Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(17): e2218617120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068254

RESUMO

We have developed workflows to align 3D magnetic resonance histology (MRH) of the mouse brain with light sheet microscopy (LSM) and 3D delineations of the same specimen. We start with MRH of the brain in the skull with gradient echo and diffusion tensor imaging (DTI) at 15 µm isotropic resolution which is ~ 1,000 times higher than that of most preclinical MRI. Connectomes are generated with superresolution tract density images of ~5 µm. Brains are cleared, stained for selected proteins, and imaged by LSM at 1.8 µm/pixel. LSM data are registered into the reference MRH space with labels derived from the ABA common coordinate framework. The result is a high-dimensional integrated volume with registration (HiDiver) with alignment precision better than 50 µm. Throughput is sufficiently high that HiDiver is being used in quantitative studies of the impact of gene variants and aging on mouse brain cytoarchitecture and connectomics.


Assuntos
Imagem de Tensor de Difusão , Microscopia , Camundongos , Animais , Imagem de Tensor de Difusão/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Imagem de Difusão por Ressonância Magnética/métodos
2.
Behav Brain Funct ; 20(1): 14, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898502

RESUMO

BACKGROUND: Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with higher incidence in males and is characterized by atypical verbal/nonverbal communication, restricted interests that can be accompanied by repetitive behavior, and disturbances in social behavior. This study investigated brain mechanisms that contribute to sociability deficits and sex differences in an ASD animal model. METHODS: Sociability was measured in C58/J and C57BL/6J mice using the 3-chamber social choice test. Bulk RNA-Seq and snRNA-Seq identified transcriptional changes in C58/J and C57BL/6J amygdala within which DMRseq was used to measure differentially methylated regions in amygdala. RESULTS: C58/J mice displayed divergent social strata in the 3-chamber test. Transcriptional and pathway signatures revealed immune-related biological processes differ between C58/J and C57BL/6J amygdala. Hypermethylated and hypomethylated genes were identified in C58/J versus C57BL/6J amygdala. snRNA-Seq data in C58/J amygdala identified differential transcriptional signatures within oligodendrocytes and microglia characterized by increased ASD risk gene expression and predicted impaired myelination that was dependent on sex and sociability. RNA velocity, gene regulatory network, and cell communication analysis showed diminished oligodendrocyte/microglia differentiation. Findings were verified using Bulk RNA-Seq and demonstrated oxytocin's beneficial effects on myelin gene expression. LIMITATIONS: Our findings are significant. However, limitations can be noted. The cellular mechanisms linking reduced oligodendrocyte differentiation and reduced myelination to an ASD phenotype in C58/J mice need further investigation. Additional snRNA-Seq and spatial studies would determine if effects in oligodendrocytes/microglia are unique to amygdala or if this occurs in other brain regions. Oxytocin's effects need further examination to understand its' potential as an ASD therapeutic. CONCLUSIONS: Our work demonstrates the C58/J mouse model's utility in evaluating the influence of sex and sociability on the transcriptome in concomitant brain regions involved in ASD. Our single-nucleus transcriptome analysis elucidates potential pathological roles of oligodendrocytes and microglia in ASD. This investigation provides details regarding regulatory features disrupted in these cell types, including transcriptional gene dysregulation, aberrant cell differentiation, altered gene regulatory networks, and changes to key pathways that promote microglia/oligodendrocyte differentiation. Our studies provide insight into interactions between genetic risk and epigenetic processes associated with divergent affiliative behavior and lack of positive sociability.


Assuntos
Tonsila do Cerebelo , Transtorno do Espectro Autista , Camundongos Endogâmicos C57BL , Microglia , Oligodendroglia , Comportamento Social , Animais , Masculino , Microglia/metabolismo , Camundongos , Tonsila do Cerebelo/metabolismo , Feminino , Oligodendroglia/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Perfilação da Expressão Gênica/métodos , Fenótipo , Caracteres Sexuais , Transcriptoma , Modelos Animais de Doenças , Ocitocina/genética , Ocitocina/metabolismo
3.
NMR Biomed ; 36(2): e4842, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36259728

RESUMO

The United States is experiencing a dramatic increase in maternal opioid misuse and, consequently, the number of individuals exposed to opioids in utero. Prenatal opioid exposure has both acute and long-lasting effects on health and wellbeing. Effects on the brain, often identified at school age, manifest as cognitive impairment, attention deficit, and reduced scholastic achievement. The neurobiological basis for these effects is poorly understood. Here, we examine how in utero exposure to heroin affects brain development into early adolescence in a mouse model. Pregnant C57BL/6J mice received escalating doses of heroin twice daily on gestational days 4-18. The brains of offspring were assessed on postnatal day 28 using 9.4 T diffusion MRI of postmortem specimens at 36 µm resolution. Whole-brain volumes and the volumes of 166 bilateral regions were compared between heroin-exposed and control offspring. We identified a reduction in whole-brain volume in heroin-exposed offspring and heroin-associated volume changes in 29 regions after standardizing for whole-brain volume. Regions with bilaterally reduced standardized volumes in heroin-exposed offspring relative to controls include the ectorhinal and insular cortices. Regions with bilaterally increased standardized volumes in heroin-exposed offspring relative to controls include the periaqueductal gray, septal region, striatum, and hypothalamus. Leveraging microscopic resolution diffusion tensor imaging and precise regional parcellation, we generated whole-brain structural MRI diffusion connectomes. Using a dimension reduction approach with multivariate analysis of variance to assess group differences in the connectome, we found that in utero heroin exposure altered structure-based connectivity of the left septal region and the region that acts as a hub for limbic regulatory actions. Consistent with clinical evidence, our findings suggest that prenatal opioid exposure may have effects on brain morphology, connectivity, and, consequently, function that persist into adolescence. This work expands our understanding of the risks associated with opioid misuse during pregnancy and identifies biomarkers that may facilitate diagnosis and treatment.


Assuntos
Transtornos Relacionados ao Uso de Opioides , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Feminino , Animais , Camundongos , Heroína/efeitos adversos , Imagem de Tensor de Difusão/métodos , Analgésicos Opioides/farmacologia , Camundongos Endogâmicos C57BL , Encéfalo
4.
Neuroimage ; 255: 119199, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35417754

RESUMO

Diffusion magnetic resonance imaging has been widely used in both clinical and preclinical studies to characterize tissue microstructure and structural connectivity. The diffusion MRI protocol for the Human Connectome Project (HCP) has been developed and optimized to obtain high-quality, high-resolution diffusion MRI (dMRI) datasets. However, such efforts have not been fully explored in preclinical studies, especially for rodents. In this study, high quality dMRI datasets of mouse brains were acquired at 9.4T system from two vendors. In particular, we acquired a high-spatial resolution dMRI dataset (25 µm isotropic with 126 diffusion encoding directions), which we believe to be the highest spatial resolution yet obtained; and a high-angular resolution dMRI dataset (50 µm isotropic with 384 diffusion encoding directions), which we believe to be the highest angular resolution compared to the dMRI datasets at the microscopic resolution. We systematically investigated the effects of three important parameters that affect the final outcome of the connectome: b value (1000s/mm2 to 8000 s/mm2), angular resolution (10 to 126), and spatial resolution (25 µm to 200 µm). The stability of tractography and connectome increase with the angular resolution, where more than 50 angles is necessary to achieve consistent results. The connectome and quantitative parameters derived from graph theory exhibit a linear relationship to the b value (R2 > 0.99); a single-shell acquisition with b value of 3000 s/mm2 shows comparable results to the multi-shell high angular resolution dataset. The dice coefficient decreases and both false positive rate and false negative rate gradually increase with coarser spatial resolution. Our study provides guidelines and foundations for exploration of tradeoffs among acquisition parameters for the structural connectome in ex vivo mouse brain.


Assuntos
Conectoma , Animais , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Camundongos
5.
NMR Biomed ; 35(1): e4611, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34558744

RESUMO

While the application of diffusion tensor imaging (DTI), tractography, and connectomics to fixed tissue is a common practice today, there have been limited studies examining the effects of fixation on brain microstructure over extended periods. This mouse model time-course study reports the changes of regional brain volumes and diffusion scalar parameters, such as fractional anisotropy, across 12 representative brain regions as measures of brain structural stability. The scalar DTI parameters and regional volumes were highly variable over the first 2 weeks after fixation. The same parameters were consistent over a 2-8-week window after fixation, which means confounds from tissue stability over that scanning window were minimal. Quantitative connectomes were analyzed over the same time with extension out to 1 year. While there was some change in the scalar metrics at 1 year after fixation, these changes were sufficiently small, particularly in white matter, to support reproducible connectomes over a period ranging from 2-weeks to 1-year post-fixation. These findings delineate a scanning period, during which brain volumes, diffusion scalar metrics, and connectomes are remarkably consistent.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma , Imagem de Tensor de Difusão/métodos , Animais , Anisotropia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Neuroimage ; 242: 118470, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391877

RESUMO

We describe a multi-contrast, multi-dimensional atlas of the Wistar rat acquired at microscopic spatial resolution using magnetic resonance histology (MRH). Diffusion weighted images, and associated scalar images were acquired of a single specimen with a fully sampled Fourier reconstruction, 61 angles and b=3000 s/mm2 yielding 50 um isotropic spatial resolution. The higher angular sampling allows use of the GQI algorithm improving the angular invariance of the scalar images and yielding an orientation distribution function to assist in delineating subtle boundaries where there are crossing fibers  and track density images providing insight into local fiber architecture.  A multigradient echo image of the same specimen was acquired at 25 um isotropic spatial resolution. A quantitative susceptibility map enhances fiber architecture relative to the magnitude images.  An accompanying multi-specimen atlas (n=6) was acquired with compressed sensing with the same diffusion protocol as used for the single specimen atlas.  An average was created using diffeomorphic mapping. Scalar volumes from the diffusion data, a T2* weighted volume, a quantitative susceptibility map, and a track density volume, all registered to the same space provide multiple contrasts to assist in anatomic delineation. The new template  provides significantly increased contrast in the scalar DTI images when compared to previous atlases. A compact interactive viewer based on 3D Slicer is provided to facilitate comparison among the contrasts in the multiple volumes. The single volume and average atlas with multiple 3D volumes provide an improved template for anatomic interrogation of the Wistar rat brain. The improved contrast to noise in the scalar DTI images and the addition of other volumes (eg. QA,QSM,TDI ) will facilitate automated label registration for MR histology and preclinical imaging.


Assuntos
Encéfalo/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Ratos Wistar/anatomia & histologia , Animais , Atlas como Assunto , Mapeamento Encefálico/métodos , Imagem de Difusão por Ressonância Magnética , Masculino , Ratos
7.
Neuroimage ; 237: 118135, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33951517

RESUMO

Conventional atlases of the human brainstem are limited by the inflexible, sparsely-sampled, two-dimensional nature of histology, or the low spatial resolution of conventional magnetic resonance imaging (MRI). Postmortem high-resolution MRI circumvents the challenges associated with both modalities. A single human brainstem specimen extending from the rostral diencephalon through the caudal medulla was prepared for imaging after the brain was removed from a 65-year-old male within 24 h of death. The specimen was formalin-fixed for two weeks, then rehydrated and placed in a custom-made MRI compatible tube and immersed in liquid fluorocarbon. MRI was performed in a 7-Tesla scanner with 120 unique diffusion directions. Acquisition time for anatomic and diffusion images were 14 h and 208 h, respectively. Segmentation was performed manually. Deterministic fiber tractography was done using strategically chosen regions of interest and avoidance, with manual editing using expert knowledge of human neuroanatomy. Anatomic and diffusion images were rendered with isotropic resolutions of 50 µm and 200 µm, respectively. Ninety different structures were segmented and labeled, and 11 different fiber bundles were rendered with tractography. The complete atlas is available online for interactive use at https://www.civmvoxport.vm.duke.edu/voxbase/login.php?return_url=%2Fvoxbase%2F. This atlas presents multiple contrasting datasets and selected tract reconstruction with unprecedented resolution for MR imaging of the human brainstem. There are immediate applications in neuroanatomical education, with the potential to serve future applications for neuroanatomical research and enhanced neurosurgical planning through "safe" zones of entry into the human brainstem.


Assuntos
Atlas como Assunto , Tronco Encefálico , Imagem de Tensor de Difusão , Substância Cinzenta , Substância Branca , Autopsia , Tronco Encefálico/anatomia & histologia , Tronco Encefálico/diagnóstico por imagem , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem , Humanos , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem
8.
Neuroimage ; 216: 116876, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32344062

RESUMO

MRI has been widely used to probe the neuroanatomy of the mouse brain, directly correlating MRI findings to histology is still challenging due to the limited spatial resolution and various image contrasts derived from water relaxation or diffusion properties. Magnetic resonance histology has the potential to become an indispensable research tool to mitigate such challenges. In the present study, we acquired high spatial resolution MRI datasets, including diffusion MRI (dMRI) at 25 â€‹µm isotropic resolution and quantitative susceptibility mapping (QSM) at 21.5 â€‹µm isotropic resolution to validate with conventional mouse brain histology. Diffusion weighted images (DWIs) show better delineation of cortical layers and glomeruli in the olfactory bulb than fractional anisotropy (FA) maps. However, among all the image contrasts, including quantitative susceptibility mapping (QSM), T1/T2∗ images and DTI metrics, FA maps highlight unique laminar architecture in sub-regions of the hippocampus, including the strata of the dentate gyrus and CA fields of the hippocampus. The mean diffusivity (MD) and axial diffusivity (AD) yield higher correlation with DAPI (0.62 and 0.71) and NeuN (0.78 and 0.74) than with NF-160 (-0.34 and -0.49). The correlations between FA and DAPI, NeuN, and NF-160 are 0.31, -0.01, and -0.49, respectively. Our findings demonstrate that MRI at microscopic resolution deliver a three-dimensional, non-invasive and non-destructive platform for characterization of fine structural detail in both gray matter and white matter of the mouse brain.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Substância Cinzenta/citologia , Substância Cinzenta/diagnóstico por imagem , Substância Branca/citologia , Substância Branca/diagnóstico por imagem , Animais , Imagem de Tensor de Difusão/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Magn Reson Med ; 84(2): 908-919, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31962373

RESUMO

PURPOSE: To evaluate the complex fiber orientations and 3D collagen fiber network of knee joint connective tissues, including ligaments, muscle, articular cartilage, and meniscus using high spatial and angular resolution diffusion imaging. METHODS: Two rat knee joints were scanned using a modified 3D diffusion-weighted spin echo pulse sequence with the isotropic spatial resolution of 45 µm at 9.4T. The b values varied from 250 to 1250 s/mm2 with 31 diffusion encoding directions for 1 rat knee. The b value was fixed to 1000 s/mm2 with 147 diffusion encoding directions for the second knee. Both the diffusion tensor imaging (DTI) model and generalized Q-sampling imaging (GQI) method were used to investigate the fiber orientation distributions and tractography with the validation of polarized light microscopy. RESULTS: To better resolve the crossing fibers, the b value should be great than or equal to 1000 s/mm2 . The tractography results were comparable between the DTI model and GQI method in ligament and muscle. However, the tractography exhibited apparent difference between DTI and GQI in connective tissues with more complex collagen fibers network, such as cartilage and meniscus. In articular cartilage, there were numerous crossing fibers found in superficial zone and transitional zone. Tractography generated with GQI also resulted in more intact tracts in articular cartilage than DTI. CONCLUSION: High-resolution diffusion imaging with GQI method can trace the complex collagen fiber orientations and architectures of the knee joint at microscopic resolution.


Assuntos
Cartilagem Articular , Imagem de Tensor de Difusão , Animais , Cartilagem Articular/diagnóstico por imagem , Colágeno , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Articulação do Joelho/diagnóstico por imagem , Ratos
10.
Magn Reson Med ; 81(6): 3775-3786, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30671998

RESUMO

PURPOSE: To evaluate whole knee joint tractography, including articular cartilage, ligaments, meniscus, and growth plate using diffusion tensor imaging (DTI) at microscopic resolution. METHODS: Three rat knee joints were scanned using a modified 3D diffusion-weighted spin echo pulse sequence with 90- and 45-µm isotropic spatial resolution at 9.4T. The b values varied from 250 to 1250 s/mm2 with 4 times undersampling in phase directions. Fractional anisotropy (FA) and mean diffusivity (MD) were compared at different spatial resolution and b values. Tractography was evaluated at multiple b values and angular resolutions in different connective tissues, and compared with conventional histology. The mean tract length and tract volume in various types of tissues were also quantified. RESULTS: DTI metrics (FA and MD) showed consistent quantitative results at 90- and 45-µm isotropic spatial resolutions. Tractography of various connective tissues was found to be sensitive to the spatial resolution, angular resolution, and diffusion weightings. Higher spatial resolution (45 µm) supported tracking the cartilage collagen fiber tracts from the superficial zone to the deep zone, in a continuous and smooth progression in the transitional zone. Fiber length and fiber volume in the growth plate were strongly dependent on angular resolution and b values, whereas tractography in ligaments was found to be less dependent on spatial resolution. CONCLUSION: High spatial and angular resolution DTI and diffusion tractography can be valuable for knee joint research because of its visualization capacity for collagen fiber orientations and quantitative evaluation of tissue's microscopic properties.


Assuntos
Ligamento Cruzado Anterior/diagnóstico por imagem , Cartilagem Articular/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Joelho de Quadrúpedes/diagnóstico por imagem , Animais , Anisotropia , Ratos
11.
NMR Biomed ; 31(6): e3921, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29675882

RESUMO

The correlation between brain connectivity and psychiatric or neurological diseases has intensified efforts to develop brain connectivity mapping techniques on mouse models of human disease. The neural architecture of mouse brain specimens can be shown non-destructively and three-dimensionally by diffusion tensor imaging, which enables tractography, the establishment of a connectivity matrix and connectomics. However, experiments on cohorts of animals can be prohibitively long. To improve throughput in a 7-T preclinical scanner, we present a novel two-coil system in which each coil is shielded, placed off-isocenter along the axis of the magnet and connected to a receiver circuit of the scanner. Preservation of the quality factor of each coil is essential to signal-to-noise ratio (SNR) performance and throughput, because mouse brain specimen imaging at 7 T takes place in the coil-dominated noise regime. In that regime, we show a shielding configuration causing no SNR degradation in the two-coil system. To acquire data from several coils simultaneously, the coils are placed in the magnet bore, around the isocenter, in which gradient field distortions can bias diffusion tensor imaging metrics, affect tractography and contaminate measurements of the connectivity matrix. We quantified the experimental alterations in fractional anisotropy and eigenvector direction occurring in each coil. We showed that, when the coils were placed 12 mm away from the isocenter, measurements of the brain connectivity matrix appeared to be minimally altered by gradient field distortions. Simultaneous measurements on two mouse brain specimens demonstrated a full doubling of the diffusion tensor imaging throughput in practice. Each coil produced images devoid of shading or artifact. To further improve the throughput of mouse brain connectomics, we suggested a future expansion of the system to four coils. To better understand acceptable trade-offs between imaging throughput and connectivity matrix integrity, studies may seek to clarify how measurement variability, post-processing techniques and biological variability impact mouse brain connectomics.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma , Imagem de Tensor de Difusão , Animais , Imageamento Tridimensional , Camundongos , Razão Sinal-Ruído
12.
Magn Reson Med ; 78(5): 1683-1690, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28856712

RESUMO

PURPOSE: To investigate the B0 orientation-dependent magnetic susceptibility of collagen fibrils within the articular cartilage and to determine whether susceptibility tensor imaging (STI) can detect the 3D collagen network within cartilage. METHODS: Multiecho gradient echo datasets (100-µm isotropic resolution) were acquired from fixed porcine articular cartilage specimens at 9.4 T. The susceptibility tensor was calculated using phase images acquired at 12 or 15 different orientations relative to B0 . The susceptibility anisotropy of the collagen fibril was quantified and diffusion tensor imaging (DTI) was compared against STI. 3D tractography was performed to visualize and track the collagen fibrils with DTI and STI. RESULTS: STI experiments showed the distinct and significant anisotropic magnetic susceptibility of collagen fibrils within the articular cartilage. STI can be used to measure and quantify susceptibility anisotropy maps. Furthermore, STI provides orientation information of the underlying collagen network via 3D tractography. CONCLUSION: The findings of this study demonstrate that STI can characterize the orientation variation of collagen fibrils where diffusion anisotropy fails. We believe that STI could serve as a sensitive and noninvasive marker to study the collagen fibrils microstructure. Magn Reson Med 78:1683-1690, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Colágeno/química , Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Suínos
13.
Neuroimage ; 142: 498-511, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27521741

RESUMO

Multivariate biomarkers are needed for detecting Alzheimer's disease (AD), understanding its etiology, and quantifying the effect of therapies. Mouse models provide opportunities to study characteristics of AD in well-controlled environments that can help facilitate development of early interventions. The CVN-AD mouse model replicates multiple AD hallmark pathologies, and we identified multivariate biomarkers characterizing a brain circuit disruption predictive of cognitive decline. In vivo and ex vivo magnetic resonance imaging (MRI) revealed that CVN-AD mice replicate the hippocampal atrophy (6%), characteristic of humans with AD, and also present changes in subcortical areas. The largest effect was in the fornix (23% smaller), which connects the septum, hippocampus, and hypothalamus. In characterizing the fornix with diffusion tensor imaging, fractional anisotropy was most sensitive (20% reduction), followed by radial (15%) and axial diffusivity (2%), in detecting pathological changes. These findings were strengthened by optical microscopy and ultrastructural analyses. Ultrastructual analysis provided estimates of axonal density, diameters, and myelination-through the g-ratio, defined as the ratio between the axonal diameter, and the diameter of the axon plus the myelin sheath. The fornix had reduced axonal density (47% fewer), axonal degeneration (13% larger axons), and abnormal myelination (1.5% smaller g-ratios). CD68 staining showed that white matter pathology could be secondary to neuronal degeneration, or due to direct microglial attack. In conclusion, these findings strengthen the hypothesis that the fornix plays a role in AD, and can be used as a disease biomarker and as a target for therapy.


Assuntos
Doença de Alzheimer/patologia , Imagem de Tensor de Difusão/métodos , Fórnice/patologia , Hipocampo/patologia , Microscopia Eletrônica/métodos , Substância Branca/patologia , Doença de Alzheimer/diagnóstico por imagem , Animais , Atrofia/patologia , Biomarcadores , Modelos Animais de Doenças , Fórnice/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Camundongos , Camundongos Transgênicos , Substância Branca/diagnóstico por imagem
14.
Cereb Cortex ; 25(11): 4628-37, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26048951

RESUMO

Interest in structural brain connectivity has grown with the understanding that abnormal neural connections may play a role in neurologic and psychiatric diseases. Small animal connectivity mapping techniques are particularly important for identifying aberrant connectivity in disease models. Diffusion magnetic resonance imaging tractography can provide nondestructive, 3D, brain-wide connectivity maps, but has historically been limited by low spatial resolution, low signal-to-noise ratio, and the difficulty in estimating multiple fiber orientations within a single image voxel. Small animal diffusion tractography can be substantially improved through the combination of ex vivo MRI with exogenous contrast agents, advanced diffusion acquisition and reconstruction techniques, and probabilistic fiber tracking. Here, we present a comprehensive, probabilistic tractography connectome of the mouse brain at microscopic resolution, and a comparison of these data with a neuronal tracer-based connectivity data from the Allen Brain Atlas. This work serves as a reference database for future tractography studies in the mouse brain, and demonstrates the fundamental differences between tractography and neuronal tracer data.


Assuntos
Encéfalo/anatomia & histologia , Conectoma , Imagem de Difusão por Ressonância Magnética , Vias Neurais/anatomia & histologia , Animais , Encéfalo/metabolismo , Meios de Contraste , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Vias Neurais/fisiologia
15.
Magn Reson Med ; 73(3): 1270-81, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24700637

RESUMO

PURPOSE: The purpose of this study was to determine whether susceptibility tensor imaging (STI) could overcome limitations of current techniques to detect tubules throughout the kidney. METHODS: Normal mouse kidneys (n = 4) were imaged at 9.4T using a three-dimensional gradient multi-echo sequence (55-micron isotropic resolution). Phase images from 12 orientations were obtained to compute the susceptibility tensor. Diffusion tensor imaging (DTI) with 12 encoding directions was compared with STI. Tractography was performed to visualize and track the course of tubules with DTI and STI. Confocal microscopy was used to identify which tubular segments of the nephron were detected by DTI and STI. RESULTS: Diffusion anisotropy was limited to the inner medulla of the kidney. DTI did not find a significant number of coherent tubular tracks in the outer medulla or cortex. With STI, we found strong susceptibility anisotropy and many tracks in the inner and outer medulla and in limited areas of the cortex. CONCLUSION: STI was able to track tubules throughout the kidney, whereas DTI was limited to the inner medulla. STI provides a novel contrast mechanism related to local tubule microstructure and may offer a powerful method to study the nephron.


Assuntos
Algoritmos , Imagem de Tensor de Difusão/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Túbulos Renais/citologia , Animais , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Magn Reson Med ; 72(6): 1702-11, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24443202

RESUMO

PURPOSE: MR histology based on magnetic susceptibility can be used to visualize diamagnetic myelin (and its deterioration) in the central nervous system and is facilitated by the application of high magnetic field strengths and paramagnetic contrast agents. Characterizing the effect of these tools will aid in assessing white matter myelin content and microstructure. METHODS: Image data from six gadolinium-perfused mouse brain specimens were acquired at 2.0, 7.0, and 9.4 Tesla. Magnetic susceptibility contrast was analyzed for its dependence on field strength, gadolinium concentration, and white matter fiber orientation. A model for this contrast is presented based on the three-pool model for white matter. RESULTS: The specimen data illustrate that white-gray matter susceptibility contrast is field strength independent. White-gray matter contrast improves significantly as a function of gadolinium contrast agent in the tissue, i.e., white matter appears increasingly more diamagnetic relative to gray matter. The simulated data from the model suggest that susceptibility anisotropy of white matter fiber bundles increases nonlinearly as a function of gadolinium concentration due to contrast agent compartmentalization into the extracellular white matter water pool. CONCLUSION: Using contrast agents in MR histology facilitates white-gray matter susceptibility contrast modulation and the probing of white matter microstructure and orientation.


Assuntos
Encéfalo/citologia , Imagem de Tensor de Difusão/métodos , Substância Cinzenta/citologia , Compostos Heterocíclicos/administração & dosagem , Compostos Organometálicos/administração & dosagem , Substância Branca/citologia , Animais , Anisotropia , Encéfalo/efeitos dos fármacos , Meios de Contraste/administração & dosagem , Relação Dose-Resposta a Droga , Gadolínio/administração & dosagem , Substância Cinzenta/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Substância Branca/efeitos dos fármacos
17.
Front Oncol ; 14: 1287479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884083

RESUMO

Purpose: To identify significant relationships between quantitative cytometric tissue features and quantitative MR (qMRI) intratumorally in preclinical undifferentiated pleomorphic sarcomas (UPS). Materials and methods: In a prospective study of genetically engineered mouse models of UPS, we registered imaging libraries consisting of matched multi-contrast in vivo MRI, three-dimensional (3D) multi-contrast high-resolution ex vivo MR histology (MRH), and two-dimensional (2D) tissue slides. From digitized histology we generated quantitative cytometric feature maps from whole-slide automated nuclear segmentation. We automatically segmented intratumoral regions of distinct qMRI values and measured corresponding cytometric features. Linear regression analysis was performed to compare intratumoral qMRI and tissue cytometric features, and results were corrected for multiple comparisons. Linear correlations between qMRI and cytometric features with p values of <0.05 after correction for multiple comparisons were considered significant. Results: Three features correlated with ex vivo apparent diffusion coefficient (ADC), and no features correlated with in vivo ADC. Six features demonstrated significant linear relationships with ex vivo T2*, and fifteen features correlated significantly with in vivo T2*. In both cases, nuclear Haralick texture features were the most prevalent type of feature correlated with T2*. A small group of nuclear topology features also correlated with one or both T2* contrasts, and positive trends were seen between T2* and nuclear size metrics. Conclusion: Registered multi-parametric imaging datasets can identify quantitative tissue features which contribute to UPS MR signal. T2* may provide quantitative information about nuclear morphology and pleomorphism, adding histological insights to radiological interpretation of UPS.

18.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293238

RESUMO

Background: Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with higher incidence in males and is characterized by atypical verbal/nonverbal communication, restricted interests that can be accompanied by repetitive behavior, and disturbances in social behavior. This study investigated brain mechanisms that contribute to sociability deficits and sex differences in an ASD animal model. Methods: Sociability was measured in C58/J and C57BL/6J mice using the 3-chamber social choice test. Bulk RNA-Seq and snRNA-Seq identified transcriptional changes in C58/J and C57BL/6J amygdala within which DMRseq was used to measure differentially methylated regions in amygdala. Results: C58/J mice displayed divergent social strata in the 3-chamber test. Transcriptional and pathway signatures revealed immune-related biological processes differ between C58/J and C57BL/6J amygdala. Hypermethylated and hypomethylated genes were identified in C58/J versus C57BL/6J amygdala. snRNA-Seq data in C58/J amygdala identified differential transcriptional signatures within oligodendrocytes and microglia characterized by increased ASD risk gene expression and predicted impaired myelination that was dependent on sex and sociability. RNA velocity, gene regulatory network, and cell communication analysis showed diminished oligodendrocyte/microglia differentiation. Findings were verified using bulk RNA-Seq and demonstrated oxytocin's beneficial effects on myelin gene expression. Limitations: Our findings are significant. However, limitations can be noted. The cellular mechanisms linking reduced oligodendrocyte differentiation and reduced myelination to an ASD phenotype in C58/J mice need further investigation. Additional snRNA-Seq and spatial studies would determine if effects in oligodendrocytes/microglia are unique to amygdala or if this occurs in other brain regions. Oxytocin's effects need further examination to understand its potential as an ASD therapeutic. Conclusions: Our work demonstrates the C58/J mouse model's utility in evaluating the influence of sex and sociability on the transcriptome in concomitant brain regions involved in ASD. Our single-nucleus transcriptome analysis elucidates potential pathological roles of oligodendrocytes and microglia in ASD. This investigation provides details regarding regulatory features disrupted in these cell types, including transcriptional gene dysregulation, aberrant cell differentiation, altered gene regulatory networks, and changes to key pathways that promote microglia/oligodendrocyte differentiation. Our studies provide insight into interactions between genetic risk and epigenetic processes associated with divergent affiliative behavior and lack of positive sociability.

19.
NMR Biomed ; 26(4): 424-35, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23065808

RESUMO

In this study, hyperpolarized (129) Xe MR ventilation and (1) H anatomical images were obtained from three subject groups: young healthy volunteers (HVs), subjects with chronic obstructive pulmonary disease (COPD) and age-matched controls (AMCs). Ventilation images were quantified by two methods: an expert reader-based ventilation defect score percentage (VDS%) and a semi-automated segmentation-based ventilation defect percentage (VDP). Reader-based values were assigned by two experienced radiologists and resolved by consensus. In the semi-automated analysis, (1) H anatomical images and (129) Xe ventilation images were both segmented following registration to obtain the thoracic cavity volume and ventilated volume, respectively, which were then expressed as a ratio to obtain the VDP. Ventilation images were also characterized by generating signal intensity histograms from voxels within the thoracic cavity volume, and heterogeneity was analyzed using the coefficient of variation (CV). The reader-based VDS% correlated strongly with the semi-automatically generated VDP (r = 0.97, p < 0.0001) and with CV (r = 0.82, p < 0.0001). Both (129) Xe ventilation defect scoring metrics readily separated the three groups from one another and correlated significantly with the forced expiratory volume in 1 s (FEV1 ) (VDS%: r = -0.78, p = 0.0002; VDP: r = -0.79, p = 0.0003; CV: r = -0.66, p = 0.0059) and other pulmonary function tests. In the healthy subject groups (HVs and AMCs), the prevalence of ventilation defects also increased with age (VDS%: r = 0.61, p = 0.0002; VDP: r = 0.63, p = 0.0002). Moreover, ventilation histograms and their associated CVs distinguished between subjects with COPD with similar ventilation defect scores, but visibly different ventilation patterns.


Assuntos
Voluntários Saudáveis , Espectroscopia de Prótons por Ressonância Magnética , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Ventilação Pulmonar , Adulto , Fatores Etários , Automação , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Variações Dependentes do Observador , Testes de Função Respiratória , Isótopos de Xenônio
20.
Toxicol Pathol ; 40(5): 764-78, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22504322

RESUMO

Magnetic resonance histology (MRH) has become a valuable tool in evaluating drug-induced toxicity in preclinical models. However, its application in renal injury has been limited. This study tested the hypothesis that MRH could detect image-based biomarkers of chronic disease, inflammation, or age-related degeneration in the kidney, laying the foundation for more extensive use in evaluating drug toxicity. We examined the entire intact kidney in a spontaneous model of chronic progressive nephropathy. Kidneys from male Sprague Dawley rats were imaged at 8 weeks (n = 4) and 52 weeks (n =4) on a 9.4 T system dedicated to MR microscopy. Several potential contrast mechanisms were explored to optimize the scanning protocols. Full coverage of the entire kidney was achieved with isotropic spatial resolution at 31 microns (voxel volume = 30 pL) using a gradient recalled echo sequence. Isotropic spatial resolution of 15 microns (voxel volume < 4 pL) was achieved in a biopsy core specimen. Qualitative age-related structural changes, such as renal cortical microvasculature, tubular dilation, interstitial fibrosis, and glomerular architecture, were apparent. The nondestructive 3D images allowed measurement of quantitative differences of kidney volume, pelvis volume, main vessel volume, glomerular size, as well as thickness of the cortex, outer medulla, and inner medulla.


Assuntos
Envelhecimento/patologia , Nefropatias/patologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Animais , Córtex Renal/anatomia & histologia , Córtex Renal/patologia , Glomérulos Renais/anatomia & histologia , Glomérulos Renais/patologia , Medula Renal/anatomia & histologia , Medula Renal/patologia , Masculino , Microscopia Eletrônica de Varredura , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA