RESUMO
Order-of-magnitude anomalously high intensities for two-electron (dielectronic) satellite transitions, originating from the He-like 2s(2) 1S0 and Li-like 1s2s(2) (2)S(1/2) autoionizing states of silicon, have been observed in dense laser-produced plasmas at different laboratories. Spatially resolved, high-resolution spectra and plasma images show that these effects are correlated with an intense emission of the He-like 1s3p 1P-1s(2) 1S lines, as well as the K(alpha) lines. A time-dependent, collisional-radiative model, allowing for non-Maxwellian electron-energy distributions, has been developed for the determination of the relevant nonequilibrium level populations of the silicon ions, and a detailed analysis of the experimental data has been carried out. Taking into account electron density and temperature variations, plasma optical-depth effects, and hot-electron distributions, the spectral simulations are found to be not in agreement with the observations. We propose that highly stripped target ions (e.g., bare nuclei or H-like 1s ground-state ions) are transported into the dense, cold plasma (predominantly consisting of L- and M-shell ions) near the target surface and undergo single- and double-electron charge-transfer processes. The spectral simulations indicate that, in dense and optically thick plasmas, these charge-transfer processes may lead to an enhancement of the intensities of the two-electron transitions by up to a factor of 10 relative to those of the other emission lines, in agreement with the spectral observations.
RESUMO
A new, versatile Thomson parabola ion energy (TPIE) analyzer has been designed, constructed, and used at the OMEGA-EP facility. Laser-accelerated multi-MeV ions from hemispherical C targets are transmitted through a W pinhole into a multi-kG magnetic field and subsequently through a parallel electric field of up to 25 kV/cm. The ion drift region has a user-selected length of 10, 50, or 80 cm. With the highest fields, 400-MeV C(6+) and C(5+) may be resolved. TPIE is ten-inch manipulator (TIM)-mounted at OMEGA-EP and can be used opposite either of the EP ps beams. The instrument runs on pressure-interlocked 15-Vdc power available in EP TIM carts. Flux control derives from the insertion depth into the target chamber and the user-selected pinhole dimensions. The detector consists of CR39 backed by an image plate. A fully relativistic simulation code for calculating ion trajectories was employed for design optimization. Excellent agreement of code predictions with the actual ion positions on the detectors is observed. Through pit counting of carbon-ion tracks in CR39, it is shown that conversion efficiency of laser light to energetic carbon ions exceeds ~5% for these targets.
Assuntos
Serviços Médicos de Emergência , Infarto do Miocárdio/tratamento farmacológico , Terapia Trombolítica/estatística & dados numéricos , Custos de Medicamentos , Fibrinolíticos/administração & dosagem , Fibrinolíticos/efeitos adversos , Fibrinolíticos/economia , Humanos , Terapia Trombolítica/efeitos adversos , Estados UnidosRESUMO
The newly upgraded TRIDENT high-energy-density (HED) facility provides high-energy short-pulse laser-matter interactions with powers in excess of 200 TW and energies greater than 120 J. In addition, TRIDENT retains two long-pulse (nanoseconds to microseconds) beams that are available for simultaneous use in either the same experiment or a separate one. The facility's flexibility is enhanced by the presence of two separate target chambers with a third undergoing commissioning. This capability allows the experimental configuration to be optimized by choosing the chamber with the most advantageous geometry and features. The TRIDENT facility also provides a wide range of standard instruments including optical, x-ray, and particle diagnostics. In addition, one chamber has a 10 in. manipulator allowing OMEGA and National Ignition Facility (NIF) diagnostics to be prototyped and calibrated.
RESUMO
Thomson scattering is used to measure Langmuir waves (LW) driven by stimulated Raman scattering (SRS) in a diffraction limited laser focal spot. For SRS at wave numbers klambda(D) less similar 0.29, where k is the LW number and lambda(D) is the Debye length, multiple waves are detected and are attributed to the Langmuir decay instability (LDI) driven by the primary LW. At klambda(D) greater similar 0.29, a single wave, frequency-broadened spectrum is observed. The transition from the fluid to the kinetic regime is qualitatively consistent with particle-in-cell simulations and crossing of the LDI amplitude threshold above that for LW self-focusing.
RESUMO
We have designed and produced hot, millimeter-scale, high-Z plasmas of interest for National Ignition Facility hohlraum target design. Using a high-Z gas fill produces electron temperatures in the 3.5-6-keV range, the highest temperatures measured to date for high-density (10(21) e/cm(3)) laser-heated plasmas, and much higher than the 3 keV found for low-Z (neopentane) fills. These measurements are in good agreement with the target design calculations, and the L-shell spectroscopic approach used to estimate the electron temperature has certain advantages over traditional K-shell approaches.
RESUMO
A diffraction-limited laser interacts with a plasma whose conditions are uniform on the scale of the focused laser spot. Two distinct, narrow waves are observed in the backscattered spectrum with phase velocities of v(phi)/v(e) = 1.4+/-0.08 and 4.2+/-0.1, where v(e) is the electron thermal speed. The high-velocity wave is ordinary stimulated Raman scattering (SRS) from a Langmuir wave. The low-velocity wave corresponds to stimulated scattering from an electron-acoustic wave (SEAS), and implies strong electron trapping. Previous SRS data from low-density plasmas are reinterpreted in terms of SEAS.