Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Faraday Discuss ; 207: 471-489, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29355274

RESUMO

Typical purple bacterial photosynthetic units consist of light harvesting one/reaction centre 'core' complexes surrounded by light harvesting two complexes. Factors such as the number and size of photosynthetic units per cell, as well as the type of light harvesting two complex that is produced, are controlled by environmental factors. In this paper, the change in the type of LH2 present in the Rhodopsuedomonas acidophila strain 7050 is described when cells are grown at a range of different light intensities. This species contains multiple pucBA genes that encode the apoproteins that form light-harvesting complex two, and a more complex mixture of spectroscopic forms of this complex has been found than was previously thought to be the case. Femto-second time resolved absorption has been used to investigate how the energy transfer properties in the membranes of high-light and low-light adapted cells change as the composition of the LH2 complexes varies.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Luz , Rodopseudomonas/crescimento & desenvolvimento , Rodopseudomonas/efeitos da radiação , Rodopseudomonas/classificação , Rodopseudomonas/metabolismo
2.
Opt Lett ; 42(4): 859-862, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198883

RESUMO

We demonstrate angle-resolved coherent (ARC) wave mixing using 4 fs light pulses derived from a laser source that spans 550-1000 nm. We believe this to be the shortest pulse duration used to date in coherent multi-dimensional spectroscopy. The marriage of this ultra-broad band, few-cycle coherent source with the ARC technique will permit new investigations of the interplay between energy transfers and quantum superposition states spanning 8200 cm-1. We applied this configuration to measurements on the photosynthetic low light (LL) complex from Rhodopseudomonas palustris in solution at ambient temperature. We observe bi-exponential population dynamics for energy transfer across 5500 cm-1 (0.65 eV), which we attribute to energy transfer from the Qx transition of bacteriochlorophylls to the B850 pigment of the complex. We believe for the first time, to the best of our knowledge, we demonstrate that ARC maps can be recorded using a single laser pulse.

3.
J Chem Phys ; 142(21): 212446, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-26049466

RESUMO

Photosynthetic antenna complexes harvest sunlight and efficiently transport energy to the reaction center where charge separation powers biochemical energy storage. The discovery of existence of long lived quantum coherence during energy transfer has sparked the discussion on the role of quantum coherence on the energy transfer efficiency. Early works assigned observed coherences to electronic states, and theoretical studies showed that electronic coherences could affect energy transfer efficiency--by either enhancing or suppressing transfer. However, the nature of coherences has been fiercely debated as coherences only report the energy gap between the states that generate coherence signals. Recent works have suggested that either the coherences observed in photosynthetic antenna complexes arise from vibrational wave packets on the ground state or, alternatively, coherences arise from mixed electronic and vibrational states. Understanding origin of coherences is important for designing molecules for efficient light harvesting. Here, we give a direct experimental observation from a mutant of LH2, which does not have B800 chromophores, to distinguish between electronic, vibrational, and vibronic coherence. We also present a minimal theoretical model to characterize the coherences both in the two limiting cases of purely vibrational and purely electronic coherence as well as in the intermediate, vibronic regime.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Rhodobacter sphaeroides/química , Vibração , Transferência de Energia , Teoria Quântica , Rhodobacter sphaeroides/metabolismo
4.
Phys Chem Chem Phys ; 16(19): 9015-22, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24695542

RESUMO

Fluorescence imaging of hybrid nanostructures composed of a bacterial light-harvesting complex LH2 and Au nanorods with controlled coupling strength is employed to study the spectral dependence of the plasmon-induced fluorescence enhancement. Perfect matching of the plasmon resonances in the nanorods with the absorption bands of the LH2 complexes facilitates a direct comparison of the enhancement factors for longitudinal and transverse plasmon frequencies of the nanorods. We find that the fluorescence enhancement due to excitation of longitudinal resonance can be up to five-fold stronger than for the transverse one. We attribute this result, which is important for designing plasmonic functional systems, to a very different distribution of the enhancement of the electric field due to the excitation of the two characteristic plasmon modes in nanorods.


Assuntos
Fluorescência , Ouro/química , Complexos de Proteínas Captadores de Luz/química , Nanotubos/química , Ouro/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo
5.
J Phys Chem A ; 117(29): 6303-10, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23577754

RESUMO

We investigate the nature of the S* excited state in carotenoids by performing a series of pump-probe experiments with sub-20 fs time resolution on spirilloxanthin in a polymethyl-methacrylate matrix varying the sample temperature. Following photoexcitation, we observe sub-200 fs internal conversion of the bright S2 state into the lower-lying S1 and S* states, which in turn relax to the ground state on a picosecond time scale. Upon cooling down the sample to 77 K, we observe a systematic decrease of the S*/S1 ratio. This result can be explained by assuming two thermally populated ground state isomers. The higher lying one generates the S* state, which can then be effectively frozen out by cooling. These findings are supported by quantum chemical modeling and provide strong evidence for the existence and importance of ground state isomers in the photophysics of carotenoids.


Assuntos
Modelos Teóricos , Temperatura , Isomerismo , Luz , Nitrogênio/química , Polimetil Metacrilato/química , Teoria Quântica , Análise Espectral , Xantofilas/química
6.
Biophys J ; 97(9): 2604-12, 2009 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-19883604

RESUMO

We have investigated the spectral diffusion and the electron-phonon coupling of B800 bacteriochlorophyll a molecules in the peripheral light-harvesting complex LH2 for three different species of purple bacteria, Rhodobacter sphaeroides, Rhodospirillum molischianum, and Rhodopseudomonas acidophila. We come to the conclusion that B800 binding pockets for Rhodobacter sphaeroides and Rhodopseudomonas acidophila are rather similar with respect to the polarity of the protein environment but that the packaging of the alphabeta-polypeptides seems to be less tight in Rb. sphaeroides with respect to the other two species.


Assuntos
Proteínas de Bactérias/química , Bacterioclorofila A/metabolismo , Biofísica/métodos , Complexos de Proteínas Captadores de Luz/química , Proteobactérias/metabolismo , Rhodobacter/metabolismo , Rodopseudomonas/metabolismo , Rhodospirillaceae/metabolismo , Cristalografia por Raios X/métodos , Difusão , Elétrons , Modelos Moleculares , Conformação Molecular , Peptídeos/química , Ligação Proteica , Proteobactérias/fisiologia
7.
Trends Biochem Sci ; 26(2): 106-12, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11166568

RESUMO

Biological membranes are composed of a complex mixture of lipids and proteins, and the membrane lipids support several key biophysical functions, in addition to their obvious structural role. Recent results from X-ray crystallography are shedding new light on the precise molecular details of the protein-lipid interface.


Assuntos
Membrana Celular/química , Cristalografia por Raios X/métodos , Lipídeos/química , Bacteriorodopsinas/química , Cardiolipinas/química , Membrana Celular/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Metabolismo dos Lipídeos , Modelos Moleculares , Complexo de Proteínas do Centro de Reação Fotossintética/química
8.
Curr Opin Struct Biol ; 6(4): 467-72, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8794155

RESUMO

The purple bacterial antenna complexes continue to provide an area of very active and fertile research. During the past year, exciting advances have been made both on their structure and function, and on how their synthesis is regulated by various environmental factors.


Assuntos
Proteínas de Bactérias/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodospirillaceae/química , Proteínas de Bactérias/biossíntese , Carotenoides/fisiologia , Transferência de Energia , Regulação Bacteriana da Expressão Gênica , Complexos de Proteínas Captadores de Luz , Complexo de Proteínas do Centro de Reação Fotossintética/biossíntese
9.
Curr Opin Struct Biol ; 5(6): 794-7, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8749368

RESUMO

The processes by which photosynthetic bacteria capture light and transfer the energy to the reaction centre continue to be studied using an array of methodologies, both physical and biological. With the publication this year of the crystal structure of the LH2 complex from Rhodopseudomonas acidophila and the projection structure of the LH1 complex from Rhodospirillum rubrum, structural models now exist for all the components in the bacterial photosynthetic apparatus.


Assuntos
Proteínas de Bactérias , Complexos de Proteínas Captadores de Luz , Complexo de Proteínas do Centro de Reação Fotossintética/química , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Carotenoides/metabolismo , Cristalografia por Raios X , Luz , Modelos Moleculares , Mutagênese Sítio-Dirigida , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rodopseudomonas/química , Rodopseudomonas/metabolismo , Rhodospirillaceae/química , Rhodospirillaceae/metabolismo
10.
Biochim Biophys Acta ; 895(2): 63-79, 1987.
Artigo em Inglês | MEDLINE | ID: mdl-3332774

RESUMO

Carotenoids are essential for the survival of photosynthetic organisms. They function as light-harvesting molecules and provide photoprotection. In this review, the molecular features which determine the efficiencies of the various photophysical and photochemical processes of carotenoids are discussed. The behavior of carotenoids in photosynthetic bacterial reaction centers and light-harvesting complexes is correlated with data from experiments carried out on carotenoids and model systems in vitro. The status of the carotenoid structural determinations in vivo is reviewed.


Assuntos
Fenômenos Fisiológicos Bacterianos , Carotenoides/fisiologia , Fotossíntese
11.
Biochim Biophys Acta ; 502(3): 409-16, 1978 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-306835

RESUMO

The pigment content of a B800-850 light-harvesting pigment-protein complex isolated from three different stains of Rhodopseudomonas sphaeroides has been determined. In each case the ratio of carotenoid to bacteriochlorophyll present is very nearly 1 : 3 an no specificity with regard to carotenoid type was observed. The fourth derivative of the infra-red absorption bands of the complex was determined and it is concluded that the minimal functional unit of B800-850 complex consists of 1 carotenoid molecule and three bacteriochlorophyll molecules. The data presented here, together with the previous study of Austin, (Austin, L.A. (1976) Ph.D. Thesis, University of California at Berkeley, Lawrence Berkeley Laboratory Report No. LBL 5512) suggest that the 800 nm absorption band represents one of these bacteriochlorophyll molecules while the remaining two bacteriochlorophylls are responsible for the 850 nm band. The absorption spectra and circular dichroism spectra of the complexes suggests that their structure has not been greatly altered during the purification.


Assuntos
Carotenoides/análise , Rhodobacter sphaeroides/análise , Cromatóforos Bacterianos/análise , Proteínas de Bactérias/análise , Bacterioclorofilas/análise , Dicroísmo Circular , Peso Molecular , Análise Espectral
12.
Biochim Biophys Acta ; 635(2): 295-303, 1981 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-6972228

RESUMO

Two carotenoids, neurosporene and spheroidene, have been successfully added to chromatophores from the carotenoidless mutant of Rhodopseudomonas sphaeroides R26. Carotenoids reconstituted in this way into the B-850 light-harvesting pigment-protein complex both sensitive bacteriochlorophyll fluorescence and protect the complex from the photodynamic reaction.


Assuntos
Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Complexos de Proteínas Captadores de Luz , Mutação , Complexo de Proteína do Fotossistema II , Pigmentos Biológicos/metabolismo , Rhodobacter sphaeroides/metabolismo , Cromatóforos Bacterianos/metabolismo , Bacterioclorofilas/metabolismo , Cinética , Luz , Espectrometria de Fluorescência , Espectrofotometria
13.
Biochim Biophys Acta ; 430(1): 83-93, 1976 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-1083252

RESUMO

Analysis of photosynthetic reaction centers from Rhodopseudomonas sphaeroides strains 2.4.1 and Ga shows that each contains approx. 1 mol of a specific carotenoid per mol of reaction center. In strain 2.4.1. the carotenoid is spheroidene (1-methoxy-3,4-didehydro-1,2,7',8',-tetrahydro-psi,psi-carotene); in strain Ga, it is chloroxanthin (1-hydroxy-1, 2, 7', 8'-tetrahydro-psi,psi-carotene). The carotenoid is bound to the same pair of proteins as are the bacteriochlorophylls and bacteriopheophytins of the reaction center. This binding induces strong circular dichroism in the absorption bands of the carotenoid. The carotenoid is close enough to the other pigments of the reaction center so that light energy transfers efficiently from the carotenoid to the bacteriochlorophyll, sensitizing bacteriochlorophyll fluorescence. The fluorescence polarization spectrum of the reaction centers shows that the transition vectors for the visible absorption bands of the carotenoid lie approximately parallel to the 600 nm (Qx) transition of the bacteriochlorophyll complex.


Assuntos
Carotenoides/metabolismo , Rhodobacter sphaeroides/metabolismo , Dicroísmo Circular , Transporte de Elétrons , Transferência de Energia , Conformação Molecular , Fotossíntese , Rhodobacter sphaeroides/ultraestrutura , Especificidade da Espécie , Espectrometria de Fluorescência
14.
Biochim Biophys Acta ; 449(1): 136-53, 1976 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-823977

RESUMO

Chromatophores from photosynthetic bacteria were excited with flashes lasting approx. 15 ns. Transient optical absorbance changes not associated with the photochemical electron-transfer reactions were interpreted as reflecting the conversion of bacteriochlorophyll or carotenoids into triplet states. Triplet states of various carotenoids were detected in five strains of bacteria; triplet states of bacteriochlorophyll, in two strains that lack carotenoids. Triplet states of antenna pigments could be distinguished from those of pigments specifically associated with the photochemical reaction centers. Antenna pigments were converted into their triplet states if the photochemical apparatus was oversaturated with light, if the primary photochemical reaction was blocked by prior chemical oxidation of P-870 or reduction of the primary electron acceptor, or if the bacteria were genetically devoid of reaction centers. Only the reduction of the electron acceptor appeared to lead to the formation of triplet states in the reaction centers. In the antenna bacteriochlorophyll, triplet states probably arise from excited singlet states by intersystem crossing. The antenna carotenoid triplets probably are formed by energy transfer from triplet antenna bacteriochlorophyll. The energy transfer process has a half time of approx. 20 ns, and is about 1 X 10(3) times more rapid than the reaction of the bacteriochlorophyll triplet states with O2. This is consistent with a role of carotenoids in preventing the formation of singlet O2 in vivo. In the absence of carotenoids and O2, they decay half times of the triplet states are 70 mus for the antenna bacteriochlorophyll and 6-10 mus for the reaction center bacteriochlorophyll. The carotenoid triplets decay with half times of 2-8 mus. With eak flashes, the quantum yields of the antenna triplet states are in the order of 0.02. The quantum yields decline severely after approximately one triplet state is formed per photosynthetic unit, so that even extremely strong flashes convert only a very small fraction of the antenna pigments into triplet states. The yield of fluorescence from the antenna bacteriochlorophyll declines similarly. These observations can be explained by the proposal that single-triplet fusion causes rapid quenching of excited single states in the antenna bacteriochlorophyll.


Assuntos
Cromatóforos Bacterianos/efeitos da radiação , Bacterioclorofilas/efeitos da radiação , Carotenoides/efeitos da radiação , Clorofila/análogos & derivados , Chromatium/efeitos da radiação , Rhodobacter sphaeroides/efeitos da radiação , Rhodospirillum rubrum/efeitos da radiação , Cromatóforos Bacterianos/metabolismo , Transporte de Elétrons , Transferência de Energia , Cinética , Luz , Consumo de Oxigênio , Espectrofotometria
15.
Biochim Biophys Acta ; 591(2): 312-20, 1980 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-6967327

RESUMO

The polypeptide composition of the B-800-850 light-harvesting pigment-protein complex from Rhodopseudomonas sphaeroides has been determined. The complex consists of equimolar amounts of two small polypeptides. The two polypeptides have very similar molecular weights and amino acid composition but are clearly separable by eithr SDS polyacrylamide gradient gel electrophoresis or isoelectric focussing.


Assuntos
Proteínas de Bactérias/análise , Fotossíntese , Pigmentos Biológicos/análise , Rhodobacter sphaeroides/metabolismo , Aminoácidos/análise , Eletroforese em Gel de Poliacrilamida , Focalização Isoelétrica , Peso Molecular , Fragmentos de Peptídeos/análise , Rodopseudomonas/metabolismo , Especificidade da Espécie
16.
Biochim Biophys Acta ; 503(2): 287-303, 1978 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-99169

RESUMO

The carotenoids bound to reaction centers of wild, Ga and GIC strains of Rhodopseudomonas spheroides, of Rhodospirrillum rubrum, strain S1 and of Rhodopseudomonas viridis, yield very similar, but unusual resonance Raman spectra. Through a comparison with resonance Raman spectra of 15,15'-cis-beta-carotene, these carotenoids are shown to assume cis conformations, while the corresponding chromatophores contain all-trans forms only. These cis conformations likely are identical for all the carotenoids studied. They remain unaffected by variations of temperature from 20 to 300 K as well as by the redox state of P-870. They are unstable, being rapidly isomerised towards the all-trans forms when extracted from the reaction centers. The possible nature of these conformers is discussed on the basis of their electronic and vibrational spectra.


Assuntos
Carotenoides , Fotossíntese , Rhodobacter sphaeroides/metabolismo , Rodopseudomonas/metabolismo , Rhodospirillum rubrum/metabolismo , Carotenoides/metabolismo , Especificidade da Espécie , Análise Espectral Raman , Relação Estrutura-Atividade
17.
Biochim Biophys Acta ; 387(2): 265-78, 1975 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-1079143

RESUMO

In preparations of photochemical reaction centers from Rhodopseudomonas spheroides R-26, lowering the recox potential so as to reduce the primary electron acceptor prevents the photochemical transfer of an electron from bacteriochlorophyll to the acceptor. Measuring absorbance changes under these conditions, we found that a 20-ns actinic flash converts the reaction center to a new state, P-F, which then decays with a half-time that is between 1 and 10 ns at 295 degrees K. At 25 degrees K, the decay half-time is approx. 20 ns. The quantum yield of state P-F appears to be near 1.0, both at 295 and at 15 degrees K. State P-F could be an intermediate in the photochemical electron-transfer reaction which occurs when the acceptor is in the oxidized form. Following the decay of state P-F, we detected another state, P-R, with a decay half-time of 6 mus at 295 degrees K and 120 mus at 15 degrees K. The quantum yield of state P-R is approx. 0.1 at 295 degrees K, but rises to a value nearer 1.0 at 15 degrees K. The kinetics and quantum yields are consistent with the view that state P-R forms from P-F. State P-R seems likely to be a side-product, rather than an intermediate in the electron-transfer process. The decay kinetics indicate that state P-F cannot be identical with the lowest excited singlet state of the reaction center. One of the two states, P-F or P-R, probably is the lowest excited triplet state of the reaction center, but it remains unclear which one.


Assuntos
Fotossíntese , Rhodobacter sphaeroides/metabolismo , Clorofila/metabolismo , Transporte de Elétrons , Cinética , Lasers , Luz , Oxirredução , Potenciometria , Teoria Quântica , Rhodobacter sphaeroides/ultraestrutura , Espectrofotometria , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Temperatura , Termodinâmica
18.
Biochim Biophys Acta ; 408(3): 189-99, 1975 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-811259

RESUMO

Purified photochemical reaction centers from three strains of Rhodopseudomonas sphaeroides and two of Rhodospirillium rubrum were reduced with Na2S2O4 so as to block their photochemical electron transfer reactions. They then were excited with flashes lasting 5-30 ns. In all cases, absorbance measurements showed that the flash caused the immediate formation of a transient state (PF) which had been detected previously in reaction centers from Rps. sphaeroides strain R26. Previous work has shown that state PF is an intermediate in the photochemical electron transfer reaction in the reaction centers of that particular strain, and the present work generalizes that conclusion. In the reaction centers from two strains that lack carotenoids (Rps. sphaeroides R26 and R. rubrum G9), the decay of PF yields a longer-lived state (PR) which is probably a triplet state of the bacteriochlorophyll of the reaction center. In the R26 preparation, the decay of PF was found to have a half-time of 10 +/- 2 ns. The decay kinetics rule out the identification of PF as the fluorescent excited singlet state of the reaction center. In the reaction centers from three strains that contain carotenoids (Rps sphaeroides 2.4.1 and Ga, and R. rubrum S1), state PR was not detected, and the decay of PF generated triplet states of carotenoids. The efficiency of the coupling between the decay of PF and the formation of the carotenoid triplet appeared to be close to 100% at room temperature, but somewhat lower at 77 degrees K. Taken with previous results, this suggests that the coupling is direct and does not require the intermediate formation of state PR. This conclusion would be consistent with the view that PF is a biradical which can be triplet in character.


Assuntos
Carotenoides/metabolismo , Rhodobacter sphaeroides/metabolismo , Rhodospirillum rubrum/metabolismo , Transporte de Elétrons , Congelamento , Cinética , Luz , Mutação , Especificidade da Espécie , Espectrofotometria
19.
Biochim Biophys Acta ; 396(2): 242-9, 1975 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-168920

RESUMO

The bacterial reaction center absorbance change at 450 nm (A-450) assigned to an anionic semiquinone, has been suggested as a candidate for the reduced form of the primary electron acceptor in bacterial photosynthesis. In reaction centers of Rhodopseudomonas sphaeroides we have found kinetic discrepancies between the decay of A-450 and the recovery of photochemical competence. In addition, no proton uptake is measurable on the first turnover, although subsequent ones elicit one proton bound per electron. These results are taken to indicate that the acceptor reaction after a long dark period may be different for the first turnover than for subsequent ones. It is suggested that A-450 is still a likely candidate for the acceptor function but that in reaction centers, additional quinone may act as an adventitious primary acceptor when the "true" primary acceptor is reduced. Alternatively, the primary acceptor may act in a "ping-pong" fashion with respect to subsequent photoelectrons.


Assuntos
Transporte de Elétrons , Rhodobacter sphaeroides/metabolismo , Grupo dos Citocromos c/metabolismo , Dimetilaminas/farmacologia , Cinética , Lasers , Naftoquinonas/farmacologia , Fenantrolinas/farmacologia , Quinonas/farmacologia , Rhodobacter sphaeroides/efeitos da radiação , Espectrofotometria
20.
Biochim Biophys Acta ; 634(1): 191-202, 1981 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-6970595

RESUMO

Energy transfer between carotenoid and bacteriochlorophyll has been studied in isolated B-800-850 antenna pigment-protein complexes from different strains of Rhodopseudomonas sphaeroides which contain different types of carotenoid. Singlet-singlet energy transfer from the carotenoid to the bacteriochlorophyll is efficient (75-100%) and is rather insensitive to carotenoid type, over the range of carotenoids tested. The yield of carotenoid triplets is low (2-15%) but this arises from a low yield of bacteriochlorophyll triplet formation rather than from an inefficient triplet-triplet exchange reaction. The rate of the triplet-triplet exchange reaction between the bacteriochlorophyll and the carotenoid is fast (Ktt greater than or equal to 1.4 . 10(8) S-1) and also relatively independent of the type of carotenoid present.


Assuntos
Bacterioclorofilas/metabolismo , Carotenoides/metabolismo , Clorofila/análogos & derivados , Rhodobacter sphaeroides/metabolismo , Transferência de Energia , Cinética , Mutação , Fotólise , Especificidade da Espécie , Espectrometria de Fluorescência , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA