Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 16(5): 405-408, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962622

RESUMO

Systematic investigation of the genetic interactions that influence metastatic potential has been challenging. Here we developed massively parallel CRISPR-Cpf1/Cas12a crRNA array profiling (MCAP), an approach for combinatorial interrogation of double knockouts in vivo. We designed an MCAP library of 11,934 arrays targeting 325 pairwise combinations of genes implicated in metastasis. By assessing the metastatic potential of the double knockouts in mice, we unveiled a quantitative landscape of genetic interactions that drive metastasis.


Assuntos
Proteínas de Bactérias/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Endonucleases/genética , Edição de Genes/métodos , Técnicas de Inativação de Genes/métodos , Metástase Neoplásica/genética , Animais , Proteína 9 Associada à CRISPR/genética , Linhagem Celular Tumoral , Camundongos , Análise de Sequência de RNA
2.
Genetics ; 224(1)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36911919

RESUMO

A broad array of endosymbionts radiate through host populations via vertical transmission, yet much remains unknown concerning the cellular basis, diversity, and routes underlying this transmission strategy. Here, we address these issues, by examining the cellular distributions of Wolbachia strains that diverged up to 50 million years ago in the oocytes of 18 divergent Drosophila species. This analysis revealed 3 Wolbachia distribution patterns: (1) a tight clustering at the posterior pole plasm (the site of germline formation); (2) a concentration at the posterior pole plasm, but with a significant bacteria population distributed throughout the oocyte; and (3) a distribution throughout the oocyte, with none or very few located at the posterior pole plasm. Examination of this latter class indicates Wolbachia accesses the posterior pole plasm during the interval between late oogenesis and the blastoderm formation. We also find that 1 Wolbachia strain in this class concentrates in the posterior somatic follicle cells that encompass the pole plasm of the developing oocyte. In contrast, strains in which Wolbachia concentrate at the posterior pole plasm generally exhibit no or few Wolbachia in the follicle cells associated with the pole plasm. Taken together, these studies suggest that for some Drosophila species, Wolbachia invade the germline from neighboring somatic follicle cells. Phylogenomic analysis indicates that closely related Wolbachia strains tend to exhibit similar patterns of posterior localization, suggesting that specific localization strategies are a function of Wolbachia-associated factors. Previous studies revealed that endosymbionts rely on 1 of 2 distinct routes of vertical transmission: continuous maintenance in the germline (germline-to-germline) or a more circuitous route via the soma (germline-to-soma-to-germline). Here, we provide compelling evidence that Wolbachia strains infecting Drosophila species maintain the diverse arrays of cellular mechanisms necessary for both of these distinct transmission routes. This characteristic may account for its ability to infect and spread globally through a vast range of host insect species.


Assuntos
Wolbachia , Animais , Wolbachia/genética , Drosophila melanogaster , Oócitos , Oogênese , Drosophila/genética
3.
J Hematol Oncol ; 15(1): 172, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456981

RESUMO

Immunotherapy has transformed cancer treatments; however, a large fraction of patients encounter resistance. Such resistance is mediated by complex factors, often involving interactions between multiple genes. Thus, it is crucially important to identify genetic interactions between genes that are significantly mutated in cancer patients and those involved in immune responses, ideally the ones that currently have chemical compounds for direct targeting. To systematically interrogate such genetic interactions that mediate cancer cells' response to T cell killing, we designed an asymmetric dual perturbation library targeting the matched combinations between significantly mutated tumor suppressors and immune resistance genes. We performed a combinatorial double knockout screen on 1159 gene pairs and identified those where joint loss-of-function renders altered cellular response to T cell cytotoxicity. We also performed comparative transcriptomics-based analyses on tumor and normal samples from TCGA and GTEx cohorts, mutational profiling analyses, and survival analyses to further characterize the significance of identified hits in clinical patients. Interactions between significantly mutated tumor suppressors and potentially druggable immune resistance genes may offer insights on potential new concepts of how to target clinically relevant cancer mutations with currently available agents. This study also provides a technology platform and an asymmetric double knockout library for interrogating genetic interactions between cancer mutations and immune resistance pathways under various settings.


Assuntos
Neoplasias , Linfócitos T , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Neoplasias/genética , Imunoterapia , Mutação
4.
Cell Syst ; 8(2): 136-151.e7, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30797773

RESUMO

The genetic makeup of cancer cells directs oncogenesis and influences the tumor microenvironment. In this study, we massively profiled genes that functionally drive tumorigenesis using genome-scale in vivo CRISPR screens in hosts with different levels of immunocompetence. As a convergent hit from these screens, Prkar1a mutant cells are able to robustly outgrow as tumors in fully immunocompetent hosts. Functional interrogation showed that Prkar1a loss greatly altered the transcriptome and proteome involved in inflammatory and immune responses as well as extracellular protein production. Single-cell transcriptomic profiling and flow cytometry analysis mapped the tumor microenvironment of Prkar1a mutant tumors and revealed the transcriptomic alterations in host myeloid cells. Taken together, our data suggest that tumor-intrinsic mutations in Prkar1a lead to drastic alterations in the genetic program of cancer cells, thereby remodeling the tumor microenvironment.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Perfilação da Expressão Gênica/métodos , Neoplasias/genética
5.
Genetics ; 205(4): 1473-1488, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28159754

RESUMO

Wolbachia are gram-negative, obligate, intracellular bacteria carried by a majority of insect species worldwide. Here we use a Wolbachia-infected Drosophila cell line and genome-wide RNA interference (RNAi) screening to identify host factors that influence Wolbachia titer. By screening an RNAi library targeting 15,699 transcribed host genes, we identified 36 candidate genes that dramatically reduced Wolbachia titer and 41 that increased Wolbachia titer. Host gene knockdowns that reduced Wolbachia titer spanned a broad array of biological pathways including genes that influenced mitochondrial function and lipid metabolism. In addition, knockdown of seven genes in the host ubiquitin and proteolysis pathways significantly reduced Wolbachia titer. To test the in vivo relevance of these results, we found that drug and mutant inhibition of proteolysis reduced levels of Wolbachia in the Drosophila oocyte. The presence of Wolbachia in either cell lines or oocytes dramatically alters the distribution and abundance of ubiquitinated proteins. Functional studies revealed that maintenance of Wolbachia titer relies on an intact host Endoplasmic Reticulum (ER)-associated protein degradation pathway (ERAD). Accordingly, electron microscopy studies demonstrated that Wolbachia is intimately associated with the host ER and dramatically alters the morphology of this organelle. Given Wolbachia lack essential amino acid biosynthetic pathways, the reliance of Wolbachia on high rates of host proteolysis via ubiquitination and the ERAD pathways may be a key mechanism for provisioning Wolbachia with amino acids. In addition, the reliance of Wolbachia on the ERAD pathway and disruption of ER morphology suggests a previously unsuspected mechanism for Wolbachia's potent ability to prevent RNA virus replication.


Assuntos
Drosophila/genética , Genoma de Inseto , Interações Hospedeiro-Patógeno/genética , Proteólise , Wolbachia/patogenicidade , Animais , Linhagem Celular , Drosophila/metabolismo , Drosophila/microbiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Degradação Associada com o Retículo Endoplasmático , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA