Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 30(15): 127279, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32527459

RESUMO

The synthesis and structure activity relationship development of a pyrimidine series of heterocyclic Factor IXa inhibitors is described. Increased selectivity over Factor Xa inhibition was achieved through SAR expansion of the P1 element. Select compounds were evaluated in vivo to assess their plasma levels in rat.


Assuntos
Descoberta de Drogas , Fator IXa/antagonistas & inibidores , Inibidores do Fator Xa/farmacologia , Pirimidinas/farmacologia , Relação Dose-Resposta a Droga , Fator IXa/metabolismo , Inibidores do Fator Xa/síntese química , Inibidores do Fator Xa/química , Humanos , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
2.
Assay Drug Dev Technol ; 22(3): 148-159, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526231

RESUMO

The progression of type II diabetes (T2D) is characterized by a complex and highly variable loss of beta-cell mass, resulting in impaired insulin secretion. Many T2D drug discovery efforts aimed at discovering molecules that can protect or restore beta-cell mass and function have been developed using limited beta-cell lines and primary rodent/human pancreatic islets. Various high-throughput screening methods have been used in the context of drug discovery, including luciferase-based reporter assays, glucose-stimulated insulin secretion, and high-content screening. In this context, a cornerstone of small molecule discovery has been the use of immortalized rodent beta-cell lines. Although insightful, this usage has led to a more comprehensive understanding of rodent beta-cell proliferation pathways rather than their human counterparts. Advantages gained in enhanced physiological relevance are offered by three-dimensional (3D) primary islets and pseudoislets in contrast to monolayer cultures, but these approaches have been limited to use in low-throughput experiments. Emerging methods, such as high-throughput 3D islet imaging coupled with machine learning, aim to increase the feasibility of integrating 3D microtissue structures into high-throughput screening. This review explores the current methods used in high-throughput screening for small molecule modulators of beta-cell mass and function, a potentially pivotal strategy for diabetes drug discovery.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Células Secretoras de Insulina , Bibliotecas de Moléculas Pequenas , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Humanos , Animais , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Regeneração/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo
3.
SLAS Discov ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37527729

RESUMO

Diabetes poses a global health crisis affecting individuals across age groups and backgrounds, with a prevalence estimate of 700 million people worldwide by 2045. Current therapeutic strategies primarily rely on insulin therapy or hypoglycemic agents, which fail to address the root cause of the disease - the loss of pancreatic insulin-producing beta-cells. Therefore, bioassays that recapitulate intact islets are needed to enable drug discovery for beta-cell replenishment, protection from beta-cell loss, and islet-cell interactions. Standard cancer insulinoma beta-cell lines MIN6 and INS-1 have been used to interrogate beta-cell metabolic pathways and function but are not suitable for studying proliferative effects. Screening using primary human/rodent intact islets offers a higher level of physiological relevance to enhance diabetes drug discovery and development. However, the 3-dimensionality of intact islets have presented challenges in developing robust, high-throughput assays to detect beta-cell proliferative effects. Established methods rely on either dissociated islet cells plated in 2D monolayer cultures for imaging or reconstituted pseudo-islets formed in round bottom plates to achieve homogeneity. These approaches have significant limitations due to the islet cell dispersion process. To address these limitations, we have developed a robust, intact ex vivo pancreatic islet bioassay in 384-well format that is capable of detecting diabetes-relevant endpoints including beta-cell proliferation, chemoprotection, and islet spatial morphometrics.

4.
Mol Biol Cell ; 33(14): ar132, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36200902

RESUMO

Mitosis is the cellular process that ensures accurate segregation of the cell's genetic material into two daughter cells. Mitosis is often deregulated in cancer; thus drugs that target mitosis-specific proteins represent attractive targets for anticancer therapy. Numerous inhibitors have been developed against kinesin-5 Eg5, a kinesin essential for bipolar spindle assembly. Unfortunately, Eg5 inhibitors (K5Is) have been largely ineffective in the clinic, possibly due to the activity of a second kinesin, KIF15, that can suppress the cytotoxic effect of K5Is by driving spindle assembly through an Eg5-independent pathway. We hypothesized that pairing of K5Is with small molecule inhibitors of KIF15 will be more cytotoxic than either inhibitor alone. Here we present the results of a high-throughput screen from which we identified two inhibitors that inhibit the motor activity of KIF15 both in vitro and in cells. These inhibitors selectively inhibit KIF15 over other molecular motors and differentially affect the ability of KIF15 to bind microtubules. Finally, we find that chemical inhibition of KIF15 reduces the ability of cells to acquire resistance to K5Is, highlighting the centrality of KIF15 to K5I resistance and the value of these inhibitors as tools with which to study KIF15 in a physiological context.


Assuntos
Cinesinas , Fuso Acromático , Fuso Acromático/metabolismo , Microtúbulos/metabolismo , Mitose , Ciclo Celular
5.
Vaccines (Basel) ; 10(8)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36016172

RESUMO

Niclosamide, an FDA-approved oral anthelmintic drug, has broad biological activity including anticancer, antibacterial, and antiviral properties. Niclosamide has also been identified as a potent inhibitor of SARS-CoV-2 infection in vitro, generating interest in its use for the treatment or prevention of COVID-19. Unfortunately, there are several potential issues with using niclosamide for COVID-19, including low bioavailability, significant polypharmacology, high cellular toxicity, and unknown efficacy against emerging SARS-CoV-2 variants of concern. In this study, we used high-content imaging-based immunofluorescence assays in two different cell models to assess these limitations and evaluate the potential for using niclosamide as a COVID-19 antiviral. We show that despite promising preliminary reports, the antiviral efficacy of niclosamide overlaps with its cytotoxicity giving it a poor in vitro selectivity index for anti-SARS-CoV-2 inhibition. We also show that niclosamide has significantly variable potency against the different SARS-CoV-2 variants of concern and is most potent against variants with enhanced cell-to-cell spread including the B.1.1.7 (alpha) variant. Finally, we report the activity of 33 niclosamide analogs, several of which have reduced cytotoxicity and increased potency relative to niclosamide. A preliminary structure-activity relationship analysis reveals dependence on a protonophore for antiviral efficacy, which implicates nonspecific endolysosomal neutralization as a dominant mechanism of action. Further single-cell morphological profiling suggests niclosamide also inhibits viral entry and cell-to-cell spread by syncytia. Altogether, our results suggest that niclosamide is not an ideal candidate for the treatment of COVID-19, but that there is potential for developing improved analogs with higher clinical translational potential in the future.

6.
bioRxiv ; 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35860224

RESUMO

Niclosamide, an FDA-approved oral anthelmintic drug, has broad biological activity including anticancer, antibacterial, and antiviral properties. Niclosamide has also been identified as a potent inhibitor of SARS-CoV-2 infection in vitro , generating interest in its use for the treatment or prevention of COVID-19. Unfortunately, there are several potential issues with using niclosamide for COVID-19, including low bioavailability, significant polypharmacology, high cellular toxicity, and unknown efficacy against emerging SARS-CoV-2 variants of concern. In this study, we used high-content imaging-based immunofluorescence assays in two different cell models to assess these limitations and evaluate the potential for using niclosamide as a COVID-19 antiviral. We show that despite promising preliminary reports, the antiviral efficacy of niclosamide overlaps with its cytotoxicity giving it a poor in vitro selectivity index for anti-SARS-CoV-2 inhibition. We also show that niclosamide has significantly variable potency against the different SARS-CoV-2 variants of concern and is most potent against variants with enhanced cell-to-cell spread including B.1.1.7. Finally, we report the activity of 33 niclosamide analogs, several of which have reduced cytotoxicity and increased potency relative to niclosamide. A preliminary structure-activity relationship analysis reveals dependence on a protonophore for antiviral efficacy, which implicates nonspecific endolysosomal neutralization as a dominant mechanism of action. Further single-cell morphological profiling suggests niclosamide also inhibits viral entry and cell-to-cell spread by syncytia. Altogether, our results suggest that niclosamide is not an ideal candidate for the treatment of COVID-19, but that there is potential for developing improved analogs with higher clinical translational potential in the future. Importance: There is still an urgent need for effective anti-SARS-CoV-2 therapeutics due to waning vaccine efficacy, the emergence of variants of concern, and limited efficacy of existing antivirals. One potential therapeutic option is niclosamide, an FDA approved anthelmintic compound that has shown promising anti-SARS-CoV-2 activity in cell-based assays. Unfortunately, there are significant barriers for the clinical utility of niclosamide as a COVID-19 therapeutic. Our work emphasizes these limitations by showing that niclosamide has high cytotoxicity at antiviral concentrations, variable potency against variants of concern, and significant polypharmacology as a result of its activity as a nonspecific protonophore. Some of these clinical limitations can be mitigated, however, through structural modifications to the niclosamide scaffold, which we demonstrate through a preliminary structure activity relationship analysis. Overall, we show that niclosamide is not a suitable candidate for the treatment of COVID-19, but that structural analogs with improved drug properties may have higher clinical-translational potential.

7.
J Med Chem ; 50(21): 5147-60, 2007 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-17854166

RESUMO

Pursuing our earlier efforts in the himbacine-based thrombin receptor antagonist area, we have synthesized a series of compounds that incorporate heteroatoms in the C-ring of the tricyclic motif. This effort has resulted in the identification of several potent heterocyclic analogs with excellent affinity for the thrombin receptor. Several of these compounds demonstrated robust inhibition of platelet aggregation in an ex vivo model in cynomolgus monkeys following oral administration. A detailed profile of 28b, a benchmark compound in this series, with a Ki of 4.3 nM, is presented.


Assuntos
Alcaloides/síntese química , Furanos/síntese química , Compostos Heterocíclicos com 3 Anéis/síntese química , Isoquinolinas/síntese química , Naftalenos/síntese química , Piperidinas/síntese química , Inibidores da Agregação Plaquetária/síntese química , Piridinas/síntese química , Receptor PAR-1/antagonistas & inibidores , Administração Oral , Alcaloides/farmacocinética , Alcaloides/farmacologia , Animais , Disponibilidade Biológica , Plaquetas/metabolismo , Furanos/farmacocinética , Furanos/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Técnicas In Vitro , Isoquinolinas/farmacocinética , Isoquinolinas/farmacologia , Macaca fascicularis , Camundongos , Microssomos Hepáticos/metabolismo , Naftalenos/farmacocinética , Naftalenos/farmacologia , Piperidinas/farmacocinética , Piperidinas/farmacologia , Inibidores da Agregação Plaquetária/farmacocinética , Inibidores da Agregação Plaquetária/farmacologia , Piridinas/farmacocinética , Piridinas/farmacologia , Ratos , Estereoisomerismo , Relação Estrutura-Atividade
8.
J Med Chem ; 50(1): 129-38, 2007 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-17201416

RESUMO

The metabolism of our prototypical thrombin receptor antagonist 1, Ki = 2.7 nM, was studied and three major metabolites (2, 4, and 5) were found. The structures of the metabolites were verified independently by synthesis. Compound 4 was shown to be a potent antagonist of the thrombin receptor with a Ki = 11 nM. Additionally, compound 4 showed a 3-fold improvement in potency with respect to 1 in an agonist-induced ex-vivo platelet aggregation assay in cynomolgus monkeys after oral administration; this activity was sustained with 60% inhibition observed at 24 h post-dose. Compound 4 was highly active in functional assays and showed excellent oral bioavailability in rats and monkeys. Compound 4 showed a superior rat enzyme induction profile relative to compound 1, allowing it to replace compound 1 as a development candidate.


Assuntos
Furanos/síntese química , Compostos Heterocíclicos com 3 Anéis/síntese química , Inibidores da Agregação Plaquetária/síntese química , Piridinas/síntese química , Receptores de Trombina/antagonistas & inibidores , Animais , Disponibilidade Biológica , Sistema Enzimático do Citocromo P-450/biossíntese , Furanos/farmacocinética , Furanos/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Técnicas In Vitro , Macaca fascicularis , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacocinética , Inibidores da Agregação Plaquetária/farmacologia , Piridinas/farmacocinética , Piridinas/farmacologia , Ensaio Radioligante , Ratos , Estereoisomerismo , Relação Estrutura-Atividade
9.
ACS Med Chem Lett ; 7(12): 1173-1178, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27994759

RESUMO

A new class of hepatitis C NS3/4A inhibitors was identified by introducing a novel spirocyclic proline-P2 surrogate onto the P2-P4 macrocyclic core of MK-5172 (grazoprevir). The potency profile of new analogues showed excellent pan-genotypic activity for most compounds. The potency evaluation included the most difficult genotype 3a (EC50 values ≤10 nM) and other key genotype 1b mutants. Molecular modeling was used to design new target compounds and rationalize our results. A synthetic approach based on the Julia-Kocienski olefination and macrolactamization to assemble the P2-P4 macrocyclic core containing the novel spirocyclic proline-P2 moiety is presented as well.

10.
ACS Med Chem Lett ; 7(1): 111-6, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26819676

RESUMO

We have been focused on identifying a structurally different next generation inhibitor to MK-5172 (our Ns3/4a protease inhibitor currently under regulatory review), which would achieve superior pangenotypic activity with acceptable safety and pharmacokinetic profile. These efforts have led to the discovery of a novel class of HCV NS3/4a protease inhibitors containing a unique spirocyclic-proline structural motif. The design strategy involved a molecular-modeling based approach, and the optimization efforts on the series to obtain pan-genotypic coverage with good exposures on oral dosing. One of the key elements in this effort was the spirocyclization of the P2 quinoline group, which rigidified and constrained the binding conformation to provide a novel core. A second focus of the team was also to improve the activity against genotype 3a and the key mutant variants of genotype 1b. The rational application of structural chemistry with molecular modeling guided the design and optimization of the structure-activity relationships have resulted in the identification of the clinical candidate MK-8831 with excellent pan-genotypic activity and safety profile.

11.
J Med Chem ; 48(19): 5884-7, 2005 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16161991

RESUMO

Structurally novel thrombin receptor (protease activated receptor 1, PAR-1) antagonists based on the natural product himbacine are described. The prototypical PAR-1 antagonist 55 showed a Ki of 2.7 nM in the binding assay, making it the most potent PAR-1 antagonist reported. 55 was highly active in several functional assays, showed excellent oral bioavailability in rat and monkey models, and showed complete inhibition of agonist-induced ex vivo platelet aggregation in cynomolgus monkeys after oral administration.


Assuntos
Alcaloides/síntese química , Fibrinolíticos/síntese química , Furanos/síntese química , Compostos Heterocíclicos com 3 Anéis/síntese química , Naftalenos/síntese química , Piperidinas/síntese química , Piridinas/síntese química , Receptor PAR-1/antagonistas & inibidores , Administração Oral , Alcaloides/química , Alcaloides/farmacologia , Animais , Disponibilidade Biológica , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Cromatografia Líquida de Alta Pressão , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Furanos/química , Furanos/farmacologia , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Técnicas In Vitro , Macaca fascicularis , Naftalenos/química , Naftalenos/farmacologia , Piperidinas/química , Piperidinas/farmacologia , Inibidores da Agregação Plaquetária/síntese química , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/farmacologia , Piridinas/química , Piridinas/farmacologia , Ensaio Radioligante , Ratos , Estereoisomerismo , Relação Estrutura-Atividade
12.
Bioorg Med Chem Lett ; 17(16): 4509-13, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17574850

RESUMO

The structure-activity relationship (SAR) of the vinyl pyridine region of himbacine derived thrombin receptor (PAR-1) antagonists is described. A 2-vinylpyridyl ring substituted with an aryl or a heteroaryl group at the 5-position showed the best overall PAR-1 affinity and pharmacokinetic properties. One of the newly discovered analogs bearing a 5-(3-pyridyl) substituent showed excellent PAR-1 affinity (Ki = 22 nM) and oral activity with reduced ClogP and improved off-target selectivity compared to an earlier development candidate.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Furanos/química , Furanos/farmacologia , Naftalenos/química , Naftalenos/farmacologia , Piperidinas/química , Piperidinas/farmacologia , Receptor PAR-1/antagonistas & inibidores , Animais , Anticoagulantes/química , Anticoagulantes/farmacologia , Estrutura Molecular , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/farmacologia , Ratos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA