Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Neurosci ; 44(21)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38531634

RESUMO

Methods of cognitive enhancement for humans are most impactful when they generalize across tasks. However, the extent to which such "transfer" is possible via interventions is widely debated. In addition, the contribution of excitatory and inhibitory processes to such transfer is unknown. Here, in a large-scale neuroimaging individual differences study with humans (both sexes), we paired multitasking training and noninvasive brain stimulation (transcranial direct current stimulation, tDCS) over multiple days and assessed performance across a range of paradigms. In addition, we varied tDCS dosage (1.0 and 2.0 mA), electrode montage (left or right prefrontal regions), and training task (multitasking vs a control task) and assessed GABA and glutamate concentrations via ultrahigh field 7T magnetic resonance spectroscopy. Generalized benefits were observed in spatial attention, indexed by visual search performance, when multitasking training was combined with 1.0 mA stimulation targeting either the left or right prefrontal cortex (PFC). This transfer effect persisted for ∼30 d post intervention. Critically, the transferred benefits associated with right prefrontal tDCS were predicted by pretraining concentrations of glutamate in the PFC. Thus, the effects of this combined stimulation and training protocol appear to be linked predominantly to excitatory brain processes.


Assuntos
Ácido Glutâmico , Aprendizagem , Córtex Pré-Frontal , Estimulação Transcraniana por Corrente Contínua , Humanos , Masculino , Feminino , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Ácido Glutâmico/metabolismo , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/metabolismo , Adulto Jovem , Aprendizagem/fisiologia , Ácido gama-Aminobutírico/metabolismo , Atenção/fisiologia , Espectroscopia de Ressonância Magnética/métodos
2.
Magn Reson Med ; 91(4): 1576-1585, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38044841

RESUMO

PURPOSE: Ultra-high field (UHF) provides improved SNR which greatly benefits SNR starved imaging techniques such as perfusion imaging. However, transmit field (B1 + ) inhomogeneities commonly observed at UHF hinders the excitation uniformity. Here we show how replacing standard excitation pulses with parallel transmit pulses can improve efficiency of velocity selective labeling. METHODS: The standard tip-down and tip-up excitation pulses found in a velocity selective preparation module were replaced with tailored non-selective kT -points pulse solutions. Bloch simulations and experimental validation on a custom-built flow phantom and in vivo was performed to evaluate different pulse configurations in circularly polarized mode (CP-mode) and parallel transmit (pTx) mode. RESULTS: Tailored pTx pulses significantly improved velocity selective labeling fidelity and signal uniformity. The transverse magnetization normalized RMS error was reduced from 0.489 to 0.047 when compared to standard rectangular pulses played in CP-mode. Simulations showed that manipulation of time symmetry in the tailored pTx pulses is vital in minimizing residual magnetization. In addition, in vivo experiments achieved a 44% lower RF power output and a shorter pulse duration when compared to using adiabatic pulses in CP-mode. CONCLUSION: Using tailored pTx pulses for excitation within a velocity selective labeling preparation mitigated transmit field artifacts and improved SNR and contrast fidelity. The improvement in labeling efficiency highlights the potential of using pTx to improve robustness and accessibility of flow-based sequences such as velocity selective spin labeling at ultra-high field.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Imagens de Fantasmas , Artefatos , Algoritmos
3.
Magn Reson Med ; 91(6): 2508-2518, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38321602

RESUMO

PURPOSE: The purpose of this study is to improve the image quality of diffusion-weighted images obtained with a single RF transmit channel 7 T MRI setup using time-resampled frequency-offset corrected inversion (TR-FOCI) pulses to refocus the spins in a twice-refocused spin-echo readout scheme. METHODS: We replaced the conventional Shinnar-Le Roux-pulses in the twice refocused diffusion sequence with TR-FOCI pulses. The slice profiles were evaluated in simulation and experimentally in phantoms. The image quality was evaluated in vivo comparing the Shinnar-Le Roux and TR-FOCI implementation using a b value of 0 and of 1000 s/mm2. RESULTS: The b0 and diffusion-weighted images acquired using the modified sequence improved the image quality across the whole brain. A region of interest-based analysis showed an SNR increase of 113% and 66% for the nondiffusion-weighted (b0) and the diffusion-weighted (b = 1000 s/mm2) images in the temporal lobes, respectively. Investigation of all slices showed that the adiabatic pulses mitigated B 1 + $$ {B}_1^{+} $$ inhomogeneity globally using a conventional single-channel transmission setup. CONCLUSION: The TR-FOCI pulse can be used in a twice-refocused spin-echo diffusion pulse sequence to mitigate the impact of B 1 + $$ {B}_1^{+} $$ inhomogeneity on the signal intensity across the brain at 7 T. However, further work is needed to address SAR limitations.


Assuntos
Algoritmos , Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imagens de Fantasmas
4.
NMR Biomed ; 37(8): e5136, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38514929

RESUMO

High acceleration factors in radial magnetic resonance fingerprinting (MRF) of the prostate lead to strong streak-like artefacts from flow in the femoral blood vessels, possibly concealing important anatomical information. Region-optimised virtual (ROVir) coils is a beamforming-based framework to create virtual coils that maximise signal in a region of interest while minimising signal in a region of interference. In this study, the potential of removing femoral flow streak artefacts in prostate MRF using ROVir coils is demonstrated in silico and in vivo. The ROVir framework was applied to radial MRF k-space data in an automated pipeline designed to maximise prostate signal while minimising signal from the femoral vessels. The method was tested in 15 asymptomatic volunteers at 3 T. The presence of streaks was visually assessed and measurements of whole prostate T1, T2 and signal-to-noise ratio (SNR) with and without streak correction were examined. In addition, a purpose-built simulation framework in which blood flow through the femoral vessels can be turned on and off was used to quantitatively evaluate ROVir's ability to suppress streaks in radial prostate MRF. In vivo it was shown that removing selected ROVir coils visibly reduces streak-like artefacts from the femoral blood flow, without increasing the reconstruction time. On average, 80% of the prostate SNR was retained. A similar reduction of streaks was also observed in silico, while the quantitative accuracy of T1 and T2 mapping was retained. In conclusion, ROVir coils efficiently suppress streaking artefacts from blood flow in radial MRF of the prostate, thereby improving the visual clarity of the images, without significant sacrifices to acquisition time, reconstruction time and accuracy of quantitative values. This is expected to help enable T1 and T2 mapping of prostate cancer in clinically viable times, aiding differentiation between prostate cancer from noncancer and healthy prostate tissue.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Próstata , Humanos , Masculino , Próstata/diagnóstico por imagem , Próstata/irrigação sanguínea , Adulto , Pessoa de Meia-Idade , Razão Sinal-Ruído , Simulação por Computador , Fêmur/diagnóstico por imagem , Fêmur/irrigação sanguínea
5.
Hum Brain Mapp ; 44(15): 5095-5112, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37548414

RESUMO

The boundaries between tissues with different magnetic susceptibilities generate inhomogeneities in the main magnetic field which change over time due to motion, respiration and system instabilities. The dynamically changing field can be measured from the phase of the fMRI data and corrected. However, methods for doing so need multi-echo data, time-consuming reference scans and/or involve error-prone processing steps, such as phase unwrapping, which are difficult to implement robustly on the MRI host. The improved dynamic distortion correction method we propose is based on the phase of the single-echo EPI data acquired for fMRI, phase offsets calculated from a triple-echo, bipolar reference scan of circa 3-10 s duration using a method which avoids the need for phase unwrapping and an additional correction derived from one EPI volume in which the readout direction is reversed. This Reverse-Encoded First Image and Low resoLution reference scan (REFILL) approach is shown to accurately measure B0 as it changes due to shim, motion and respiration, even with large dynamic changes to the field at 7 T, where it led to a > 20% increase in time-series signal to noise ratio compared to data corrected with the classic static approach. fMRI results from REFILL-corrected data were free of stimulus-correlated distortion artefacts seen when data were corrected with static field mapping. The method is insensitive to shim changes and eddy current differences between the reference scan and the fMRI time series, and employs calculation steps that are simple and robust, allowing most data processing to be performed in real time on the scanner image reconstruction computer. These improvements make it feasible to routinely perform dynamic distortion correction in fMRI.


Assuntos
Mapeamento Encefálico , Encéfalo , Imagem Ecoplanar , Humanos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imagem Ecoplanar/métodos , Artefatos
6.
NMR Biomed ; 36(10): e4959, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37186038

RESUMO

In this work, we introduce a super-resolution method that generates a high-resolution (HR) sodium (23 Na) image from simultaneously acquired low-resolution (LR) 23 Na density-weighted MRI and HR proton density, T1 , and T2 maps from proton (1 H) MR fingerprinting in the brain at 7 T. The core of our method is a partial least squares regression between the HR (1 H) images and the LR (23 Na) image. An iterative loop and deconvolution with the point spread function of each acquired image were included in the algorithm to generate a final HR 23 Na image without losing features from the LR 23 Na image. The method was applied to simultaneously acquired HR proton and LR sodium data with in-plane resolution ratios between sodium and proton data of 3.8 and 1.9 and the same slice thickness. Four volunteers were scanned to evaluate the method's performance. For the data with a resolution ratio of 3.8, the mean absolute difference between the generated and ground truth HR 23 Na images was in the range of 1.5%-7.2% of the ground truth with a multiscale structural similarity index (M-SSIM) of 0.93 ± 0.03. For the data with a resolution ratio of 1.9, the mean absolute difference was in the range of 4.8%-6.3% with an M-SSIM of 0.95 ± 0.01.


Assuntos
Prótons , Sódio , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Algoritmos
7.
J Magn Reson Imaging ; 57(6): 1805-1812, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36190187

RESUMO

BACKGROUND: Magnetic resonance fingerprinting (MRF) techniques have been recently described for simultaneous multiparameter cartilage mapping of the knee although investigation of their ability to detect early cartilage degeneration remains limited. PURPOSE: To investigate age-dependent changes in knee cartilage T1 , T2 , and T1p relaxation times measured using a three-dimensional (3D) MRF sequence in healthy volunteers. STUDY TYPE: Prospective. SUBJECTS: The study group consisted of 24 healthy asymptomatic human volunteers (15 males with mean age 34.9 ± 14.4 years and 9 females with mean age 44.5 ± 13.1 years). FIELD STRENGTH/SEQUENCE: A 3.0 T gradient-echo-based 3D-MRF sequence was used to simultaneously create proton density-weighted images and T1 , T2 , and T1p maps of knee cartilage. ASSESSMENT: Mean global cartilage and regional cartilage (lateral femur, lateral tibia, medial femur, medial tibia, and patella) T1 , T2 , and T1ρ relaxation times of the knee were measured. STATISTICAL TESTS: Kruskal-Wallis tests were used to compared cartilage T1 , T2 , and T1ρ relaxation times between different age groups, while Spearman correlation coefficients was used to determine the association between age and cartilage T1 , T2 , and T1ρ relaxation times. The value of P < 0.05 was considered statistically significant. RESULTS: Higher age groups showed higher global and regional cartilage T1 , T2 , and T1ρ . There was a significant difference between age groups in global cartilage T2 and T1ρ but no significant difference (P = 0.13) in global cartilage T1. Significant difference was also present between age groups in cartilage T2 and T1ρ for medial femur cartilage and medial tibia cartilage. There were significant moderate correlations between age and T2 and T1ρ for global cartilage (R2  = 0.63-0.64), medial femur cartilage (R2  = 0.50-0.56), and medial tibia cartilage (R2  = 0.54-0.66). CONCLUSION: Cartilage T2 and T1p relaxation times simultaneously measured using a 3D-MRF sequence in healthy volunteers showed age-dependent changes in knee cartilage, primarily within the medial compartment.


Assuntos
Cartilagem Articular , Masculino , Feminino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Estudos Prospectivos , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/patologia , Joelho , Imageamento por Ressonância Magnética/métodos
8.
J Magn Reson Imaging ; 58(2): 559-568, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36562500

RESUMO

BACKGROUND: Magnetic resonance fingerprinting (MRF) is a method to speed up acquisition of quantitative MRI data. However, MRF does not usually produce contrast-weighted images that are required by radiologists, limiting reachable total scan time improvement. Contrast synthesis from MRF could significantly decrease the imaging time. PURPOSE: To improve clinical utility of MRF by synthesizing contrast-weighted MR images from the quantitative data provided by MRF, using U-nets that were trained for the synthesis task utilizing L1- and perceptual loss functions, and their combinations. STUDY TYPE: Retrospective. POPULATION: Knee joint MRI data from 184 subjects from Northern Finland 1986 Birth Cohort (ages 33-35, gender distribution not available). FIELD STRENGTH AND SEQUENCE: A 3 T, multislice-MRF, proton density (PD)-weighted 3D-SPACE (sampling perfection with application optimized contrasts using different flip angle evolution), fat-saturated T2-weighted 3D-space, water-excited double echo steady state (DESS). ASSESSMENT: Data were divided into training, validation, test, and radiologist's assessment sets in the following way: 136 subjects to training, 3 for validation, 3 for testing, and 42 for radiologist's assessment. The synthetic and target images were evaluated using 5-point Likert scale by two musculoskeletal radiologists blinded and with quantitative error metrics. STATISTICAL TESTS: Friedman's test accompanied with post hoc Wilcoxon signed-rank test and intraclass correlation coefficient. The statistical cutoff P <0.05 adjusted by Bonferroni correction as necessary was utilized. RESULTS: The networks trained in the study could synthesize conventional images with high image quality (Likert scores 3-4 on a 5-point scale). Qualitatively, the best synthetic images were produced with combination of L1- and perceptual loss functions and perceptual loss alone, while L1-loss alone led to significantly poorer image quality (Likert scores below 3). The interreader and intrareader agreement were high (0.80 and 0.92, respectively) and significant. However, quantitative image quality metrics indicated best performance for the pure L1-loss. DATA CONCLUSION: Synthesizing high-quality contrast-weighted images from MRF data using deep learning is feasible. However, more studies are needed to validate the diagnostic accuracy of these synthetic images. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: Stage 1.


Assuntos
Aprendizado Profundo , Humanos , Estudos Retrospectivos , Imageamento Tridimensional/métodos , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos
9.
Magn Reson Med ; 87(5): 2299-2312, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34971454

RESUMO

PURPOSE: To develop a 3D MR technique to simultaneously acquire proton multiparametric maps (T1 , T2 , and proton density) and sodium density weighted images over the whole brain. METHODS: We implemented a 3D stack-of-stars MR pulse sequence which consists of interleaved proton (1 H) and sodium (23 Na) excitations, tailored slice encoding gradients that can encode the same slice for both nuclei, and simultaneous readout with different radial trajectories (1 H, full-radial; 23 Na, center-out radial). The receive chain of our 7T scanner was modified to enable simultaneous acquisition of 1 H and 23 Na signal. A heuristically optimized flip angle train was implemented for proton MR fingerprinting (MRF). The SNR and the accuracy of proton T1 and T2 were evaluated in phantoms. Finally, in vivo application of the method was demonstrated in five healthy subjects. RESULTS: The SNR for the simultaneous measurement was almost identical to that for the single-nucleus measurements (<2% change). The proton T1 and T2 maps remained similar to the results from a reference 2D MRF technique (normalized RMS error in T1 ≈ 4.2% and T2 ≈ 11.3%). Measurements in healthy subjects corroborated these results and demonstrated the feasibility of our method for in vivo application. The in vivo T1 values measured using our method were lower than the results measured by other conventional techniques. CONCLUSIONS: With the 3D simultaneous implementation, we were able to acquire sodium and proton density weighted images in addition to proton T1 , T2 , and B1+ from 1 H MRF that covers the whole brain volume within 21 min.


Assuntos
Processamento de Imagem Assistida por Computador , Prótons , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Sódio
10.
Magn Reson Med ; 87(5): 2566-2575, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34971464

RESUMO

PURPOSE: To present a novel 3T 24-channel glove array that enables hand and wrist imaging in varying postures. METHODS: The glove array consists of an inner glove holding the electronics and an outer glove protecting the components. The inner glove consists of four main structures: palm, fingers, wrist, and a flap that rolls over on top. Each structure was constructed out of three layers: a layer of electrostatic discharge flame-resistant fabric, a layer of scuba neoprene, and a layer of mesh fabric. Lightweight and flexible high impedance coil (HIC) elements were inserted into dedicated tubes sewn into the fabric. Coil elements were deliberately shortened to minimize the matching interface. Siemens Tim 4G technology was used to connect all 24 HIC elements to the scanner with only one plug. RESULTS: The 24-channel glove array allows large motion of both wrist and hand while maintaining the SNR needed for high-resolution imaging. CONCLUSION: In this work, a purpose-built 3T glove array that embeds 24 HIC elements is demonstrated for both hand and wrist imaging. The 24-channel glove array allows a great range of motion of both the wrist and hand while maintaining a high SNR and providing good theoretical acceleration performance, thus enabling hand and wrist imaging at different postures to extract kinematic information.


Assuntos
Imageamento por Ressonância Magnética , Punho , Impedância Elétrica , Desenho de Equipamento , Mãos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Punho/diagnóstico por imagem
11.
NMR Biomed ; 35(12): e4800, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35815660

RESUMO

Quantitative MRI can detect early biochemical changes in cartilage; however, the conventional techniques only measure one parameter (e.g., T1 , T2 , and T1ρ ) at a time while also being comparatively slow. We implemented a 3D magnetic resonance fingerprinting (3D-MRF) technique for simultaneous, volumetric mapping of T1 , T2 , and T1ρ in knee articular cartilage in under 9 min. It is evaluated on 11 healthy volunteers (mean age: 53 ± 9 years), five mild knee osteoarthritis (OA) patients (Kellgren-Lawrence (KL) score: 2, mean age: 60 ± 4 years), and the National Institute of Standards and Technology (NIST)/International Society for Magnetic Resonance in Medicine (ISMRM) system phantom. Proton density image, and T1 , T2, T1ρ relaxation times, and B1 + were estimated in the NIST/ISMRM system phantom as well as in the human knee medial and lateral femur, medial and lateral tibia, and patellar cartilage. The repeatability and reproducibility of the proposed technique were assessed in the phantom using analysis of the Bland-Altman plots. The intrasubject repeatability was assessed with the coefficient of variation (CV) and root mean square CV (rmsCV). The Mann-Whitney U test was used to assess the difference between healthy subjects and mild knee OA patients. The Bland-Altman plots in the NIST/ISMRM phantom demonstrated an average difference of 0.001% ± 015%, 1.2% ± 7.1%, and 0.47% ± 3% between two scans from the same 3-T scanner (repeatability), and 0.002% ± 015%, 0.62% ± 10.5%, and 0.97% ± 14% between the scans acquired on two different 3-T scanners (reproducibility) for T1 , T2 , and T1ρ , respectively. The in vivo knee study showed excellent repeatability with rmsCV less than 1%, 2%, and 1% for T1 , T2 , and T1ρ , respectively. T1ρ relaxation time in the mild knee OA patients was significantly higher (p < 0.05) than in healthy subjects. The proposed 3D-MRF sequence is fast, reproducible, robust to B1 + inhomogeneity, and can simultaneously measure the T1 , T2 , T1ρ , and B1 + volumetric maps of the knee joint in a single scan within a clinically feasible scan time.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Humanos , Adulto , Pessoa de Meia-Idade , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Articulação do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/patologia , Espectroscopia de Ressonância Magnética
12.
NMR Biomed ; 35(5): e4651, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34825750

RESUMO

Quantitative MRI can detect early biochemical changes in cartilage, but its bilateral use in clinical routines is challenging. The aim of this prospective study was to demonstrate the feasibility of magnetic resonance fingerprinting for bilateral simultaneous T1 , T2 , and T1ρ mapping of the hip joint. The study population consisted of six healthy volunteers with no known trauma or pain in the hip. Monoexponential T1 , T2 , and T1ρ relaxation components were assessed in femoral lateral, superolateral, and superomedial, and inferior, as well as acetabular, superolateral, and superomedial subregions in left and right hip cartilage. Aligned ranked nonparametric factorial analysis was used to assess the side's impact on the subregions. Kruskal-Wallis and Wilcoxon tests were used to compare subregions, and coefficient of variation to assess repeatability. Global averages of T1 (676.0 ± 45.4 and 687.6 ± 44.5 ms), T2 (22.5 ± 2.6 and 22.1 ± 2.5 ms), and T1ρ (38.2 ± 5.5 and 38.2 ± 5.5 ms) were measured in the left and right hip, and articular cartilage, respectively. The Kruskal-Wallis test showed a significant difference between different subregions' relaxation times regardless of the hip side (p < 0.001 for T1 , p = 0.012 for T2 , and p < 0.001 for T1ρ ). The Wilcoxon test showed that T1 of femoral layers was significantly (p < 0.003) higher than that for acetabular cartilage. The experiments showed excellent repeatability with CVrms of 1%, 2%, and 4% for T1 , T2 , and T1ρ, respectively. It was concluded that bilateral T1 , T2 , and T1ρ relaxation times, as well as B1+ maps, can be acquired simultaneously from hip joints using the proposed MRF sequence.


Assuntos
Cartilagem Articular , Imageamento por Ressonância Magnética , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Articulação do Quadril/diagnóstico por imagem , Articulação do Quadril/patologia , Humanos , Espectroscopia de Ressonância Magnética , Estudos Prospectivos
13.
Eur Radiol ; 32(2): 1308-1319, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34410458

RESUMO

OBJECTIVES: To assess whether MR fingerprinting (MRF)-based relaxation properties exhibit cross-sectional and prospective correlations with patient outcome and compare the results with those from DTI. METHODS: Clinical imaging, MRF, and DTI were acquired in patients (24 ± 10 days after injury (timepoint 1) and 90 ± 17 days after injury (timepoint 2)) and once in controls. Patient outcome was assessed with global functioning, symptom profile, and neuropsychological testing. ADC and fractional anisotropy (FA) from DTI and T1 and T2 from MRF were compared in 12 gray and white matter regions with Mann-Whitney tests. Bivariate associations between MR measures and outcome were assessed using the Spearman correlation and logistic regression. RESULTS: Data from 22 patients (38 ± 12 years; 17 women) and 18 controls (32 ± 8 years; 12 women) were analyzed. Fourteen patients (37 ± 12 years; 11 women) returned for timepoint 2, while two patients provided only timepoint 2 clinical outcome data. At timepoint 1, there were no differences between patients and controls in T1, T2, and ADC, while FA was lower in mTBI frontal white matter. T1 at timepoint 1 and the change in T1 exhibited more (n = 18) moderate to strong correlations (|r|= 0.6-0.85) with clinical outcome at timepoint 2 than T2 (n = 3), FA (n = 7), and ADC (n = 2). High T1 at timepoint 1, and serially increasing T1, accounted for five of the six MR measures with the highest utility for identification of non-recovered patients at timepoint 2 (AUC > 0.80). CONCLUSION: T1 derived from MRF was found to have higher utility than T2, FA, and ADC for predicting 3-month outcome after mTBI. KEY POINTS: • In a region-of-interest approach, FA, ADC, and T1 and T2 all showed limited utility in differentiating patients from controls at an average of 24 and 90 days post-mild traumatic brain injury. • T1 at 24 days, and the serial change in T1, revealed more and stronger predictive correlations with clinical outcome at 90 days than did T2, ADC, or FA. • T1 showed better prospective identification of non-recovered patients at 90 days than ADC, T2, and FA.


Assuntos
Concussão Encefálica , Encéfalo , Concussão Encefálica/diagnóstico por imagem , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Estudos Prospectivos
14.
Neuroimage ; 240: 118404, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34280526

RESUMO

Quantitative susceptibility mapping (QSM) and R2* mapping are MRI post-processing methods that quantify tissue magnetic susceptibility and transverse relaxation rate distributions. However, QSM and R2* acquisitions are relatively slow, even with parallel imaging. Incoherent undersampling and compressed sensing reconstruction techniques have been used to accelerate traditional magnitude-based MRI acquisitions; however, most do not recover the full phase signal, as required by QSM, due to its non-convex nature. In this study, a learning-based Deep Complex Residual Network (DCRNet) is proposed to recover both the magnitude and phase images from incoherently undersampled data, enabling high acceleration of QSM and R2* acquisition. Magnitude, phase, R2*, and QSM results from DCRNet were compared with two iterative and one deep learning methods on retrospectively undersampled acquisitions from six healthy volunteers, one intracranial hemorrhage and one multiple sclerosis patients, as well as one prospectively undersampled healthy subject using a 7T scanner. Peak signal to noise ratio (PSNR), structural similarity (SSIM), root-mean-squared error (RMSE), and region-of-interest susceptibility and R2* measurements are reported for numerical comparisons. The proposed DCRNet method substantially reduced artifacts and blurring compared to the other methods and resulted in the highest PSNR, SSIM, and RMSE on the magnitude, R2*, local field, and susceptibility maps. Compared to two iterative and one deep learning methods, the DCRNet method demonstrated a 3.2% to 9.1% accuracy improvement in deep grey matter susceptibility when accelerated by a factor of four. The DCRNet also dramatically shortened the reconstruction time of single 2D brain images from 36-140 seconds using conventional approaches to only 15-70 milliseconds.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Encéfalo/fisiologia , Mapeamento Encefálico/tendências , Humanos , Processamento de Imagem Assistida por Computador/tendências , Imageamento por Ressonância Magnética/tendências
15.
Magn Reson Med ; 86(1): 372-381, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33554369

RESUMO

PURPOSE: To develop a novel MR-fingerprinting (MRF) pulse sequence that is insensitive to B1+ and B0 imperfections for simultaneous T1 , T2 , and T1ρ relaxation mapping. METHODS: We implemented a totally balanced spin-lock (TB-SL) module to encode T1ρ relaxation into an existing MRF framework that encoded T1 and T2 . The spin-lock module used two 180° pulses with compensatory phases to reduce T1ρ sensitivity to B1 and B0 inhomogeneities. We compared T1ρ measured using TB-SL MRF in Bloch simulations, model agar phantoms, and in vivo experiments to those with a self-compensated spin-lock preparation module (SC-SL). The TB-SL MRF repeatability was evaluated in maps acquired in the lower leg skeletal muscle of 12 diabetic peripheral neuropathy patients, scanned two times each during visits separated by about 30 days. RESULTS: The phantom relaxation times measured with TB-SL and SC-SL MRF were in good agreement with reference values in regions with low B1 inhomogeneities. Compared with SC-SL, TB-SL MRF showed in experiments greater robustness against severe B1 inhomogeneities and in Bloch simulations greater robustness against B1 and B0 . We measured with TB-SL MRF an average T1 = 950.1 ± 28.7 ms, T2 = 26.0 ± 1.2 ms, and T1ρ = 31.7 ± 3.2 ms in skeletal muscle across patients. Bland-Altman analysis demonstrated low bias between TB-SL and SC-SL MRF and between TB-SL MRF maps acquired in two visits. The coefficient of variation was less than 3% for all measurements. CONCLUSION: The proposed TB-SL MRF sequence is fast and insensitive to B1+ and B0 imperfections. It can simultaneously map T1 , T2 , T1ρ , and B1+ in a single scan and can potentially be used to study muscle composition.


Assuntos
Perna (Membro) , Imageamento por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador , Músculo Esquelético/diagnóstico por imagem , Imagens de Fantasmas
16.
NMR Biomed ; 34(7): e4531, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33902155

RESUMO

In this work, we propose a free-breathing magnetic resonance fingerprinting (MRF) method that can be used to obtain B1+ -robust quantitative T1 maps of the abdomen in a clinically acceptable time. A three-dimensional MRF sequence with a radial stack-of-stars trajectory was implemented, and its k-space acquisition ordering was adjusted to improve motion-robustness in the context of MRF. The flip angle pattern was optimized using the Cramér-Rao Lower Bound, and the encoding efficiency of sequences with 300, 600, 900 and 1800 flip angles was evaluated. To validate the sequence, a movable multicompartment phantom was developed. Reference multiparametric maps were acquired under stationary conditions using a previously validated MRF method. Periodic motion of the phantom was used to investigate the motion-robustness of the proposed sequence. The best performing sequence length (600 flip angles) was used to image the abdomen during a free-breathing volunteer scan. When using a series of 600 or more flip angles, the estimated T1 values in the stationary phantom showed good agreement with the reference scan. Phantom experiments revealed that motion-related artifacts can appear in the quantitative maps and confirmed that a motion-robust k-space ordering is essential. The in vivo scan demonstrated that the proposed sequence can produce clean parameter maps while the subject breathes freely. Using this sequence, it is possible to generate B1+ -robust quantitative maps of T1 and B1+ next to M0 -weighted images under free-breathing conditions at a clinically usable resolution within 5 min.


Assuntos
Abdome/diagnóstico por imagem , Imageamento por Ressonância Magnética , Respiração , Humanos , Movimento (Física) , Imagens de Fantasmas
17.
NMR Biomed ; 34(12): e4608, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34476861

RESUMO

The objective of the current study was to design and build a dual-tuned coil array for simultaneous 23 Na/1 H MRI of the human brain at 7 T. Quality factor, experimental B1+ measurements, and electromagnetic simulations in prototypes showed that setups consisting of geometrically interleaved 1 H and 23 Na loops performed better than or similar to 1 H or 23 Na loops in isolation. Based on these preliminary findings, we built a transmit/receive eight-channel 23 Na loop array that was geometrically interleaved with a transmit/receive eight-channel 1 H loop array. We assessed the performance of the manufactured array with mononuclear signal-to-noise ratio (SNR) and B1+ measurements, along with multinuclear magnetic resonance fingerprinting maps and images. The 23 Na array within the developed dual-tuned device provided more than 50% gain in peripheral SNR and similar B1+ uniformity and coverage as a reference birdcage coil of similar size. The 1 H array provided good B1+ uniformity in the brain, excluding the cerebellum and brain stem. The integrated 23 Na and 1 H arrays were used to demonstrate truly simultaneous quantitative 1 H mapping and 23 Na imaging.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Humanos , Imageamento por Ressonância Magnética/instrumentação , Prótons , Razão Sinal-Ruído , Sódio
18.
Magn Reson Med ; 83(6): 2232-2242, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31746048

RESUMO

PURPOSE: The goal of this work is to demonstrate a method for the simultaneous acquisition of proton multiparametric maps (T1 , T2 , and proton density) and sodium density images in 1 single scan. We hope that the development of such capabilities will help to ease the implementation of sodium MRI in clinical trials and provide more opportunities for researchers to investigate metabolism through sodium MRI. METHODS: We developed a sequence based on magnetic resonance fingerprinting (MRF), which contains interleaved proton (1 H) and sodium (23 Na) excitations followed by a simultaneous center-out radial readout for both nuclei. The receive chain of a 7T scanner was modified to enable simultaneous acquisition of 1 H and 23 Na signal. The obtained signal-to-noise ratio (SNR) was evaluated, and the accuracy of both proton T1 , T2 , and B1+ and sodium density maps were verified in phantoms. Finally, the method was demonstrated in 2 healthy subjects. RESULTS: The SNR obtained using the simultaneous measurement was almost identical to single-nucleus measurements (<1% change). Similarly, the proton T1 and T2 maps remained stable (normalized root mean square error in T1 ≈ 2.2%, in T2 ≈ 1.4%, and B1+ ≈ 5.4%), which indicates that the proposed sequence and hardware have no significant effects on the signal from either nucleus. In vivo measurements corroborated these results and demonstrated the feasibility of our method for in vivo application. CONCLUSIONS: With the proposed approach, we were able to simultaneously acquire sodium density images in addition to proton T1 , T2 , and B1+ maps as well as proton density images.


Assuntos
Prótons , Sódio , Encéfalo , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas
19.
Magn Reson Med ; 84(5): 2636-2644, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32385949

RESUMO

PURPOSE: To implement a novel technique for simultaneous, quantitative multiparametric mapping of the knee articular cartilage. METHODS: A novel MR fingerprinting pulse sequence is proposed and implemented for simultaneous measurements of proton density, T1 , T2, and T1ρ relaxation times at 3T. The repeatability and reproducibility of the proposed technique were assessed in model phantoms. Institutional review board-approved MR fingerprinting imaging sequence was performed on healthy volunteers and patients with mild knee osteoarthritis. The Wilcoxon test was used to compare healthy controls and patients. The intra- and intersubject repeatability were assessed with coefficient of variation and the RMS coefficient of variation, respectively RESULTS: The Bland-Altman plots demonstrated an average difference of 4.67 ms, -0.09 ms, and 0.05 ms between 2 scans in the same scanner; and 9.68 ms, 0.29 ms, and -0.72 ms between the scans acquired on 2 different scanners for T1 , T2 , and T1ρ , respectively. The in vivo knee study showed excellent repeatability with RMS coefficient of variation less than 3%, 6%, and 5% for T1 , T2 , and T1ρ , respectively. The Wilcoxon test showed a significant difference between control and mild osteoarthritis patients for T1 (P = .04), T2 (P = .01), and T1ρ (P = .02) relaxation time in medial tibial cartilage, as well as for T2 relaxation time (P = .02) in medial femoral cartilage. CONCLUSION: The proposed MRF sequence is fast and can simultaneously measure the T1 , T2 , T1ρ , and B1+ maps in a single scan. It is able to discriminate between mild osteoarthritis patients and healthy volunteers.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Cartilagem Articular/diagnóstico por imagem , Humanos , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética , Osteoartrite do Joelho/diagnóstico por imagem , Reprodutibilidade dos Testes
20.
Magn Reson Med ; 84(1): 128-141, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31762101

RESUMO

PURPOSE: To study the effects of magnetization transfer (MT, in which a semi-solid spin pool interacts with the free pool), in the context of magnetic resonance fingerprinting (MRF). METHODS: Simulations and phantom experiments were performed to study the impact of MT on the MRF signal and its potential influence on T1 and T2 estimation. Subsequently, an MRF sequence implementing off-resonance MT pulses and a dictionary with an MT dimension, generated by incorporating a two-pool model, were used to estimate the fractional pool size in addition to the B1+ , T1 , and T2 values. The proposed method was evaluated in the human brain. RESULTS: Simulations and phantom experiments showed that an MRF signal obtained from a cross-linked bovine serum sample is influenced by MT. Using a dictionary based on an MT model, a better match between simulations and acquired MR signals can be obtained (NRMSE 1.3% vs. 4.7%). Adding off-resonance MT pulses can improve the differentiation of MT from T1 and T2 . In vivo results showed that MT affects the MRF signals from white matter (fractional pool-size ~16%) and gray matter (fractional pool-size ~10%). Furthermore, longer T1 (~1060 ms vs. ~860 ms) and T2 values (~47 ms vs. ~35 ms) can be observed in white matter if MT is accounted for. CONCLUSION: Our experiments demonstrated a potential influence of MT on the quantification of T1 and T2 with MRF. A model that encompasses MT effects can improve the accuracy of estimated relaxation parameters and allows quantification of the fractional pool size.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Animais , Encéfalo/diagnóstico por imagem , Bovinos , Humanos , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA