RESUMO
Marine fishes excrete excess H+ using basolateral Na+-K+-ATPase (NKA) and apical Na+/H+ exchanger 3 (NHE3) in gill ionocytes. However, the mechanisms that regulate H+ excretion during exposure to environmentally relevant hypercapnia (ERH) remain poorly understood. Here, we explored transcriptomic, proteomic, and cellular responses in gills of juvenile splitnose rockfish (Sebastes diploproa) exposed to 3 days of ERH conditions (pH â¼7.5, â¼1,600 µatm Pco2). Blood pH was fully regulated at â¼7.75 despite a lack of significant changes in gill 1) mRNAs coding for proteins involved in blood acid-base regulation, 2) total NKA and NHE3 protein abundance, and 3) ionocyte density. However, ERH-exposed rockfish demonstrated increased NKA and NHE3 abundance on the ionocyte plasma membrane coupled with wider apical membranes and greater extension of apical microvilli. The observed gill ionocyte remodeling is consistent with enhanced H+ excretion that maintains blood pH homeostasis during exposure to ERH and does not necessitate changes at the expression or translation levels. These mechanisms of phenotypic plasticity may allow fishes to regulate blood pH during environmentally relevant acid-base challenges and thus have important implications for both understanding how organisms respond to climate change and for selecting appropriate metrics to evaluate its impact on marine ecosystems.NEW & NOTEWORTHY Splitnose rockfish exposed to environmentally relevant hypercapnia utilize existing proteins (rather than generate additional machinery) to maintain homeostasis.
Assuntos
Brânquias , Hipercapnia , Animais , Brânquias/metabolismo , Concentração de Íons de Hidrogênio , Hipercapnia/metabolismo , Hipercapnia/fisiopatologia , Peixes/metabolismo , Peixes/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Transcriptoma/genética , Trocador 3 de Sódio-Hidrogênio/metabolismo , Trocador 3 de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Perciformes/metabolismoRESUMO
Hagfish are an excellent model species in which to draw inferences on the evolution of transport systems in early vertebrates owing to their basal position in vertebrate phylogeny. Glucose is a ubiquitous cellular energy source that is transported into cells via two classes of carrier proteins: sodium-glucose-linked transporters (Sglt; Slc5a) and glucose transporters (Glut; Slc2a). Although previous pharmacological evidence has suggested the presence of both sodium-dependent and -independent transport mechanisms in the hagfish, the molecular identities were heretofore unconfirmed. We have identified and phylogenetically characterized both a Slc5a1-like and Slc2a-like gene in the Pacific hagfish (Eptatretus stoutii), the latter sharing common ancestry with other glucose-transporting isoforms of the Slc2a family. To assess the potential postprandial regulation of these glucose transporters, we examined the abundance and localization of these transporters with qPCR and immunohistochemistry alongside functional studies using radiolabeled d-[14C]glucose. The effects of glucose or insulin injection on glucose transport rate and transporter expression were also examined to determine their potential role(s) in the regulation of intestinal glucose carrier proteins. Feeding prompted an increase in glucose uptake across the hindgut at both 0.5 mM (â¼84%) and 1 mM (â¼183%) concentrations. Concomitant increases were observed in hindgut Slc5a1 protein expression. These effects were not observed following either of glucose or insulin injection, indicating these postprandial factors are not the driving force for transporter regulation over this timeframe. We conclude that Pacific hagfish utilize evolutionarily conserved mechanisms of glucose uptake and so represent a useful model to understand early-vertebrate evolution of glucose uptake and regulation.
Assuntos
Feiticeiras (Peixe) , Insulinas , Animais , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Feiticeiras (Peixe)/genética , Insulinas/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Sódio/metabolismo , Proteínas de Transporte de Sódio-Glucose/metabolismoRESUMO
White seabass (Atractoscion nobilis) increasingly experience periods of low oxygen (O2; hypoxia) and high carbon dioxide (CO2, hypercapnia) due to climate change and eutrophication of the coastal waters of California. Hemoglobin (Hb) is the principal O2 carrier in the blood and in many teleost fishes Hb-O2 binding is compromised at low pH; however, the red blood cells (RBC) of some species regulate intracellular pH with adrenergically stimulated sodium-proton-exchangers (ß-NHEs). We hypothesized that RBC ß-NHEs in white seabass are an important mechanism that can protect the blood O2-carrying capacity during hypoxia and hypercapnia. We determined the O2-binding characteristics of white seabass blood, the cellular and subcellular response of RBCs to adrenergic stimulation, and quantified the protective effect of ß-NHE activity on Hb-O2 saturation. White seabass had typical teleost Hb characteristics, with a moderate O2 affinity (Po2 at half-saturation; P50 2.9 kPa) that was highly pH-sensitive (Bohr coefficient -0.92; Root effect 52%). Novel findings from super-resolution microscopy revealed ß-NHE protein in vesicle-like structures and its translocation into the membrane after adrenergic stimulation. Microscopy data were corroborated by molecular and phylogenetic results and a functional characterization of ß-NHE activity. The activation of RBC ß-NHEs increased Hb-O2 saturation by â¼8% in normoxic hypercapnia and by up to â¼20% in hypoxic normocapnia. Our results provide novel insight into the cellular mechanism of adrenergic RBC stimulation within an ecologically relevant context. ß-NHE activity in white seabass has great potential to protect arterial O2 transport during hypoxia and hypercapnia but is less effective during combinations of these stressors.
Assuntos
Agonistas Adrenérgicos beta/farmacologia , Bass/metabolismo , Eritrócitos/efeitos dos fármacos , Proteínas de Peixes/agonistas , Hipercapnia/metabolismo , Hipóxia/metabolismo , Isoproterenol/farmacologia , Oxiemoglobinas/metabolismo , Trocadores de Sódio-Hidrogênio/agonistas , Aclimatação , Animais , Bass/sangue , Ecossistema , Eritrócitos/metabolismo , Eritrócitos/ultraestrutura , Proteínas de Peixes/metabolismo , Proteínas de Peixes/ultraestrutura , Hipercapnia/sangue , Hipóxia/sangue , Transporte Proteico , Trocadores de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/ultraestruturaRESUMO
Ventilatory sensitivity to ammonia occurs in teleosts, elasmobranchs and mammals. Here, we investigated whether the response is also present in hagfish. Ventilatory parameters (nostril flow, pressure amplitude, velar frequency and ventilatory index, the last representing the product of pressure amplitude and frequency), together with blood and water chemistry, were measured in hagfish exposed to either high environmental ammonia (HEA) in the external sea water or internal ammonia loading by intra-vascular injection. HEA exposure (10â mmolâ l-1 NH4HCO3 or 10â mmolâ l-1 NH4Cl) caused a persistent hyperventilation by 3â h, but further detailed analysis of the NH4HCO3 response showed that initially (within 5â min) there was a marked decrease in ventilation (80% reduction in ventilatory index and nostril flow), followed by a later 3-fold increase, by which time plasma total ammonia concentration had increased 11-fold. Thus, hyperventilation in HEA appeared to be an indirect response to internal ammonia elevation, rather than a direct response to external ammonia. HEA-mediated increases in oxygen consumption also occurred. Responses to NH4HCO3 were greater than those to NH4Cl, reflecting greater increases over time in water pH and PNH3 in the former. Hagfish also exhibited hyperventilation in response to direct injection of isotonic NH4HCO3 or NH4Cl solutions into the caudal sinus. In all cases where hyperventilation occurred, plasma total ammonia and PNH3 levels increased significantly, while blood acid-base status remained unchanged, indicating specific responses to internal ammonia elevation. The sensitivity of breathing to ammonia arose very early in vertebrate evolution.
Assuntos
Amônia/metabolismo , Feiticeiras (Peixe)/fisiologia , Respiração , Água do Mar/química , AnimaisRESUMO
This study examined the mechanisms of glucose acquisition in the hindgut of Pacific hagfish (Eptatretus stoutii) using in vitro gut sac techniques. The intestine was determined to have the capacity to digest maltose into glucose along the entirety of the tract, including the foregut. Glucose uptake was biphasic and consisted of a high-affinity, low-capacity concentration-dependent component conforming to Michaelis-Menten kinetics (Km 0.37mM, Jmax 8.48nmol/cm2/h) as well as a diffusive component. There was no observed difference in glucose flux rate along the length of the intestine, similar to other nutrients investigated in the hagfish intestine. A reduced sodium (<1mM) environment did not result in a change in glucose uptake rates, likely due to a functional redundancy of glucose transporters. There was no observed effect of phloretin, yet the sodium glucose-linked transporter (SGLT)-specific inhibitor phlorizin significantly reduced glucose uptake at all concentrations tested (0.0001-1mM). Additionally, the glucose transporter (GLUT) inhibitor cytochalasin b significantly reduced glucose transport rates. The effects of these pharmacological inhibition experiments suggest the presence of multiple types of glucose transport proteins. This study clarifies the uptake strategies used by hagfish to acquire glucose at the intestine and provides insight into the evolution of such transport systems in early-diverging vertebrates.
Assuntos
Glucose/metabolismo , Feiticeiras (Peixe)/metabolismo , Mucosa Intestinal/metabolismo , Animais , Evolução Biológica , Citocalasina B/farmacologia , Digestão , Relação Dose-Resposta a Droga , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Intestinos/fisiologia , Cinética , Maltose/metabolismo , Floretina/farmacologia , Florizina/farmacologia , Proteínas de Transporte de Sódio-Glucose/metabolismoRESUMO
Hagfish consume carrion, potentially exposing them to hypoxia, hypercapnia, and high environmental ammonia (HEA). We investigated branchial and cutaneous ammonia handling strategies by which Pacific hagfish (Eptatretus stoutii) tolerate and recover from high ammonia loading. Hagfish were exposed to HEA (20 mmol/l) for 48 h to elevate plasma total ammonia (TAmm) levels before placement into divided chambers for a 4-h recovery period in ammonia-free seawater where ammonia excretion (JAmm) was measured independently in the anterior and posterior compartments. Localized HEA exposures were also conducted by subjecting hagfish to HEA in either the anterior or posterior compartments. During recovery, HEA-exposed animals increased JAmm in both compartments, with the posterior compartment comprising ~20% of the total JAmm compared with ~11% in non-HEA-exposed fish. Plasma TAmm increased substantially when whole hagfish and the posterior regions were exposed to HEA. Alternatively, plasma TAmm did not elevate after anterior localized HEA exposure. JAmm was concentration dependent (0.05-5 mmol/l) across excised skin patches at up to eightfold greater rates than in skin sections that were excised from HEA-exposed hagfish. Skin excised from more posterior regions displayed greater JAmm than those from more anterior regions. Immunohistochemistry with hagfish-specific anti-rhesus glycoprotein type c (α-hRhcg; ammonia transporter) antibody was characterized by staining on the basal aspect of hagfish epidermis while Western blotting demonstrated greater expression of Rhcg in more posterior skin sections. We conclude that cutaneous Rhcg proteins are involved in cutaneous ammonia excretion by Pacific hagfish and that this mechanism could be particularly important during feeding.
Assuntos
Adaptação Fisiológica/fisiologia , Amônia/farmacocinética , Eliminação Cutânea/fisiologia , Brânquias/metabolismo , Feiticeiras (Peixe)/fisiologia , Pele/metabolismo , Animais , Tolerância a Medicamentos/fisiologia , Epitélio/metabolismoRESUMO
The goal of this study was to identify whether Pacific hagfish (Eptatretus stoutii) possess glucocorticoid and mineralocorticoid responses and to examine the potential role(s) of four key steroids in these responses. Pacific hagfish were injected with varying amounts of cortisol, corticosterone or 11-deoxycorticosterone (DOC) using coconut oil implants and plasma glucose and gill total-ATPase activity were monitored as indices of glucocorticoid and mineralocorticoid responses. Furthermore, we also monitored plasma glucose and 11-deoxycortisol (11-DOC) levels following exhaustive stress (30 min of agitation) or following repeated infusion with SO42-. There were no changes in gill total-ATPase following implantation with any steroid, with only very small statistical increases in plasma glucose noted in hagfish implanted with either DOC (at 20 and 200mgkg-1 at 7 and 4days post-injection, respectively) or corticosterone (at 100mgkg-1 at 7days post-injection). Following exhaustive stress, hagfish displayed a large and sustained increase in plasma glucose. Repeated infusion of SO42- into hagfish caused increases in both plasma glucose levels and SO42- excretion rate suggesting a regulated glucocorticoid and mineralocorticoid response. However, animals under either condition did not show any significant increases in plasma 11-DOC concentrations. Our results suggest that while there are active glucocorticoid and mineralocorticoid responses in hagfish, 11-DOC does not appear to be involved and the identity and primary function of the steroid in hagfish remains to be elucidated.
Assuntos
Glicemia/metabolismo , Cortodoxona/metabolismo , Feiticeiras (Peixe)/fisiologia , Sulfatos/metabolismo , Animais , Vias Biossintéticas , Óleo de Coco , Corticosterona/biossíntese , Óleos de Plantas/farmacologia , Estresse Fisiológico , Sulfatos/sangueRESUMO
Hagfish skin has been reported as an important site for ammonia excretion and as the major site of systemic oxygen acquisition. However, whether cutaneous O2 uptake is the dominant route of uptake remains under debate; all evidence supporting this hypothesis has been derived using indirect measurements. Here, we used partitioned chambers and direct measurements of oxygen consumption and ammonia excretion to quantify cutaneous and branchial exchanges in Pacific hagfish (Eptatretus stoutii) at rest and following exhaustive exercise. Hagfish primarily relied on the gills for both O2 uptake (81.0%) and ammonia excretion (70.7%). Following exercise, both O2 uptake and ammonia excretion increased, but only across the gill; cutaneous exchange was not increased. When branchial O2 availability was reduced by exposure to anteriorly localized hypoxia (â¼4.6â kPa O2), cutaneous O2 consumption was only slightly elevated on an absolute basis. These results refute a major role for cutaneous O2 acquisition in the Pacific hagfish.
RESUMO
BACKGROUND: The Ras/Raf/MEK/ERK signaling pathway is involved in essential cell processes and it is abnormally activated in ~30 % of cancers and cognitive disorders. Two ERK isoforms have been described, ERK1 and ERK2; ERK2 being regarded by many as essential due to the embryonic lethality of ERK2 knock-out mice, whereas mice lacking ERK1 are viable and fertile. The controversial question of why we have two ERKs and whether they have differential functions or display functional redundancy has not yet been resolved. RESULTS: To investigate this question we used a novel approach based on comparing the evolution of ERK isoforms' sequences and protein expression across vertebrates. We gathered and cloned erk1 and erk2 coding sequences and we examined protein expression of isoforms in brain extracts in all major clades of vertebrate evolution. For the first time, we measured each isoforms' relative protein level in phylogenetically distant animals using anti-phospho antibodies targeting active ERKs. We demonstrate that squamates (lizards, snakes and geckos), despite having both genes, do not express ERK2 protein whereas other tetrapods either do not express ERK1 protein or have lost the erk1 gene. To demonstrate the unexpected squamates' lack of ERK2 expression, we targeted each ERK isoform in lizard primary fibroblasts by specific siRNA-mediated knockdown. We also found that undetectable expression of ERK2 in lizard is compensated by a greater strength of lizard's erk1 promoter. Finally, phylogenetic analysis revealed that ERK1 amino acids sequences evolve faster than ERK2's likely due to genomic factors, including a large difference in gene size, rather than from functional differences since amino acids essential for function are kept invariant. CONCLUSIONS: ERK isoforms appeared by a single gene duplication at the onset of vertebrate evolution at least 400 Mya. Our results demonstrate that tetrapods can live by expressing either one or both ERK isoforms, supporting the notion that ERK1/2 act interchangeably. Substrate recognition sites and catalytic cleft are nearly invariant in all vertebrate ERKs further suggesting functional redundancy. We suggest that future ERK research should shift towards understanding the role and regulation of total ERK quantity, especially in light of newly described erk2 gene amplification identified in tumors.
Assuntos
Evolução Molecular , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Vertebrados/genética , Animais , Evolução Biológica , Camundongos , Fosforilação , Filogenia , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Vertebrados/classificaçãoRESUMO
The Pacific hagfish (Eptatretus stoutii) has an exceptional ability to both withstand and recover from exposure to high external ammonia (HEA). This tolerance is likely due to the feeding behavior of this scavenger, which feeds on intermittent food falls of carrion (e.g. fish, large marine mammals) during which time it may be exposed to high concentrations of total ammonia (T(Amm)=NH3+NH4(+)) while burrowed inside the decomposing carcass. Here we exposed hagfish to 20 mmol L(-1) T(Amm) for periods of up to 48 h and then let animals recover in ammonia-free seawater. During the 48 h HEA exposure period, plasma T(Amm) increased 100-fold to over 5000 µmol L(-1) while ammonia excretion (J(amm)) was transiently inhibited. This increase in plasma T(Amm) resulted from NH3 influx down massive inwardly directed ΔP(NH3) gradients, which also led to a short-lived metabolic alkalosis. Plasma [T(Amm)] stabilized after 24-48 h, possibly through a reduction in NH3 permeability across the body surface, which lowered NH3 influx. Ammonia balance was subsequently maintained through the re-establishment of J(amm) against an inwardly directed ΔP(NH3). Calculations of the Nernst potential for ammonia strongly indicated that J(amm) was also taking place against a large inwardly directed NH4(+) electrochemical gradient. Recovery from HEA in ammonia-free water was characterized by a large ammonia washout, and the restoration of plasma TAmm concentrations to near control concentrations. Ammonia clearance was also accompanied by a residual metabolic acidosis, which likely offset the ammonia-induced metabolic alkalosis seen in the early stages of HEA exposure. We conclude that restoration of J(amm) by the Pacific hagfish during ammonia exposure likely involves secondary active transport of NH4(+), possibly mediated by Na(+)/NH4(+) (H(+)) exchange.
Assuntos
Adaptação Fisiológica , Amônia/metabolismo , Feiticeiras (Peixe)/fisiologia , Equilíbrio Ácido-Base , Amônia/sangue , Amônia/farmacologia , Animais , Brânquias/metabolismo , Glutamina/sangue , Feiticeiras (Peixe)/efeitos dos fármacos , Água do MarRESUMO
In fresh waters, fishes continuously acquire ions to offset diffusive losses to a more dilute ambient environment and to maintain acid-base status. The objectives of the present study were to clone slc26a6, a prospective Cl(-)/HCO3(-) exchanger from rainbow trout, investigate its expression patterns in various tissues, at different developmental stages and after differential salinity exposure, and probe the mechanisms of Cl(-) uptake in rainbow trout embryos during development using a pharmacological inhibitor approach combined with (36)Cl(-) unidirectional fluxes. Results showed that the cloned gene encoded a 783 amino acid protein with conserved domains characteristic of the SLC26a family of anion exchange proteins. Phylogenetic analysis of this sequence against all subfamilies of the SLC26a family demonstrated that this translated protein shared a common ancestor with other actinopterygii and mammalian SLC26a6 isoforms and thus confirmed the identity of the cloned gene. Expression of slc26a6 was detected in all tissues and developmental stages assayed but was highest in the gill of juvenile trout. In trout embryos, Cl(-) uptake increased significantly post-hatch and was demonstrated to be mediated via an anion exchanger specific (DIDS sensitive) pathway that was also sensitive to hypercapnia. This parallels well with the predicted function of slc26a6, and the detection of the transcript in embryos and tissues of trout. In conclusion, this study is the first report of slc26a6 in rainbow trout and functional and expression analyses indicate its likely involvement in Cl(-)/HCO3(-) exchange in two life stages of rainbow trout.
Assuntos
Antiporters/genética , Cloretos/metabolismo , Oncorhynchus mykiss/genética , Animais , Antiporters/biossíntese , Antiporters/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica , Oncorhynchus mykiss/metabolismo , Filogenia , Transportadores de SulfatoRESUMO
Inorganic phosphate (Pi) is an essential nutrient for all organisms, but in seawater, Pi is a limiting nutrient. This study investigated the primary mechanisms of Pi uptake in Pacific hagfish (Eptatretus stoutii) using ex vivo physiological and molecular techniques. Hagfish were observed to have the capacity to absorb Pi from the environment into at least three epithelial surfaces: the intestine, skin, and gill. Pi uptake in all tissues was concentration dependent, and saturable Pi transport was observed in the skin and gill at <2.0 mmol/l Pi. Gill and intestinal Pi uptake was sodium dependent, but Pi uptake into the skin increased under low sodium conditions. Gill Pi transport exhibited an apparent affinity constant ~0.23-0.6 mmol/l Pi. A complete sequence of a type II sodium phosphate cotransporter (Slc34a) was obtained from the hagfish gill. Phylogenetic analysis of the hagfish Slc34a transporter indicates that it is earlier diverging than, and/or ancestral to, the other identified vertebrate Slc34a transporters (Slc34a1, Slc34a2, and Slc34a3). With the use of RT-PCR, the hagfish Slc34a transcript was detected in the intestine, skin, gill, and kidney, suggesting that this may be the transporter involved in Pi uptake into multiple epithelia in the hagfish. This is the first measurement of Pi uptake across the gill or skin of any vertebrate animal and first sodium phosphate cotransporter identified in hagfish.
Assuntos
Células Epiteliais/metabolismo , Proteínas de Peixes/metabolismo , Brânquias/metabolismo , Feiticeiras (Peixe)/metabolismo , Fosfatos/metabolismo , Pele/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Absorção , Sequência de Aminoácidos , Animais , Proteínas de Peixes/genética , Brânquias/citologia , Feiticeiras (Peixe)/genética , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Rim/citologia , Rim/metabolismo , Cinética , Dados de Sequência Molecular , Pele/citologia , Sódio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genéticaRESUMO
Hagfishes defend themselves from fish predators via the rapid deployment of a fibrous slime that adheres to and clogs gills. The slime transforms from a thick glandular exudate to a fully hydrated product in a fraction of a second through a process that involves the swelling and rupture of numerous mucin vesicles. Here we demonstrate that the vesicle membrane plays an important role in regulating the swelling of mucin granules, and provide evidence that the membrane contains proteins that facilitate the movement of ions and water molecules. By exposing isolated mucin vesicles to varying combinations of inorganic ions, organic compounds and membrane channel inhibitors, we found that the majority of hagfish mucin vesicles require Ca(2+) to rupture. We also show that Ca(2+)-dependent rupture can be pharmacologically inhibited, which suggests a role for Ca(2+)-activated membrane transporters. We demonstrate that the aquaporin inhibitor mercuric chloride reduces the rate of vesicle swelling by an order of magnitude, which suggests that aquaporins facilitate the influx of water during vesicle deployment. Molecular evidence of two aquaporin homologues expressed in the slime glands further supports this idea. We propose a model of hagfish slime mucin vesicle rupture that involves Ca(2+)-activated transporters and aquaporins, and suggest that the presence of these proteins is an adaptation for increasing the speed of vesicle rupture and, consequently, the speed of the sliming response of hagfishes.
Assuntos
Aquaporina 3/genética , Aquaporina 4/genética , Cálcio/metabolismo , Proteínas de Peixes/genética , Feiticeiras (Peixe)/genética , Animais , Aquaporina 3/metabolismo , Aquaporina 4/metabolismo , Transporte Biológico , Detergentes/farmacologia , Proteínas de Peixes/metabolismo , Feiticeiras (Peixe)/metabolismo , Dados de Sequência Molecular , Mucinas/metabolismo , Octoxinol/farmacologia , Filogenia , Análise de Sequência de DNARESUMO
This study investigates the role of branchial and extrabranchial processes in acid-base regulation in the Pacific Hagfish (Eptatretus stoutii). Hagfish were injected with one of the following solutions: acid saline (250mM HCl [pH=0.60], 250mM NaCl), alkaline saline (250mM NaHCO3, 250mM NaCl, [pH≈8.43]) or control saline (500mM NaCl) in order to achieve an acid/alkaline/saline load of 6000µmol·kg(-1). Using a custom designed hagfish compartmentalizing flux chamber, we partitioned flux of net acid or base equivalents and ammonia into the anterior (gill+skin) and posterior (skin+intestinal/renal/cloacal) components. We found that Pacific hagfish excrete H(+) primarily via branchial mechanisms but base excretion occurs through extrabranchial mechanisms located in the posterior region. In addition, we demonstrate that hagfish are able to excrete ammonia via the skin although this flux was not involved in compensation from an acid-base disturbance.
Assuntos
Equilíbrio Ácido-Base , Feiticeiras (Peixe)/metabolismo , Amônia/sangue , Animais , Bicarbonatos/sangue , Dióxido de Carbono/sangue , Músculo Esquelético/metabolismoRESUMO
Bacterial symbioses allow annelids to colonise extreme ecological niches, such as hydrothermal vents and whale falls. Yet, the genetic principles sustaining these symbioses remain unclear. Here, we show that different genomic adaptations underpin the symbioses of phylogenetically related annelids with distinct nutritional strategies. Genome compaction and extensive gene losses distinguish the heterotrophic symbiosis of the bone-eating worm Osedax frankpressi from the chemoautotrophic symbiosis of deep-sea Vestimentifera. Osedax's endosymbionts complement many of the host's metabolic deficiencies, including the loss of pathways to recycle nitrogen and synthesise some amino acids. Osedax's endosymbionts possess the glyoxylate cycle, which could allow more efficient catabolism of bone-derived nutrients and the production of carbohydrates from fatty acids. Unlike in most Vestimentifera, innate immunity genes are reduced in O. frankpressi, which, however, has an expansion of matrix metalloproteases to digest collagen. Our study supports that distinct nutritional interactions influence host genome evolution differently in highly specialised symbioses.
Assuntos
Anelídeos , Poliquetos , Animais , Simbiose/genética , Anelídeos/genética , Poliquetos/genética , Poliquetos/metabolismo , Genoma/genética , Genômica , FilogeniaRESUMO
AIM: To determine whether Na+ uptake in adult zebrafish (Danio rerio) exposed to acidic water adheres to traditional models reliant on Na+ /H+ Exchangers (NHEs), Na+ channels and Na+ /Cl- Cotransporters (NCCs) or if it occurs through a novel mechanism. METHODS: Zebrafish were exposed to control (pH 8.0) or acidic (pH 4.0) water for 0-12 hours during which 22 Na+ uptake ( JNain ), ammonia excretion, net acidic equivalent flux and net K+ flux ( JHnet ) were measured. The involvement of NHEs, Na+ channels, NCCs, K+ -channels and K+ -dependent Na+ /Ca2+ exchangers (NCKXs) was evaluated by exposure to Cl- -free or elevated [K+ ] water, or to pharmacological inhibitors. The presence of NCKXs in gill was examined using RT-PCR. RESULTS: JNain was strongly attenuated by acid exposure, but gradually recovered to control rates. The systematic elimination of each of the traditional models led us to consider K+ as a counter substrate for Na+ uptake during acid exposure. Indeed, elevated environmental [K+ ] inhibited JNain during acid exposure in a concentration-dependent manner, with near-complete inhibition at 10 mM. Moreover, JHnet loss increased approximately fourfold at 8-10 hours of acid exposure which correlated with recovered JNain in 1:1 fashion, and both JNain and JHnet were sensitive to tetraethylammonium (TEA) during acid exposure. Zebrafish gills expressed mRNA coding for six NCKX isoforms. CONCLUSIONS: During acid exposure, zebrafish engage a novel Na+ uptake mechanism that utilizes the outwardly directed K+ gradient as a counter-substrate for Na+ and is sensitive to TEA. NKCXs are promising candidates to mediate this K+ -dependent Na+ uptake, opening new research avenues about Na+ uptake in zebrafish and other acid-tolerant aquatic species.
Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Concentração de Íons de Hidrogênio , Íons , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Água , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
AIM: Pacific hagfish are exceptionally tolerant to high environmental ammonia (HEA). Here, we elucidated a cellular mechanism that enables hagfish to actively excrete ammonia against steep ammonia gradients expected to be found inside a decomposing whale carcass. METHODS: Hagfish were exposed to varying concentrations of HEA in the presence or absence of environmental Na+ , while plasma ammonia levels were tracked. 14 C-methylammonium was used as a proxy for NH4 + to measure efflux in whole animals and in isolated gill pouches; the latter allowed us to assess the effects of amiloride specifically on Na+ /H+ exchangers (NHEs) in gill cells. Western blotting and immunohistochemistry were utilized to evaluate the abundance and sub-cellular localization of Rhesus glycoprotein (Rh) channels in the response to HEA. RESULTS: Hagfish actively excreted NH4 + against steep inwardly directed ENH4 + (ΔENH4 + ~ 35 mV) and pNH3 (ΔpNH3 ~ 2000 µtorr) gradients. Active NH4 + excretion and plasma ammonia hypo-regulation were contingent on the presence of environmental Na+ , indicating a Na+ /NH4 + exchange mechanism. Active NH4 + excretion across isolated gill pouches was amiloride-sensitive. Exposure to HEA resulted in decreased abundance of Rh channels in the apical membrane of gill ionocytes. CONCLUSIONS: During HEA exposure, hagfish can actively excrete ammonia against a steep concentration gradient using apical NHEs energized by Na+ -K+ -ATPase in gill ionocytes. Additionally, apical Rh channels are removed from the apical membrane, presumably to reduce ammonia loading from the environment. We suggest that this mechanism allows hagfish to maintain tolerable ammonia levels while feeding inside decomposing carrion, allowing them to exploit nutrient-rich food-falls.
Assuntos
Feiticeiras (Peixe) , Adenosina Trifosfatases , Amilorida/farmacologia , Amônia/farmacologia , Animais , Glicoproteínas , Feiticeiras (Peixe)/fisiologia , Íons , SódioRESUMO
Industrial operations such as surface mining, road building, and aggregate washing result in high concentrations of suspended particles (Total Suspended Solids; TSS) in surface waters which must be treated prior to discharge into fish-bearing waters. A common industrial practice is to add flocculants to improve the efficacy and speed of TSS sedimentation. A significant environmental issue even small amounts of uncomplexed cationic polymer coagulant/flocculant remaining in treated water is highly toxic to fish at very low concentrations (LC50 â¼ 0.3 mg L-1). Fingerling trout (Oncorhynchus mykiss) were exposed to (1) a cationic flocculant (Water Lynx 800 (WL800), (2) a Clearflow neutralizing polymer (CN369), and (3) a combination of WL800 and CN369 at various ratios with measured LC50 as an index of toxicity. Acute toxicity was entirely reversed by addition of the neutralizing polymer at WL800:CN369 ratios >1:1.5 mg/L. Furthermore, we demonstrate that the proximal mechanism of acute cationic polymer toxicity is hypoxemia due to accumulation of polymer on the gill epithelia rather than gill damage. Exposure of 0.5 mg/L WL800 reduced oxygen consumption by >50% reduction by 12 h and this was accompanied by significantly increased blood, brain, and liver [lactate] and [glucose]. The development of an inexpensive amelioration technique preventing cationic polymer toxicity is a significant advancement in surface and industrial water treatment to prevent cationic polymer mediated fish kills.
Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Ânions , Cátions , Brânquias , Hipóxia , Polímeros , Poluentes Químicos da Água/toxicidadeRESUMO
In most vertebrates, red blood cell carbonic anhydrase (RBC CA) plays a critical role in carbon dioxide (CO2) transport and excretion across epithelial tissues. Many early-diverging fishes (e.g., hagfish and chondrichthyans) are unique in possessing plasma-accessible membrane-bound CA-IV in the gills, allowing some CO2 excretion to occur without involvement from the RBCs. However, implications of this on RBC CA function are unclear. Through homology cloning techniques, we identified the putative protein sequences for RBC CA from nine early-diverging species. In all cases, these sequences contained a modification of the proton shuttle residue His-64, and activity measurements from three early-diverging fish demonstrated significantly reduced CA activity. Site-directed mutagenesis was used to restore the His-64 proton shuttle, which significantly increased RBC CA activity, clearly illustrating the functional significance of His-64 in fish red blood cell CA activity. Bayesian analyses of 55 vertebrate cytoplasmic CA isozymes suggested that independent evolutionary events led to the modification of His-64 and thus reduced CA activity in hagfish and chondrichthyans. Additionally, in early-diverging fish that possess branchial CA-IV, there is an absence of His-64 in RBC CAs and the absence of the Root effect [where a reduction in pH reduces hemoglobin's capacity to bind with oxygen (O2)]. Taken together, these data indicate that low-activity RBC CA may be present in all fish with branchial CA-IV, and that the high-activity RBC CA seen in most teleosts may have evolved in conjunction with enhanced hemoglobin pH sensitivity.
Assuntos
Anidrase Carbônica IV/sangue , Anidrase Carbônica IV/genética , Eritrócitos/enzimologia , Proteínas de Peixes/sangue , Proteínas de Peixes/genética , Peixes/sangue , Peixes/genética , Substituição de Aminoácidos , Animais , FilogeniaRESUMO
The acid-base relevant molecules carbon dioxide (CO2 ), protons (H+ ), and bicarbonate (HCO3- ) are substrates and end products of some of the most essential physiological functions including aerobic and anaerobic respiration, ATP hydrolysis, photosynthesis, and calcification. The structure and function of many enzymes and other macromolecules are highly sensitive to changes in pH, and thus maintaining acid-base homeostasis in the face of metabolic and environmental disturbances is essential for proper cellular function. On the other hand, CO2 , H+ , and HCO3- have regulatory effects on various proteins and processes, both directly through allosteric modulation and indirectly through signal transduction pathways. Life in aquatic environments presents organisms with distinct acid-base challenges that are not found in terrestrial environments. These include a relatively high CO2 relative to O2 solubility that prevents internal CO2 /HCO3- accumulation to buffer pH, a lower O2 content that may favor anaerobic metabolism, and variable environmental CO2 , pH and O2 levels that require dynamic adjustments in acid-base homeostatic mechanisms. Additionally, some aquatic animals purposely create acidic or alkaline microenvironments that drive specialized physiological functions. For example, acidifying mechanisms can enhance O2 delivery by red blood cells, lead to ammonia trapping for excretion or buoyancy purposes, or lead to CO2 accumulation to promote photosynthesis by endosymbiotic algae. On the other hand, alkalinizing mechanisms can serve to promote calcium carbonate skeletal formation. This nonexhaustive review summarizes some of the distinct acid-base homeostatic mechanisms that have evolved in aquatic organisms to meet the particular challenges of this environment.