficit score, neurodegeneration, and edema. After 9 minutes of CA, vasodilator eicosanoids markedly increased versus sham. Conversely, after 12 minutes of CA, vasoconstrictor eicosanoid 20-HETE increased versus sham, without compensatory increases in vasodilator eicosanoids. Inhibition of 20-HETE synthesis after 12 minutes of CA decreased cortical 20-HETE levels, increased CBF, reduced neurologic deficits at 3 hours, and reduced neurodegeneration and edema at 48 hours versus vehicle-treated rats. In conclusion, cerebral vasoconstrictor eicosanoids increased after a pediatric CA of 12 minutes. Inhibition of 20-HETE synthesis improved cortical perfusion and short-term neurologic outcome. These results suggest that alterations in CYP eicosanoids have a role in cerebral hypoperfusion and neurodegeneration after CA and may represent important therapeutic targets.


Assuntos
Amidinas/uso terapêutico , Asfixia Neonatal/tratamento farmacológico , Edema Encefálico/tratamento farmacológico , Córtex Cerebral/irrigação sanguínea , Circulação Cerebrovascular/efeitos dos fármacos , Parada Cardíaca/tratamento farmacológico , Ácidos Hidroxieicosatetraenoicos/antagonistas & inibidores , Fármacos Neuroprotetores/uso terapêutico , Animais , Asfixia Neonatal/complicações , Asfixia Neonatal/fisiopatologia , Água Corporal/metabolismo , Química Encefálica/efeitos dos fármacos , Edema Encefálico/etiologia , Córtex Cerebral/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Eicosanoides/metabolismo , Parada Cardíaca/complicações , Parada Cardíaca/fisiopatologia , Masculino , Doenças Neurodegenerativas/prevenção & controle , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
6.
J Cereb Blood Flow Metab ; 35(2): 319-28, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25407268

RESUMO

It is believed that biosynthesis of lipid mediators in the central nervous system after cerebral ischemia-reperfusion starts with phospholipid hydrolysis by calcium-dependent phospholipases and is followed by oxygenation of released fatty acids (FAs). Here, we report an alternative pathway whereby cereberal ischemia-reperfusion triggered oxygenation of a mitochondria-specific phospholipid, cardiolipin (CL), is followed by its hydrolysis to yield monolyso-CLs and oxygenated derivatives of fatty (linoleic) acids. We used a model of global cerebral ischemia-reperfusion characterized by 9 minutes of asphyxia leading to asystole followed by cardiopulmonary resuscitation in postnatal day 17 rats. Global ischemia and cardiopulmonary resuscitation resulted in: (1) selective oxidation and hydrolysis of CLs, (2) accumulation of lyso-CLs and oxygenated free FAs, (3) activation of caspase 3/7 in the brain, and (4) motor and cognitive dysfunction. On the basis of these findings, we used a mitochondria targeted nitroxide electron scavenger, which prevented CL oxidation and subsequent hydrolysis, attenuated caspase activation, and improved neurocognitive outcome when administered after cardiac arrest. These data show that calcium-independent CL oxidation and subsequent hydrolysis represent a previously unidentified pathogenic mechanism of brain injury incurred by ischemia-reperfusion and a clinically relevant therapeutic target.


Assuntos
Cardiolipinas/metabolismo , Transtornos Cerebrovasculares/metabolismo , Mitocôndrias/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais , Animais , Transtornos Cerebrovasculares/patologia , Masculino , Mitocôndrias/patologia , Oxirredução , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologia , Fatores de Tempo
7.
Pediatr Crit Care Med ; 1(1): 4-19, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12813280

RESUMO

OBJECTIVE: To present a state-of-the-art review of mechanisms of secondary injury in the evolution of damage after severe traumatic brain injury in infants and children. DATA SOURCES: We reviewed 152 peer-reviewed publications, 15 abstracts and proceedings, and other material relevant to the study of biochemical, cellular, and molecular mechanisms of damage in traumatic brain injury. Clinical studies of severe traumatic brain injury in infants and children were the focus, but reports in experimental models in immature animals were also considered. Results from both clinical studies in adults and models of traumatic brain injury in adult animals were presented for comparison. DATA SYNTHESIS: Categories of mechanisms defined were those associated with ischemia, excitotoxicity, energy failure, and resultant cell death cascades; secondary cerebral swelling; axonal injury; and inflammation and regeneration. CONCLUSIONS: A constellation of mediators of secondary damage, endogenous neuroprotection, repair, and regeneration are set into motion in the brain after severe traumatic injury. The quantitative contribution of each mediator to outcome, the interplay between these mediators, and the integration of these mechanistic findings with novel imaging methods, bedside physiology, outcome assessment, and therapeutic intervention remain an important target for future research.

8.
Pediatr Crit Care Med ; 2(3): 260-264, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12793952

RESUMO

OBJECTIVE: To further characterize the Th1 (proinflammatory) vs. the Th2 (antiinflammatory) cytokine profile after severe traumatic brain injury (TBI) by quantifying the ventricular cerebrospinal fluid concentrations of Th1 cytokines (interleukin [IL]-2 and IL-12) and Th2 cytokines (IL-6 and IL-12) in infants and children. DESIGN: Retrospective study. SETTING: University children's hospital. PATIENTS: Twenty-four children hospitalized with severe TBI (admission Glasgow Coma Scale score, <13) and 12 controls with negative diagnostic lumbar punctures. INTERVENTIONS: All TBI patients received standard neurointensive care, including the placement of an intraventricular catheter for continuous drainage of cerebrospinal fluid. MEASUREMENTS AND MAIN RESULTS: Ventricular cerebrospinal fluid samples (n = 105) were collected for as long as the catheters were in place (between 4 hrs and 222 hrs after TBI). Cerebrospinal fluid samples were analyzed for IL-2, IL-4, IL-6, and IL-12 concentrations by enzyme-linked immunoassay. Peak and mean IL-6 (335.7 +/- 41.4 pg/mL and 259.5 +/- 37.6 pg/mL, respectively) and IL-12 (11.4 +/- 2.2 pg/mL and 4.3 +/- 0.8 pg/mL, respectively) concentrations were increased (p <.05) in children after TBI vs. controls (2.3 +/- 0.7 pg/mL and 1.0 +/- 0.5 pg/mL) for IL-6 and IL-12, respectively. In contrast, peak and mean IL-2 and IL-4 concentrations were not increased in TBI children vs. controls. Increases in the cerebrospinal fluid concentration of IL-6 were significantly associated with admission Glasgow Coma Scale score of

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA