RESUMO
The genetic causes of global developmental delay (GDD) and intellectual disability (ID) are diverse and include variants in numerous ion channels and transporters. Loss-of-function variants in all five endosomal/lysosomal members of the CLC family of Cl- channels and Cl-/H+ exchangers lead to pathology in mice, humans, or both. We have identified nine variants in CLCN3, the gene encoding CIC-3, in 11 individuals with GDD/ID and neurodevelopmental disorders of varying severity. In addition to a homozygous frameshift variant in two siblings, we identified eight different heterozygous de novo missense variants. All have GDD/ID, mood or behavioral disorders, and dysmorphic features; 9/11 have structural brain abnormalities; and 6/11 have seizures. The homozygous variants are predicted to cause loss of ClC-3 function, resulting in severe neurological disease similar to the phenotype observed in Clcn3-/- mice. Their MRIs show possible neurodegeneration with thin corpora callosa and decreased white matter volumes. Individuals with heterozygous variants had a range of neurodevelopmental anomalies including agenesis of the corpus callosum, pons hypoplasia, and increased gyral folding. To characterize the altered function of the exchanger, electrophysiological analyses were performed in Xenopus oocytes and mammalian cells. Two variants, p.Ile607Thr and p.Thr570Ile, had increased currents at negative cytoplasmic voltages and loss of inhibition by luminal acidic pH. In contrast, two other variants showed no significant difference in the current properties. Overall, our work establishes a role for CLCN3 in human neurodevelopment and shows that both homozygous loss of ClC-3 and heterozygous variants can lead to GDD/ID and neuroanatomical abnormalities.
Assuntos
Canais de Cloreto/genética , Modelos Animais de Doenças , Canais Iônicos/fisiologia , Mutação , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Knockout , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/metabolismoRESUMO
INTRODUCTION: Diseases caused by lysosomal dysfunction often exhibit multisystemic involvement, resulting in substantial morbidity and mortality. Ensuring accurate diagnoses for individuals with lysosomal diseases (LD) is of great importance, especially with the increasing prominence of genetic testing as a primary diagnostic method. As the list of genes associated with LD continues to expand due to the use of more comprehensive tests such as exome and genome sequencing, it is imperative to understand the clinical validity of the genes, as well as identify appropriate genes for inclusion in multi-gene testing and sequencing panels. The Clinical Genome Resource (ClinGen) works to determine the clinical importance of genes and variants to support precision medicine. As part of this work, ClinGen has developed a semi-quantitative framework to assess the strength of evidence for the role of a gene in a disease. Given the diversity in gene composition across LD panels offered by various laboratories and the evolving comprehension of genetic variants affecting secondary lysosomal functions, we developed a scoring system to define LD (Lysosomal Disease Scoring System - LDSS). This system sought to aid in the prioritization of genes for clinical validity curation and assess their suitability for LD-targeted sequencing panels. METHODS: Through literature review encompassing terms associated with both classically designated LD and LFRD, we identified 14 criteria grouped into "Overall Definition," "Phenotype," and "Pathophysiology." These criteria included concepts such as the "accumulation of undigested or partially digested macromolecules within the lysosome" and being "associated with a wide spectrum of clinical manifestations impacting multiple organs and systems." The criteria, along with their respective weighted values, underwent refinement through expert panel evaluation differentiating them between "major" and "minor" criteria. Subsequently, the LDSS underwent validation on 12 widely acknowledged LD and was later tested by applying these criteria to the Lysosomal Disease Network's (LDN) official Gene List. RESULTS: The final LDSS comprised 4 major criteria and 10 minor criteria, with a cutoff of 2 major or 1 major and 3 minor criteria established to define LD. Interestingly, when applied to both the LDN list and a comprehensive gene list encompassing genes included in clinical panels and published as LFRD genes, we identified four genes (GRN, SLC29A3, CLN7 and VPS33A) absent from the LDN list, that were deemed associated with LD. Conversely, a subset of non-classic genes included in the LDN list, such as MTOR, OCRL, and SLC9A6, received lower LDSS scores for their associated disease entities. While these genes may not be suitable for inclusion in clinical LD multi-gene panels, they could be considered for inclusion on other, non-LD gene panels. DISCUSSION: The LDSS offers a systematic approach to prioritize genes for clinical validity assessment. By identifying genes with high scores on the LDSS, this method enhanced the efficiency of gene curation by the ClinGen LD GCEP. CONCLUSION: The LDSS not only serves as a tool for gene prioritization prior to clinical validity curation, but also contributes to the ongoing discussion on the definition of LD. Moreover, the LDSS provides a flexible framework adaptable to future discoveries, ensuring its relevance in the ever-expanding landscape of LD research.
Assuntos
Testes Genéticos , Doenças por Armazenamento dos Lisossomos , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/diagnóstico , Testes Genéticos/métodos , Testes Genéticos/normas , Lisossomos/genética , Lisossomos/metabolismo , Bases de Dados Genéticas , Predisposição Genética para DoençaRESUMO
Lysosomal diseases (LDs) are a heterogeneous group of rare genetic disorders that result in impaired lysosomal function, leading to progressive multiorgan system dysfunction. Accurate diagnosis is paramount to initiating targeted therapies early in the disease process in addition to providing prognostic information and appropriate support for families. In recent years, genomic sequencing technologies have become the first-line approach in the diagnosis of LDs. Understanding the clinical validity of the role of a gene in a disease is critical for the development of genomic technologies, such as which genes to include on next generation sequencing panels, and the interpretation of results from exome and genome sequencing. To this aim, the ClinGen Lysosomal Diseases Gene Curation Expert Panel utilized a semi-quantitative framework incorporating genetic and experimental evidence to assess the clinical validity of the 56 LD-associated genes on the Lysosomal Disease Network's list. Here, we describe the results, and the key themes and challenges encountered.
RESUMO
Mucopolysaccharidosis type I is an inborn error of glycosaminoglycan catabolism with phenotypes ranging from severe (Hurler syndrome) to attenuated (Hurler-Scheie and Scheie syndromes). Cardiovascular involvement is common and contributes significantly to morbidity and mortality. We conducted a retrospective analysis of the prevalence and natural history of cardiac abnormalities in treatment-naïve individuals enrolled in the international Mucopolysaccharidosis Type I Registry. Interrogation of echocardiography data (presence of cardiac valve regurgitation and/or stenosis; measurements of left ventricular chamber dimensions in diastole and systole, diastolic left ventricular posterior wall and interventricular septal thicknesses and ventricular systolic function (shortening fraction)) showed that mitral regurgitation was the most common and earliest finding for individuals with both severe (58.3%, median age 1.2 years) and attenuated (74.2%, median age 8.0 years) disease. Left-sided valve stenosis was also common in individuals with attenuated disease (mitral 30.3%; aortic 25%). Abnormal ventricular wall and septal thickness (Z-scores ≥2) were observed early in both phenotypes. Z-scores for diastolic left ventricular posterior wall and interventricular septal thicknesses increased with age in the severe phenotype (annualised slopes of 0.2777 [p = 0.037] and 0.3831 [p = 0.001], respectively); a similar correlation was not observed in the attenuated phenotype (annualised slopes of -0.0401 [p = 0.069] and -0.0029 [p = 0.875], respectively). Decreased cardiac ventricular systolic function (defined as shortening fraction <28%) was uncommon but, when noted, was more frequent in infants with the severe phenotype. While cardiac abnormalities occur early in both severe and attenuated mucopolysaccharidosis type I, the pattern of valve dysfunction and progression of ventricular abnormalities vary by phenotype.
Assuntos
Doenças das Valvas Cardíacas , Mucopolissacaridose I , Lactente , Humanos , Criança , Mucopolissacaridose I/complicações , Estudos Retrospectivos , Constrição Patológica , Sistema de RegistrosRESUMO
Accurate determination of the clinical significance of genetic variants is critical to the integration of genomics in medicine. To facilitate this process, the NIH-funded Clinical Genome Resource (ClinGen) has assembled Variant Curation Expert Panels (VCEPs), groups of experts and biocurators which provide gene- and disease- specifications to the American College of Medical Genetics & Genomics and Association for Molecular Pathology's (ACMG/AMP) variation classification guidelines. With the goal of classifying the clinical significance of GAA variants in Pompe disease (Glycogen storage disease, type II), the ClinGen Lysosomal Diseases (LD) VCEP has specified the ACMG/AMP criteria for GAA. Variant classification can play an important role in confirming the diagnosis of Pompe disease as well as in the identification of carriers. Furthermore, since the inclusion of Pompe disease on the Recommended Uniform Screening Panel (RUSP) for newborns in the USA in 2015, the addition of molecular genetic testing has become an important component in the interpretation of newborn screening results, particularly for asymptomatic individuals. To date, the LD VCEP has submitted classifications and supporting data on 243 GAA variants to public databases, specifically ClinVar and the ClinGen Evidence Repository. Here, we describe the ACMG/AMP criteria specification process for GAA, an update of the GAA-specific variant classification guidelines, and comparison of the ClinGen LD VCEP's GAA variant classifications with variant classifications submitted to ClinVar. The LD VCEP has added to the publicly available knowledge on the pathogenicity of variants in GAA by increasing the number of expert-curated GAA variants present in ClinVar, and aids in resolving conflicting classifications and variants of uncertain clinical significance.
Assuntos
Variação Genética , Doença de Depósito de Glicogênio Tipo II , Recém-Nascido , Humanos , Estados Unidos , Testes Genéticos/métodos , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doença de Depósito de Glicogênio Tipo II/genética , Genoma Humano , Genômica/métodosRESUMO
PURPOSE: Genomic test results, regardless of laboratory variant classification, require clinical practitioners to judge the applicability of a variant for medical decisions. Teaching and standardizing clinical interpretation of genomic variation calls for a methodology or tool. METHODS: To generate such a tool, we distilled the Clinical Genome Resource framework of causality and the American College of Medical Genetics/Association of Molecular Pathology and Quest Diagnostic Laboratory scoring of variant deleteriousness into the Clinical Variant Analysis Tool (CVAT). Applying this to 289 clinical exome reports, we compared the performance of junior practitioners with that of experienced medical geneticists and assessed the utility of reported variants. RESULTS: CVAT enabled performance comparable to that of experienced medical geneticists. In total, 124 of 289 (42.9%) exome reports and 146 of 382 (38.2%) reported variants supported a diagnosis. Overall, 10.5% (1 pathogenic [P] or likely pathogenic [LP] variant and 39 variants of uncertain significance [VUS]) of variants were reported in genes without established disease association; 20.2% (23 P/LP and 54 VUS) were in genes without sufficient phenotypic concordance; 7.3% (15 P/LP and 13 VUS) conflicted with the known molecular disease mechanism; and 24% (91 VUS) had insufficient evidence for deleteriousness. CONCLUSION: Implementation of CVAT standardized clinical interpretation of genomic variation and emphasized the need for collaborative and transparent reporting of genomic variation.
Assuntos
Testes Genéticos , Variação Genética , Exoma , Testes Genéticos/métodos , Variação Genética/genética , Genômica/métodos , Humanos , Sequenciamento do ExomaRESUMO
Mucopolysaccharidosis Type I (MPS I) is caused by deficiency of α-L-iduronidase. Short stature and growth deceleration are common in individuals with the attenuated MPS I phenotype. Study objectives were to assess growth in individuals with attenuated MPS I enrolled in The MPS I Registry while untreated and after initiation of enzyme replacement therapy (ERT) with laronidase (recombinant human iduronidase). Individuals in the MPS I Registry with at least one observation for height and assigned attenuated MPS I phenotype as of September 2020 were included. The cohort included 142 males and 153 females 2-18 years of age. Age and sex adjusted standardized height-for-age z-scores during the natural history and ERT-treatment periods were assessed using linear mixed model repeated measures analyses. Growth curves were estimated during both periods and compared to standard growth charts from the Center for Disease Control (CDC). There was a significantly slower decline in height z-scores with age during the ERT-treated period compared to the natural history period. Estimated average height z-scores in the ERT-treatment versus the natural history period at age 10 were -2.4 versus -3.3 in females and -1.4 versus -2.9 in males (females first treated 3 year; males <4.1 year). While median height remained below CDC standards during both the natural history and ERT-treated periods for individuals with attenuated MPS I, laronidase ERT was associated with slower declines in height z-scores.
Assuntos
Mucopolissacaridose I , Estatura , Criança , Cognição , Terapia de Reposição de Enzimas , Feminino , Humanos , Iduronidase/uso terapêutico , Masculino , Mucopolissacaridose I/tratamento farmacológico , Mucopolissacaridose I/genética , Proteínas Recombinantes , Sistema de RegistrosRESUMO
Gaucher disease is a lysosomal storage disorder caused by mutations which destabilize the native folded form of GCase, triggering degradation and ultimately resulting in low enzyme activity. Pharmacological chaperones (PCs) which stabilize mutant GCase have been used to increase lysosomal activity through improving trafficking efficiency. By engineering their inherent basicity, we have synthesized PCs that change conformation between the ER and the lysosomal environment, thus weakening binding to GCase after its successful trafficking to the lysosome. NMR studies confirmed the conformational change while X-ray data reveal bound conformations and binding modes. These results were further corroborated by cell studies showing increases in GCase activity when using the pH-switchable probe at low dosing. Preliminary in vivo assays with humanized mouse models of Gaucher showed enhanced GCase activity levels in relevant tissues, including the brain, further supporting their potential.
Assuntos
Doença de Gaucher , Glucosilceramidase , Animais , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Glucosilceramidase/química , Concentração de Íons de Hidrogênio , Camundongos , Modelos Animais , Chaperonas Moleculares/química , MutaçãoRESUMO
PURPOSE: Exome sequencing (ES) is increasingly used for the diagnosis of rare genetic disease. However, some pathogenic sequence variants within the exome go undetected due to the technical difficulty of identifying them. Mobile element insertions (MEIs) are a known cause of genetic disease in humans but have been historically difficult to detect via ES and similar targeted sequencing methods. METHODS: We developed and applied a novel MEI detection method prospectively to samples received for clinical ES beginning in November 2017. Positive MEI findings were confirmed by an orthogonal method and reported back to the ordering provider. In this study, we examined 89,874 samples from 38,871 cases. RESULTS: Diagnostic MEIs were present in 0.03% (95% binomial test confidence interval: 0.02-0.06%) of all cases and account for 0.15% (95% binomial test confidence interval: 0.08-0.25%) of cases with a molecular diagnosis. One diagnostic MEI was a novel founder event. Most patients with pathogenic MEIs had prior genetic testing, three of whom had previous negative DNA sequencing analysis of the diagnostic gene. CONCLUSION: MEI detection from ES is a valuable diagnostic tool, reveals molecular findings that may be undetected by other sequencing assays, and increases diagnostic yield by 0.15%.
Assuntos
Exoma , Testes Genéticos , Exoma/genética , Humanos , Análise de Sequência de DNA , Sequenciamento do ExomaRESUMO
PURPOSE: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts. METHODS: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts. RESULTS: We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts. CONCLUSION: We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies.
Assuntos
Deficiência Intelectual , Transcriptoma , Exoma , Células Germinativas , Humanos , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Fenótipo , Transcriptoma/genética , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose TumoralRESUMO
Neurological dysfunction represents a significant clinical component of many of the mucopolysaccharidoses (also known as MPS disorders). The accurate and consistent assessment of neuropsychological function is essential to gain a greater understanding of the precise natural history of these conditions and to design effective clinical trials to evaluate the impact of therapies on the brain. In 2017, an International MPS Consensus Panel published recommendations for best practice in the design and conduct of clinical studies investigating the effects of therapies on cognitive function and adaptive behavior in patients with neuronopathic mucopolysaccharidoses. Based on an International MPS Consensus Conference held in February 2020, this article provides updated consensus recommendations and expands the objectives to include approaches for assessing behavioral and social-emotional state, caregiver burden and quality of life in patients with all mucopolysaccharidoses.
Assuntos
Encéfalo/metabolismo , Mucopolissacaridoses/terapia , Doenças do Sistema Nervoso/terapia , Modalidades de Fisioterapia , Encéfalo/patologia , Ensaios Clínicos como Assunto , Disfunção Cognitiva/fisiopatologia , Humanos , Mucopolissacaridoses/genética , Mucopolissacaridoses/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Comportamento Problema , Qualidade de VidaRESUMO
BACKGROUND: Fabry disease is a rare, X-linked, lifelong progressive lysosomal storage disorder. Severely deficient α-galactosidase A activity in males is associated with the classic phenotype with early-onset, multisystem manifestations evolving to vital organ complications during adulthood. We assessed the ability of 2 low-dose agalsidase beta regimens to lower skin, plasma, and urine globotriaosylceramide (GL-3) levels, and influence clinical manifestations in male pediatric Fabry patients. METHODS: In this multicenter, open-label, parallel-group, phase 3b study, male patients aged 5-18â¯years were randomized to receive agalsidase beta at 0.5â¯mg/kg 2-weekly (nâ¯=â¯16) or 1.0â¯mg/kg 4-weekly (nâ¯=â¯15) for 5â¯years. All had plasma/urine GL-3 accumulation but no clinically evident organ involvement. The primary outcome was GL-3 accumulation in superficial skin capillary endothelium (SSCE). RESULTS: The mean age was 11.6 (range: 5-18) years and all but one of the 31 patients had classic GLA mutations. In the overall cohort, shifts from non-0 to 0-scores for SSCE GL-3 were significant at years 1, 3, and 5, but results were variable. Plasma GL-3 normalized and urine GL-3 reduced substantially. Higher anti-agalsidase beta antibody titers were associated with less robust SSCE GL-3 clearance and higher urine GL-3 levels. Renal function remained stable and normal. Most Fabry signs and symptoms tended to stabilize; abdominal pain was significantly reduced (-26.3%; Pâ¯=â¯.0215). No new clinical major organ complications were observed. GL-3 accumulation and cellular and vascular injury were present in baseline kidney biopsies (nâ¯=â¯7). Treatment effects on podocyte GL-3 content and foot process width were highly variable. Fabry arteriopathy overall increased in severity. Two patients withdrew and 2 had their agalsidase beta dose increased. CONCLUSIONS: Our findings increase the limited amount of available data on long-term effects of enzyme replacement therapy in pediatric, classic Fabry patients. The low-dose regimens studied here over a period of 5â¯years did not demonstrate a consistent benefit among the patients in terms of controlling symptomatology, urine GL-3 levels, and pathological histology. The current available evidence supports treatment of pediatric, classic male Fabry patients at the approved agalsidase beta dose of 1.0â¯mg/kg 2-weekly if these patients are considered for enzyme replacement therapy with agalsidase beta.
Assuntos
Terapia de Reposição de Enzimas/estatística & dados numéricos , Doença de Fabry/tratamento farmacológico , Isoenzimas/uso terapêutico , alfa-Galactosidase/uso terapêutico , Adolescente , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Humanos , Masculino , Pele/química , Pele/patologia , Resultado do Tratamento , Triexosilceramidas/análiseRESUMO
Coffin-Siris syndrome (CSS, MIM#135900) is a congenital disorder characterized by coarse facial features, intellectual disability, and hypoplasia of the fifth digit and nails. Pathogenic variants for CSS have been found in genes encoding proteins in the BAF (BRG1-associated factor) chromatin-remodeling complex. To date, more than 150 CSS patients with pathogenic variants in nine BAF-related genes have been reported. We previously reported 71 patients of whom 39 had pathogenic variants. Since then, we have recruited an additional 182 CSS-suspected patients. We performed comprehensive genetic analysis on these 182 patients and on the previously unresolved 32 patients, targeting pathogenic single nucleotide variants, short insertions/deletions and copy number variations (CNVs). We confirmed 78 pathogenic variations in 78 patients. Pathogenic variations in ARID1B, SMARCB1, SMARCA4, ARID1A, SOX11, SMARCE1, and PHF6 were identified in 48, 8, 7, 6, 4, 1, and 1 patients, respectively. In addition, we found three CNVs including SMARCA2. Of particular note, we found a partial deletion of SMARCB1 in one CSS patient and we thoroughly investigated the resulting abnormal transcripts.
Assuntos
Anormalidades Múltiplas/genética , Face/anormalidades , Predisposição Genética para Doença/genética , Variação Genética/genética , Deformidades Congênitas da Mão/genética , Deficiência Intelectual/genética , Micrognatismo/genética , Pescoço/anormalidades , Estudos de Coortes , Estudos de Associação Genética/métodos , HumanosRESUMO
Mucopolysaccharidosis type I (MPS I) is a rare autosomal recessive disorder resulting from pathogenic variants in the α-L-iduronidase (IDUA) gene. Clinical phenotypes range from severe (Hurler syndrome) to attenuated (Hurler-Scheie and Scheie syndromes) and vary in age of onset, severity, and rate of progression. Defining the phenotype at diagnosis is essential for disease management. To date, no systematic analysis of genotype-phenotype correlation in large MPS I cohorts have been performed. Understanding genotype-phenotype is critical now that newborn screening for MPS I is being implemented. Data from 538 patients from the MPS I Registry (380 severe, 158 attenuated) who had 2 IDUA alleles identified were examined. In the 1076 alleles identified, 148 pathogenic variants were reported; of those, 75 were unique. Of the 538 genotypes, 147 (27%) were unique; 40% of patients with attenuated and 22% of patients with severe MPS I had unique genotypes. About 67.6% of severe patients had genotypes where both variants identified are predicted to severely disrupt protein/gene function and 96.1% of attenuated patients had at least one missense or intronic variant. This dataset illustrates a close genotype/phenotype correlation in MPS I but the presence of unique IDUA missense variants remains a challenge for disease prediction.
Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Iduronidase/genética , Mucopolissacaridose I/diagnóstico , Mucopolissacaridose I/genética , Mutação , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética/métodos , Genótipo , Saúde Global , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Mucopolissacaridose I/epidemiologia , Fenótipo , Sistema de Registros , Índice de Gravidade de Doença , Adulto JovemRESUMO
Mucopolysaccharidosis Type I (MPS I), caused by deficiency of α-L-iduronidase results in progressive, multisystemic disease with a broad phenotypic spectrum including patients with severe (Hurler syndrome) to attenuated (Hurler-Scheie and Scheie syndromes) disease. Disordered growth is common with either phenotype. The study objectives were to construct sex- and age-specific estimated length/height and head circumference growth curves for untreated individuals with severe and attenuated disease and compare them with clinical reference standards. Untreated individuals in the MPS I Registry with at least one observation for length/height and/or head circumference and assigned phenotype as of May 2017 were included. Median growth for 463 untreated individuals with severe disease deviated from reference growth curves by ~6 months of age and fell below the third percentile by 4 years of age. Median head circumference was above reference curves from 3 to 4 months through 3 years of age. Among 207 individuals with untreated attenuated disease, median height fell below the third percentile by 9 years of age with divergence from reference curves by 2 years of age. MPS I-specific growth curves will be useful in evaluation of long-term outcomes of therapeutics interventions and will provide a foundation for understanding the pathogenesis of skeletal disease in MPS I.
Assuntos
Gráficos de Crescimento , Mucopolissacaridose I/diagnóstico , Mucopolissacaridose I/genética , Fenótipo , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Mucopolissacaridose I/epidemiologia , Mucopolissacaridose I/terapia , Vigilância da População , Sistema de RegistrosRESUMO
Genetic disorders are one of the leading causes of infant mortality and are frequent in neonatal intensive care units (NICUs). Rapid genome-wide sequencing (GWS; whole genome or exome sequencing (ES)), due to its diagnostic capabilities and immediate impacts on medical management, is becoming an appealing testing option in the NICU setting. RAPIDOMICS was a trio-based rapid ES pilot study of 25 babies with suspected genetic disorders in the BC Women's Hospital NICU. ES and bioinformatic analysis were performed after careful patient ascertainment. Trio analysis was performed using an in-house pipeline reporting variants in known disease-causing genes. Variants interpreted by the research team as definitely or possibly causal of the infant's phenotype were Sanger validated in a clinical laboratory. The average time to preliminary diagnosis was 7.2 days. Sanger validation was pursued in 15 patients for 13 autosomal dominant and 2 autosomal recessive disorders, with an overall diagnostic rate (partial or complete) of 60%.Conclusion: In total, 72% of patients enrolled had a genomic diagnosis achieved through ES, multi-gene panel testing or chromosomal microarray analysis. Among these, there was an 83% rate of significant and immediate impact on medical decision-making directly related to new knowledge of the diagnosis. Health service implementation challenges and successes are discussed. What is Known: ⢠Rapid genome-wide sequencing in the neonatal intensive care setting has a greater diagnostic hit rate and impact on medical management than conventional genetic testing. However, the impact of consultation with genetics and patient ascertainment requires further investigation. What is New: ⢠This study demonstrates the importance of genetic consultation and careful patient selection prior to pursuing exome sequencing (ES). ⢠In total, 15/25 (60%) patients achieved a diagnosis through ES and 18/25 (72%) through ES, multi-gene panel testing or chromosomal microarray analysis with 83% of those having immediate effects on medical management.
Assuntos
Sequenciamento do Exoma/métodos , Doenças Genéticas Inatas/diagnóstico , Testes Genéticos/métodos , Unidades de Terapia Intensiva Neonatal , Terapia Intensiva Neonatal/métodos , Tomada de Decisão Clínica/métodos , Estado Terminal , Feminino , Aconselhamento Genético , Doenças Genéticas Inatas/genética , Humanos , Recém-Nascido , Masculino , Análise em Microsséries , Avaliação de Resultados em Cuidados de Saúde , Seleção de Pacientes , Projetos PilotoRESUMO
The design and conduct of clinical studies to evaluate the effects of novel therapies on central nervous system manifestations in children with neuronopathic mucopolysaccharidoses is challenging. Owing to the rarity of these disorders, multinational studies are often needed to recruit enough patients to provide meaningful data and statistical power. This can make the consistent collection of reliable data across study sites difficult. To address these challenges, an International MPS Consensus Conference for Cognitive Endpoints was convened to discuss approaches for evaluating cognitive and adaptive function in patients with mucopolysaccharidoses. The goal was to develop a consensus on best practice for the design and conduct of clinical studies investigating novel therapies for these conditions, with particular focus on the most appropriate outcome measures for cognitive function and adaptive behavior. The outcomes from the consensus panel discussion are reported here.
Assuntos
Cognição , Mucopolissacaridoses/terapia , Sistema Nervoso Central/fisiopatologia , Criança , Ensaios Clínicos como Assunto , Determinação de Ponto Final , Humanos , Mucopolissacaridoses/fisiopatologia , Mucopolissacaridose I/fisiopatologia , Mucopolissacaridose I/terapia , Mucopolissacaridose II/fisiopatologia , Mucopolissacaridose II/terapia , Mucopolissacaridose III/fisiopatologia , Mucopolissacaridose III/terapia , Doenças do Sistema Nervoso/terapia , Modalidades de FisioterapiaRESUMO
Fabry disease is caused by mutations in the GLA gene that lower α-galactosidase A activity to less than 25-30% of the mean normal level. Several GLA variants have been identified that are associated with relatively elevated residual α-galactosidase A. The challenge is to determine which GLA variants can cause clinical manifestations related to Fabry disease. Here, we review the various types of GLA variants and recommend that pathogenicity be considered only when associated with elevated globotriaosylceramide in disease-relevant organs and tissues as analyzed by mass spectrometry. This criterion is necessary to ensure that very costly and specific therapy is provided only when appropriate.Genet Med 18 12, 1181-1185.
Assuntos
Doença de Fabry/genética , Triexosilceramidas/genética , alfa-Galactosidase/genética , Doença de Fabry/patologia , Humanos , Mutação , Triexosilceramidas/metabolismo , alfa-Galactosidase/isolamento & purificaçãoRESUMO
Morquio A Syndrome (mucopolysaccharidosis IVA [MPS IVA]) is an inherited, autosomal recessive lysosomal storage disorder that occurs in ~1 in 200,000 to 300,000 live births.(1) (Online access http://www.elseviercme.com/559) Individuals with Morquio A Syndrome have mutations in the gene that encodes N-acetylgalactosamine-6-sulfate sulfatase (GALNS), an enzyme responsible for the metabolism of the glycosaminoglycans (GAGs) keratin sulfate and chondroitin-6-sulfate.(2-4) Reduced activity or lack of GALNS leads to cellular and tissue accumulation of these GAGs to result in progressive, multisystem dysfunction and impaired functional capacity.(5) Individuals with Morquio A Syndrome suffer from a broad spectrum of impairment, including a variety of widespread skeletal abnormalities, respiratory compromise, valvular heart disease, visual and auditory impairments, and dental abnormalities.(6-8) Cognition is not typically affected.(9) Morquio A Syndrome exhibits extensive allelic heterogeneity, which results in extensive clinical heterogeneity.(2-4) This educational intervention on the management of patients with Morquio A Syndrome provides updated information and guidelines concerning the early and accurate diagnosis as well as an earlier intervention to improve patient outcomes. The activity is based on a live satellite symposium conducted during the 2015 official ACMG Annual Clinical Genetics Meeting program. Recent advances in the science of enzyme replacement therapies have presented opportunities for pharmacological interventions that improve quality of life. Clinicians will be updated on the clinical trial data and practical solutions for applying newer therapeutics to daily practice. Strategies to manage cardiopulmonary comorbidities and recommendations for the ideal clinical care model will wrap up this informative and up-to-date review of Morquio A Syndrome. This CME activity is also available through the Website of Molecular Genetics and Metabolism. Click on the CME button in the navigation bar for full access. Or access: http://www.elseviercme.com/559.
Assuntos
Mucopolissacaridose IV/tratamento farmacológico , Condroitina Sulfatases/uso terapêutico , Protocolos Clínicos , Terapia de Reposição de Enzimas , Humanos , Mucopolissacaridose IV/genética , Medicina de Precisão , Qualidade de VidaRESUMO
BACKGROUND: Mucopolysaccharidosis type I is an autosomal recessive disorder caused by deficiency of α-L-iduronidase and characterized by a progressive course with multisystem involvement. Clinically, Mucopolysaccharidosis type I is classified into two forms: severe (Hurler syndrome), which presents in infancy and is characterized by rapid progressive neurological involvement and attenuated (Hurler/Scheie and Scheie syndromes), which presents with slower progression and absent to mild nervous system involvement. The specific treatment for attenuated Mucopolysaccharidosis type I consists of enzyme-replacement therapy with laronidase (human recombinant α-L-iduronidase, Aldurazyme). We present here the clinical and laboratory results in an 12-year-old patient affected by the attenuated form of Mucopolysaccharidosis type I treated by enzyme-replacement therapy from the age of 5 months, compared with his 17 year old affected sister, who started therapy at 5 years of age. CASE PRESENTATION: Clinical evaluation of these siblings shows that initiation of therapy prior of the onset of clinically detectable disease resulted in considerable improvement in outcome in the young sibling. After 12 years of enzyme-replacement therapy, facial appearance, linear growth rate, and liver and spleen volumes were normal; moreover, the degree of joint disease, vertebral, and cardiac valvular involvement were only minimal compared with those of his sister. CONCLUSION: This study demonstrates that early diagnosis and early initiation of enzyme-replacement therapy substantially modify the natural history of the attenuated form of Mucopolysaccharidosis type I.