Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
World J Microbiol Biotechnol ; 39(9): 241, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37394567

RESUMO

Cyanobacterial harmful algal blooms (CHABs) are a global environmental concern that encompasses public health issues, water availability, and water quality owing to the production of various secondary metabolites (SMs), including cyanotoxins in freshwater, brackish water, and marine ecosystems. The frequency, extent, magnitude, and duration of CHABs are increasing globally. Cyanobacterial species traits and changing environmental conditions, including anthropogenic pressure, eutrophication, and global climate change, together allow cyanobacteria to thrive. The cyanotoxins include a diverse range of low molecular weight compounds with varying biochemical properties and modes of action. With the application of modern molecular biology techniques, many important aspects of cyanobacteria are being elucidated, including aspects of their diversity, gene-environment interactions, and genes that express cyanotoxins. The toxicological, environmental, and economic impacts of CHABs strongly advocate the need for continuing, extensive efforts to monitor cyanobacterial growth and to understand the mechanisms regulating species composition and cyanotoxin biosynthesis. In this review, we critically examined the genomic organization of some cyanobacterial species that lead to the production of cyanotoxins and their characteristic properties discovered to date.


Assuntos
Toxinas de Cianobactérias , Cianobactérias , Toxinas Marinhas/metabolismo , Ecossistema , Água Doce/microbiologia , Cianobactérias/metabolismo , Família Multigênica , Microcistinas/genética , Microcistinas/metabolismo
2.
Arch Toxicol ; 96(11): 2829-2863, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35997789

RESUMO

Eutrophicated waters frequently support bloom-forming cyanobacteria, many of which produce potent cyanobacterial toxins (cyanotoxins). Cyanotoxins can cause adverse health effects in a wide range of organisms where the toxins may target the liver, other internal organs, mucous surfaces and the skin and nervous system. This review surveyed more than 100 studies concerning the cardiovascular toxicity of cyanotoxins and related topics. Over 60 studies have described various negative effects on the cardiovascular system by seven major types of cyanotoxins, i.e. the microcystin (MC), nodularin (NOD), cylindrospermopsin (CYN), anatoxin (ATX), guanitoxin (GNTX), saxitoxin (STX) and lyngbyatoxin (LTX) groups. Much of the research was done on rodents and fish using high, acutely toxin concentrations and unnatural exposure routes (such as intraperitoneal injection), and it is thus concluded that the emphasis in future studies should be on oral, chronic exposure of mammalian species at environmentally relevant concentrations. It is also suggested that future in vivo studies are conducted in parallel with studies on cells and tissues. In the light of the presented evidence, it is likely that cyanotoxins do not constitute a major risk to cardiovascular health under ordinary conditions met in everyday life. The risk of illnesses in other organs, in particular the liver, is higher under the same exposure conditions. However, adverse cardiovascular effects can be expected due to indirect effects arising from damage in other organs. In addition to risks related to extraordinary concentrations of the cyanotoxins and atypical exposure routes, chronic exposure together with co-existing diseases could make some of the cyanotoxins more dangerous to cardiovascular health.


Assuntos
Toxinas Bacterianas , Sistema Cardiovascular , Animais , Toxinas Bacterianas/toxicidade , Toxinas de Cianobactérias , Toxinas de Lyngbya , Mamíferos , Toxinas Marinhas/toxicidade , Microcistinas/toxicidade , Saxitoxina/toxicidade
3.
Arch Toxicol ; 93(9): 2429-2481, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31350576

RESUMO

Cyanobacteria are photoautotrophic organisms which occur in aquatic and terrestrial environments. They have the potential to produce toxins which pose a threat to human and animal health. This review covers the global distribution of the common cyanotoxins and related poisoning cases. A total of 468 selected articles on toxic cyanobacteria, dating from the earliest records until 2018, were reviewed. Most of the articles were published after 2000 (72%; 337 out of 468), which is consistent with the recent growth in interest in the analysis, toxinology and ecotoxicology of cyanotoxins. Animal and/or human poisoning cases were described in more than a third of the overall publications (38%; 177 out of 468). The reviewed publications showed that there were 1118 recorded identifications of major cyanotoxins in 869 freshwater ecosystems from 66 countries throughout the world. Microcystins were the most often recorded cyanotoxins worldwide (63%; 699 out of 1118), followed by cylindrospermopsin (10%; 107 out of 1118), anatoxins (9%; 100 out of 1118), and saxitoxins (8%; 93 out of 1118). Nodularins were the most rarely recorded cyanotoxins (2%; 19 out of 1118); however, there were also reports where cyanotoxins were not analysed or specified (9%; 100 out of 1118). The most commonly found toxic cyanobacterial genera were Microcystis spp. (669 reports), Anabaena spp. (397 reports), Aphanizomenon spp. (100 reports), Planktothrix spp. (98 reports), and Oscillatoria spp. (75 reports). Furthermore, there were 183 recorded cyanotoxin poisonings of humans and/or animals. Out of all toxic cyanobacterial blooms reviewed in this paper, the highest percentage of associated poisonings was found in North and Central America (39%; 69 cases out of 179), then Europe (20%; 35 out of 179), Australia including New Zealand (15%; 27 out of 179), and Africa (11%; 20 out of 179), while the lowest percentage was related to Asia (8%; 14 cases out of 179) and South America (8%; 14 cases out of 179). Events where only animals were known to have been affected were 63% (114 out of 182), whereas 32% (58 out of 182) of the investigated events involved only humans. A historical overview of human and animal poisoning episodes associated with cyanobacterial blooms is presented. Further, geographical data on the occurrence of cyanotoxins and related poisonings based on the available literature are shown. Some countries (mainly European) have done very intensive research on the occurrence of toxic cyanobacteria and cyanotoxins, and reported related ecotoxicological observations, while in some countries the lack of data is apparent. The true global extent of cyanotoxins and associated poisonings is likely to be greater than found in the available literature, and it can be assumed that ecotoxicological and hygienic problems caused by toxic cyanobacteria may occur in more environments.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Toxinas Marinhas/isolamento & purificação , Microcistinas/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , África , América , Animais , Ásia , Australásia , Cianobactérias/classificação , Ecossistema , Europa (Continente) , Eutrofização , Água Doce/microbiologia , Humanos , Toxinas Marinhas/intoxicação , Microcistinas/intoxicação , Intoxicação/epidemiologia , Poluentes Químicos da Água/intoxicação
4.
Arch Toxicol ; 91(2): 621-650, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28042640

RESUMO

Blooms of cyanobacteria have been documented throughout history, all over the world. Mass populations of these organisms typically present hazards to human health and are known for the production of a wide range of highly toxic metabolites-cyanotoxins, of which among the most common and most investigated are the microcystins. The toxicity of the family of microcystin congeners to animal and cell models has received much attention; however, less is known about their negative effects on human health, whether via acute or chronic exposure. Useful information may be acquired through epidemiological studies since they can contribute to knowledge of the relationships between cyanotoxins and human health in environmental settings. The aim of this review is to compile and evaluate the available published reports and epidemiological investigations of human health incidents associated with exposure to mass populations of cyanobacteria from throughout the world and to identify the occurrence and likely role of microcystins in these events. After an initial screening of 134 publications, 42 publications (25 on the chronic and 17 on the acute effects of cyanotoxins) describing 33 cases of poisonings by cyanobacterial toxins in 11 countries were reviewed. The countries were Australia, China, Sri Lanka, Namibia, Serbia, Sweden, UK, Portugal, Brazil, USA, and Canada. At least 36 publications link cyanobacteria/cyanotoxins including microcystins to adverse human health effects. The studies were published between 1960 and 2016. Although the scattered epidemiological evidence does not provide a definitive conclusion, it can serve as additional information for the medical assessment of the role of microcystins in cancer development and other human health problems. This paper discusses the major cases of cyanotoxin poisonings as well as the strengths, weaknesses, and importance of the performed epidemiological research. This study also proposes some recommendations for future epidemiological work.


Assuntos
Toxinas Bacterianas/toxicidade , Cianobactérias , Exposição Ambiental/análise , Toxinas Marinhas/toxicidade , Microcistinas/toxicidade , Intoxicação/epidemiologia , Administração Oral , Toxinas Bacterianas/intoxicação , Toxinas de Cianobactérias , Exposição Ambiental/efeitos adversos , Exposição Ambiental/estatística & dados numéricos , Proliferação Nociva de Algas , Humanos , Toxinas Marinhas/intoxicação , Microcistinas/administração & dosagem , Microcistinas/intoxicação , Intoxicação/microbiologia
5.
Ecotoxicology ; 25(7): 1353-63, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27352231

RESUMO

This paper presents a case study of a massive fish mortality during a Cylindrospermopsis raciborskii bloom in Aleksandrovac Lake, Serbia in mid-December 2012. According to a preliminary investigation of the samples taken on November 6 before the fish mortalities and to extended analyses of samples taken on November 15, no values of significant physicochemical parameters emerged to explain the cause(s) of the fish mortality. No industrial pollutants were apparent at this location, and results excluded the likelihood of bacterial infections. Even after freezing, the dissolved oxygen concentration in the water was sufficient for fish survival. High concentrations of chlorophyll a and phaeophytin occurred in the lake, and phytoplankton bloom samples were lethal in Artemia salina bioassays. A bloom of the cyanobacterium C. raciborskii was recorded during November. Although the A. salina bioassays indicated the presence of toxic compounds in the cyanobacterial cells, the cyanotoxins, microcystins, cylindrospermopsin and saxitoxin were not detected.


Assuntos
Cylindrospermopsis/crescimento & desenvolvimento , Monitoramento Ambiental , Peixes/fisiologia , Proliferação Nociva de Algas , Lagos/microbiologia , Poluentes Químicos da Água/toxicidade , Alcaloides , Animais , Toxinas Bacterianas/toxicidade , Toxinas de Cianobactérias , Microcistinas , Uracila/análogos & derivados , Uracila/toxicidade , Microbiologia da Água
6.
Vet Res ; 46: 16, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25828258

RESUMO

While toxins from aquatic cyanobacteria are a well-recognised cause of disease in birds and animals, exposure of grazing livestock to terrestrial cyanobacteria has not been described. This study identified terrestrial cyanobacteria, predominantly Phormidium spp., in the biofilm of plants from most livestock fields investigated. Lower numbers of other cyanobacteria, microalgae and fungi were present on many plants. Cyanobacterial 16S rDNA, predominantly from Phormidium spp., was detected in all samples tested, including 6 plant washings, 1 soil sample and ileal contents from 2 grazing horses. Further work was performed to test the hypothesis that ingestion of cyanotoxins contributes to the pathogenesis of some currently unexplained diseases of grazing horses, including equine grass sickness (EGS), equine motor neuron disease (EMND) and hepatopathy. Phormidium population density was significantly higher on EGS fields than on control fields. The cyanobacterial neurotoxic amino acid 2,4-diaminobutyric acid (DAB) was detected in plant washings from EGS fields, but worst case scenario estimations suggested the dose would be insufficient to cause disease. Neither DAB nor the cyanobacterial neurotoxins ß-N-methylamino-L-alanine and N-(2-aminoethyl) glycine were detected in neural tissue from 6 EGS horses, 2 EMND horses and 7 control horses. Phormidium was present in low numbers on plants where horses had unexplained hepatopathy. This study did not yield evidence linking known cyanotoxins with disease in grazing horses. However, further study is warranted to identify and quantify toxins produced by cyanobacteria on livestock fields, and determine whether, under appropriate conditions, known or unknown cyanotoxins contribute to currently unexplained diseases in grazing livestock.


Assuntos
Biofilmes/crescimento & desenvolvimento , Cianobactérias/fisiologia , Conteúdo Gastrointestinal/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Doenças dos Cavalos/microbiologia , Diamino Aminoácidos/análise , Criação de Animais Domésticos , Animais , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Toxinas de Cianobactérias , DNA Bacteriano/genética , Inglaterra , França , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/patologia , Doenças dos Cavalos/patologia , Cavalos , Hepatopatias/microbiologia , Hepatopatias/patologia , Hepatopatias/veterinária , Gado , Doença dos Neurônios Motores/microbiologia , Doença dos Neurônios Motores/patologia , Doença dos Neurônios Motores/veterinária , Neurotoxinas/análise , Plantas/microbiologia , Densidade Demográfica , RNA Ribossômico 16S/genética , Escócia
7.
Bioinformatics ; 28(5): 603-6, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22238262

RESUMO

MOTIVATION: Fixed nitrogen is an essential requirement for the biosynthesis of cellular nitrogenous compounds. Some cyanobacteria can fix nitrogen, contributing significantly to the nitrogen cycle, agriculture and biogeochemical history of Earth. The rate and position on the species phylogeny of gains and losses of this ability, as well as of the underlying nif genes, are controversial. RESULTS: We use probabilistic models of trait evolution to investigate the presence and absence of cyanobacterial nitrogen-fixing ability. We estimate rates of change on the species phylogeny, pinpoint probable changes and reconstruct the state and nif gene complement of the ancestor. Our results are consistent with a nitrogen-fixing cyanobacterial ancestor, repeated loss of nitrogen fixation and vertical descent, with little horizontal transfer of the genes involved. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Cianobactérias/genética , Cianobactérias/metabolismo , Proteínas de Bactérias/metabolismo , Evolução Biológica , Cianobactérias/classificação , Transferência Genética Horizontal , Fixação de Nitrogênio , Nitrogenase/genética , Filogenia
8.
Microorganisms ; 11(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37110295

RESUMO

Cyanobacteria commonly form large blooms in waterbodies; they can produce cyanotoxins, with toxic effects on humans and animals, and volatile compounds, causing bad tastes and odors (T&O) at naturally occurring low concentrations. Notwithstanding the large amount of literature on either cyanotoxins or T&O, no review has focused on them at the same time. The present review critically evaluates the recent literature on cyanotoxins and T&O compounds (geosmin, 2-methylisoborneol, ß-ionone and ß-cyclocitral) to identify research gaps on harmful exposure of humans and animals to both metabolite classes. T&O and cyanotoxins production can be due to the same or common to different cyanobacterial species/strains, with the additional possibility of T&O production by non-cyanobacterial species. The few environmental studies on the co-occurrence of these two groups of metabolites are not sufficient to understand if and how they can co-vary, or influence each other, perhaps stimulating cyanotoxin production. Therefore, T&Os cannot reliably serve as early warning surrogates for cyanotoxins. The scarce data on T&O toxicity seem to indicate a low health risk (but the inhalation of ß-cyclocitral deserves more study). However, no data are available on the effects of combined exposure to mixtures of cyanotoxins and T&O compounds and to combinations of T&O compounds; therefore, whether the co-occurrence of cyanotoxins and T&O compounds is a health issue remains an open question.

9.
J Hazard Mater ; 451: 131160, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907061

RESUMO

Global eutrophication and climate warming exacerbate production of cyanotoxins such as microcystins (MCs), presenting risks to human and animal health. Africa is a continent suffering from severe environmental crises, including MC intoxication, but with very limited understanding of the occurrence and extent of MCs. By analysing 90 publications from 1989 to 2019, we found that in various water bodies where MCs have been detected so far, the concentrations were 1.4-2803 times higher than the WHO provisional guideline for human lifetime exposure via drinking water (1 µg/L) in 12 of 15 African countries where data were available. MCs were relatively high in the Republic of South Africa (averaged 2803 µg/L) and Southern Africa as a whole (702 µg/L) when compared to other regions. Values were higher in reservoirs (958 µg/L) and lakes (159 µg/L) than in other water types, and much higher in temperate (1381 µg/L) than in arid (161 µg/L) and tropical (4 µg/L) zones. Highly significant positive relationships were found between MCs and planktonic chlorophyll a. Further assessment revealed high ecological risk for 14 of the 56 water bodies, with half used as human drinking water sources. Recognizing the extremely high MCs and exposure risk in Africa, we recommend routine monitoring and risk assessment of MCs be prioritized to ensure safe water use and sustainability in this region.


Assuntos
Toxinas de Cianobactérias , Água Potável , Animais , Humanos , Água Potável/análise , Clorofila A , Monitoramento Ambiental , Microcistinas/toxicidade , Microcistinas/análise , Lagos
10.
Phytochemistry ; 200: 113198, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35447107

RESUMO

Cyanobacteria are an ancient clade of photosynthetic prokaryotes, present in many habitats throughout the world, including water resources. They can present health hazards to humans and animals due to the production of a wide range of toxins (cyanotoxins), including the diaminoacid neurotoxin, 3-N-methyl-2,3-diaminopropanoic acid (ß-N-methylaminoalanine, BMAA). Knowledge of the biosynthetic pathway for BMAA, and its role in cyanobacteria, is lacking. Present evidence suggests that BMAA is derived by 3-N methylation of 2,3-diaminopropanoic acid (2,3-DAP) and, although the latter has never been reported in cyanobacteria, there are multiple pathways to its biosynthesis known in other bacteria and in plants. Here, we used bioinformatics analyses to investigate hypotheses concerning 2,3-DAP and BMAA biosynthesis in cyanobacteria. We assessed the potential presence or absence of each enzyme in candidate biosynthetic routes known in Albizia julibrissin, Lathyrus sativus seedlings, Streptomyces, Clostridium, Staphylococcus aureus, Pantoea agglomerans, and Paenibacillus larvae, in 130 cyanobacterial genomes using sequence alignment, profile hidden Markov models, substrate specificity/active site identification and the reconstruction of gene phylogenies. Most enzymes involved in pathways leading to 2,3-DAP in other species were not found in the cyanobacteria analysed. Nevertheless, two species appear to have the genes sbnA and sbnB, responsible for forming the 2,3-DAP constituent in staphyloferrin B, a siderophore from Staphylococcus aureus. It is currently undetermined whether these species are also capable of biosynthesising BMAA. It is possible that, in some cyanobacteria, the formation of 2,3-DAP and/or BMAA is associated with environmental iron-scavenging. The pam gene cluster, responsible for the biosynthesis of the BMAA-containing peptide, paenilamicin, so far appears to be restricted to Paenibacillus larvae. It was not detected in any of the cyanobacterial genomes analysed, nor was it found in 93 other Paenibacillus genomes or in the genomes of two BMAA-producing diatom species. We hypothesise that the presence, in some cyanobacterial species, of the enzymes 2,3-diaminopropionate ammonia-lyase (DAPAL) and reactive intermediate deaminase A (RidA) may explain the failure to detect 2,3-DAP in analytical studies. Overall, the taxonomic distribution of 2,3-DAP and BMAA in cyanobacteria is unclear; there may be multiple and additional routes, and roles, for the biosynthesis of 2,3-DAP and BMAA in these organisms.


Assuntos
Diamino Aminoácidos , Cianobactérias , Diamino Aminoácidos/química , Animais , Cianobactérias/química , Toxinas de Cianobactérias , Genômica , Propionatos/metabolismo , Staphylococcus aureus
11.
Phytochemistry ; 192: 112953, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34598041

RESUMO

Cyanobacteria are an ancient clade of photosynthetic prokaryotes, whose worldwide occurrence, especially in water, presents health hazards to humans and animals due to the production of a range of toxins (cyanotoxins). These include the sometimes co-occurring, non-encoded diaminoacid neurotoxins 2,4-diaminobutanoic acid (2,4-DAB) and its structural analogue ß-N-methylaminoalanine (BMAA). Knowledge of the biosynthetic pathway for 2,4-DAB, and its role in cyanobacteria, is lacking. The aspartate 4-phosphate pathway is a known route of 2,4-DAB biosynthesis in other bacteria and in some plant species. Another pathway to 2,4-DAB has been described in Lathyrus species. Here, we use bioinformatics analyses to investigate hypotheses concerning 2,4-DAB biosynthesis in cyanobacteria. We assessed the presence or absence of each enzyme in candidate biosynthesis routes, the aspartate 4-phosphate pathway and a pathway to 2,4-DAB derived from S-adenosyl-L-methionine (SAM), in 130 cyanobacterial genomes using sequence alignment, profile hidden Markov models, substrate specificity/active site identification and the reconstruction of gene phylogenies. In the aspartate 4-phosphate pathway, for the 18 species encoding diaminobutanoate-2-oxo-glutarate transaminase, the co-localisation of genes encoding the transaminase with the downstream decarboxylase or ectoine synthase - often within hybrid non-ribosomal peptide synthetase (NRPS)-polyketide synthases (PKS) clusters, NRPS-independent siderophore (NIS) clusters and incomplete ectoine clusters - is compatible with the hypothesis that some cyanobacteria use the aspartate 4-phosphate pathway for 2,4-DAB production. Through this route, in cyanobacteria, 2,4-DAB may be functionally associated with environmental iron-scavenging, via the production of siderophores of the schizokinen/synechobactin type and of some polyamines. In the pathway to 2,4-DAB derived from SAM, eight cyanobacterial species encode homologs of SAM-dependent 3-amino-3-carboxypropyl transferases. Other enzymes in this pathway have not yet been purified or sequenced. Ultimately, the biosynthesis of 2,4-DAB appears to be either restricted to some cyanobacterial species, or there may be multiple and additional routes, and roles, for the synthesis of this neurotoxin.


Assuntos
Cianobactérias , Neurotoxinas , Animais , Vias Biossintéticas , Cianobactérias/genética , Genômica , Policetídeo Sintases
12.
Sci Total Environ ; 764: 142319, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33069479

RESUMO

Microcystis spp., are Gram-negative, oxygenic, photosynthetic prokaryotes which use solar energy to convert carbon dioxide (CO2) and minerals into organic compounds and biomass. Eutrophication, rising CO2 concentrations and global warming are increasing Microcystis blooms globally. Due to its high availability and protein content, Microcystis biomass has been suggested as a protein source for animal feeds. This would reduce dependency on soybean and other agricultural crops and could make use of "waste" biomass when Microcystis scums and blooms are harvested. Besides proteins, Microcystis contain further nutrients including lipids, carbohydrates, vitamins and minerals. However, Microcystis produce cyanobacterial toxins, including microcystins (MCs) and other bioactive metabolites, which present health hazards. In this review, challenges of using Microcystis blooms in feeds are identified. First, nutritional and toxicological (nutri-toxicogical) data, including toxicity of Microcystis to mollusks, crustaceans, fish, amphibians, mammals and birds, is reviewed. Inclusion of Microcystis in diets caused greater mortality, lesser growth, cachexia, histopathological changes and oxidative stress in liver, kidney, gill, intestine and spleen of several fish species. Estimated daily intake (EDI) of MCs in muscle of fish fed Microcystis might exceed the provisional tolerable daily intake (TDI) for humans, 0.04 µg/kg body mass (bm)/day, as established by the World Health Organization (WHO), and is thus not safe. Muscle of fish fed M. aeruginosa is of low nutritional value and exhibits poor palatability/taste. Microcystis also causes hepatotoxicity, reproductive toxicity, cardiotoxicity, neurotoxicity and immunotoxicity to mollusks, crustaceans, amphibians, mammals and birds. Microbial pathogens can also occur in blooms of Microcystis. Thus, cyanotoxins/xenobiotics/pathogens in Microcystis biomass should be removed/degraded/inactivated sufficiently to assure safety for use of the biomass as a primary/main/supplemental ingredient in animal feed. As an ameliorative measure, antidotes/detoxicants can be used to avoid/reduce the toxic effects. Before using Microcystis in feed ingredients/supplements, further screening for health protection and cost control is required.


Assuntos
Microcystis , Ração Animal , Animais , Biomassa , Eutrofização , Humanos , Microcistinas/metabolismo , Microcystis/metabolismo , Estresse Oxidativo
13.
Environ Microbiol ; 12(10): 2797-813, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20545742

RESUMO

Despite its importance for bloom toxicity, the factors determining the population structure of cyanobacterial blooms are poorly understood. Here, we report the results of a two-year field survey of the population dynamics of Microcystis blooms in a small hypertrophic urban pond. Microscopic enumeration of Microcystis and its predators and parasites was combined with pigment and microcystin analysis and denaturing gradient gel electrophoresis of the ITS rDNA region to assess population dynamics and structure. Two main Microcystis morpho- and ITS types were revealed, corresponding to M. aeruginosa and M. viridis. In both years, high population densities of naked amoebae grazing on Microcystis coincided with rapid decreases in Microcystis biomass. In one year, there was a shift from heavily infested M. aeruginosa to the less-infested M. viridis, allowing the bloom to rapidly recover. The preference of amoebae for M. aeruginosa was confirmed by grazing experiments, in which several amoeba strains were capable of grazing down a strain of M. aeruginosa, but not of M. viridis. Zooplankton and chytrid parasites appeared to be of minor importance for these strong and fast reductions in Microcystis biomass. These findings demonstrate a strong impact of small protozoan grazers on the biomass and genetic structure of Microcystis blooms.


Assuntos
Amoeba , Biomassa , Microcystis/crescimento & desenvolvimento , Ecossistema , Cadeia Alimentar , Água Doce/química , Água Doce/microbiologia , Genoma Bacteriano , Microcystis/classificação , Microcystis/genética , Microbiologia da Água
14.
Toxins (Basel) ; 12(10)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019550

RESUMO

Toxin-producing cyanobacteria in aquatic, terrestrial, and aerial environments can occur alongside a wide range of additional health hazards including biological agents and synthetic materials. Cases of intoxications involving cyanobacteria and cyanotoxins, with exposure to additional hazards, are discussed. Examples of the co-occurrence of cyanobacteria in such combinations are reviewed, including cyanobacteria and cyanotoxins plus algal toxins, microbial pathogens and fecal indicator bacteria, metals, pesticides, and microplastics. Toxicity assessments of cyanobacteria, cyanotoxins, and these additional agents, where investigated in bioassays and in defined combinations, are discussed and further research needs are identified.


Assuntos
Toxinas Bacterianas/toxicidade , Cianobactérias/metabolismo , Exposição Ambiental , Poluentes Ambientais/toxicidade , Toxinas Marinhas/toxicidade , Microcistinas/toxicidade , Animais , Toxinas Bacterianas/metabolismo , Cianobactérias/crescimento & desenvolvimento , Toxinas de Cianobactérias , Monitoramento Ambiental , Proliferação Nociva de Algas , Humanos , Toxinas Marinhas/metabolismo , Microcistinas/metabolismo , Medição de Risco , Fatores de Risco , Microbiologia da Água
15.
Amyotroph Lateral Scler ; 10 Suppl 2: 74-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19929737

RESUMO

Cyanobacteria are cosmopolitan microbes that inhabit marine, freshwater and terrestrial environments. Under favourable conditions in waterbodies, they can form massive populations (blooms and scums), which present hazards to human and animal health. Such cyanobacteria often contain a variety of toxic substances (cyanotoxins) that can exist as both cell-associated and free forms in the surrounding water. Some cyanotoxins are highly neurotoxic and act through a variety of mechanisms. Recent findings of the production of the neurotoxin beta-N-methylamino-L-alanine (BMAA) by cyanobacteria in aquatic environments, and of BMAA in brain and cerebrospinal fluid samples of amyotrophic lateral sclerosis and Alzheimer's disease victims, raises the possibility that people may be exposed to waterborne BMAA of cyanobacterial origin and that this may contribute to human neurodegenerative disease. An understanding of the risks presented by waterborne BMAA and of available mitigation strategies to reduce this potential exposure is needed.


Assuntos
Diamino Aminoácidos/toxicidade , Cianobactérias/fisiologia , Doenças Neurodegenerativas/induzido quimicamente , Neurotoxinas/toxicidade , Microbiologia da Água , Animais , Toxinas de Cianobactérias , Ecossistema , Humanos , Poluição da Água
16.
Amyotroph Lateral Scler ; 10 Suppl 2: 67-70, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19929735

RESUMO

Beta-N-methylamino-L-alanine (BMAA), a neurotoxin and candidate contributory cause of neurodegenerative diseases including amyotrophic lateral sclerosis, is produced by aquatic and terrestrial cyanobacteria. We have determined BMAA toxicity to three aquatic animal species: zebra fish (Danio rerio), brine shrimp (Artemia salina) and the protozoan Nassula sorex. Responses included: clonus convulsions and abnormal spinal axis formation (D. rerio), loss of phototaxis (A. salina) and mortalities (all species). These systems offer potential to further understand BMAA toxicity and the bioaccumulation and fates of BMAA in aquatic food chains leading to potential human exposure.


Assuntos
Diamino Aminoácidos/toxicidade , Comportamento Animal/efeitos dos fármacos , Cianobactérias/química , Síndromes Neurotóxicas/etiologia , Neurotoxinas/toxicidade , Animais , Artemia , Toxinas de Cianobactérias , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Epilepsia Tônico-Clônica/induzido quimicamente , Transtornos de Fotossensibilidade/induzido quimicamente , Procyonidae , Doenças da Medula Espinal/induzido quimicamente , Fatores de Tempo , Peixe-Zebra
17.
Amyotroph Lateral Scler ; 10 Suppl 2: 109-17, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19929742

RESUMO

Veterans of the 1990-1991 Gulf War have been reported to have an increased incidence of amyotrophic lateral sclerosis (ALS) compared to personnel who were not deployed. An excess of ALS cases was diagnosed in Gulf War veterans younger than 45 years of age. Increased ALS among Gulf War veterans appears to be an outbreak time-limited to the decade following the Gulf War. Seeking to identify biologically plausible environmental exposures, we have focused on inhalation of cyanobacteria and cyanotoxins carried by dust in the Gulf region, particularly Qatar. Cyanobacterial crusts and mats are widespread in the deserts of Qatar, occupying up to 56% of the available area in some microhabitats. These cyanobacterial crusts, which help bind the desert sands, are dormant throughout most of the year, but during brief spring rains actively photosynthesize. When disturbed by vehicular traffic or other military activities, the dried crusts and mats can produce significant dust. Using HPLC/FD, an amino acid analyzer, UPLC/MS, and triple quadrupole LC/MS/MS we find that the dried crusts and mats contain neurotoxic cyanobacterial toxins, including beta-N-methylamino-L-alanine (BMAA) and 2,4 diaminobutyric acid (DAB). If dust containing cyanobacteria is inhaled, significant exposure to BMAA and other cyanotoxins may occur. We suggest that inhalation of BMAA, DAB, and other aerosolized cyanotoxins may constitute a significant risk factor for the development of ALS and other neurodegenerative diseases.


Assuntos
Diamino Aminoácidos/toxicidade , Aminoácidos Dicarboxílicos/toxicidade , Esclerose Lateral Amiotrófica/induzido quimicamente , Esclerose Lateral Amiotrófica/epidemiologia , Cianobactérias/fisiologia , Surtos de Doenças , Exposição Ambiental , Veteranos , Diamino Aminoácidos/análise , Aminoácidos Dicarboxílicos/análise , Aminobutiratos/análise , Aminobutiratos/toxicidade , Cromatografia Líquida de Alta Pressão/métodos , Ecossistema , Guerra do Golfo , Humanos , Estudos Retrospectivos , Estações do Ano , Espectrometria de Massas em Tandem/métodos
18.
Environ Health ; 8 Suppl 1: S11, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20102578

RESUMO

Mass populations of toxin-producing cyanobacteria commonly develop in fresh-, brackish- and marine waters and effective strategies for monitoring and managing cyanobacterial health risks are required to safeguard animal and human health. A multi-interdisciplinary study, including two UK freshwaters with a history of toxic cyanobacterial blooms, was undertaken to explore different approaches for the identification, monitoring and management of potentially-toxic cyanobacteria and their associated risks. The results demonstrate that (i) cyanobacterial bloom occurrence can be predicted at a local- and national-scale using process-based and statistical models; (ii) cyanobacterial concentration and distribution in waterbodies can be monitored using remote sensing, but minimum detection limits need to be evaluated; (iii) cyanotoxins may be transferred to spray-irrigated root crops; and (iv) attitudes and perceptions towards risks influence the public's preferences and willingness-to-pay for cyanobacterial health risk reductions in recreational waters.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Água Doce/microbiologia , Proliferação Nociva de Algas , Poluição da Água/prevenção & controle , Cianobactérias/isolamento & purificação , Humanos , Microcistinas/análise , Modelos Teóricos , Percepção , Medição de Risco , Fatores de Risco , Inquéritos e Questionários , Poluentes da Água/análise
19.
Toxicol Res (Camb) ; 8(6): 781-783, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32922737

RESUMO

The environmental distribution of the neurotoxic amino acid, 3-N-methyl-2,3-diaminopropanoic acid (BMAA), first isolated in 1967, was initially believed to be limited to tropical and subtropical plants of the genus Cycas. The seeds of one such species, which had been used historically on the Pacific island of Guam as a foodstuff, had a reputation for neurotoxicity. Some 40 years later the amino acid was detected in terrestrial and aquatic cyanobacteria and in other aquatic organisms. Overlooked was the discovery of BMAA in peptides of bizarre structure that had been isolated in 1975 from Paenibacillus pulvifaciens during a search for antibiotics. More recently (2014), peptides of similar structure were isolated from Paenibacillus larvae; this organism is causative of American Foulbrood, a lethal disease of honeybee colonies. These are interesting chemical and environmental observations, but knowledge of the bacterial distribution of BMAA is limited to just these two species of Paenibacillus, while more than 200 Paenibacillus spp. are known. Paenibacillus spp. are ever present naturally in the environment and are used agriculturally; recent research reports that some species infect human foods - including cow's milk - and have been isolated from human body fluids. We wish to stimulate interest in the environmental distribution of the neurotoxic BMAA in Paenibacillus spp. by drawing together previously isolated streams of research and by proposing experimental approaches by which this matter might be resolved.

20.
Environ Microbiol ; 10(3): 702-8, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18237305

RESUMO

The neurotoxic amino acid, beta-N-methylamino-L-alanine, was found to be present in all of 12 analysed samples of cyanobacterial blooms, scums and mats, which had been collected in seven years between 1990 and 2004 inclusive and stored at -20 degrees C. BMAA identification was by high performance liquid chromatography with fluorescence detection and by triple quadrapole mass spectrometry after derivatization. The samples originated from 11 freshwater lakes and 1 brackish waterbody, used either for drinking water, recreation, or both. BMAA was present at between 8 and 287 microg g(-1) cyanobacterial dry weight and was present as both the free amino acid and associated with precipitated proteins. Ten of the samples contained additional cyanotoxins (including microcystins, anatoxin-a, nodularin and saxitoxin) at the time of sample collection. Five of the samples were associated with animal deaths, attributable at the time of sample collection, to microcystins, nodularin or anatoxin-a. The data demonstrate the presence of BMAA by high performance liquid chromatography and mass spectrometry in a diverse range of cyanobacterial bloom samples from high resource waterbodies. Furthermore, samples collected over several years shows that BMAA can co-occur with other known cyanotoxins in such waterbodies. Health risk assessment of cyanobacterial BMAA in waterbodies is suggested.


Assuntos
Diamino Aminoácidos/biossíntese , Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/química , Cianobactérias/metabolismo , Toxinas Marinhas/análise , Microcistinas/biossíntese , Microcistinas/química , Microbiologia da Água , Poluentes da Água/toxicidade , Diamino Aminoácidos/química , Cromatografia Líquida de Alta Pressão/métodos , Cianobactérias/química , Toxinas de Cianobactérias , Toxinas Marinhas/biossíntese , Toxinas Marinhas/química , Neurotoxinas/biossíntese , Neurotoxinas/toxicidade , Espectrofotometria Ultravioleta , Poluentes da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA