RESUMO
Alzheimer's disease (AD) is the leading cause of cognitive impairment and dementia worldwide with rising prevalence, incidence and mortality. Despite many decades of research, there remains an unmet need for disease-modifying treatment that can significantly alter the progression of disease. Recently, with United States Food and Drug Administration (FDA) drug approvals, there have been tremendous advances in this area, with agents demonstrating effects on cognition and biomarkers. Magnetic resonance imaging (MRI) plays an instrumental role in these trials. This review article aims to outline how MRI is used for screening eligibility, monitoring safety and measuring efficacy in clinical trials, leaning on the landscape of past and recent AD clinical trials that have used MRI as examples; further, insight on promising MRI biomarkers for future trials is provided. LEVEL OF EVIDENCE: 1. TECHNICAL EFFICACY: Stage 4.
RESUMO
Staging the severity of Alzheimer's disease pathology using biomarkers is useful for therapeutic trials and clinical prognosis. Disease staging with amyloid and tau PET has face validity; however, this would be more practical with plasma biomarkers. Our objectives were, first, to examine approaches for staging amyloid and tau PET and, second, to examine prediction of amyloid and tau PET stages using plasma biomarkers. Participants (n = 1136) were enrolled in either the Mayo Clinic Study of Aging or the Alzheimer's Disease Research Center; had a concurrent amyloid PET, tau PET and blood draw; and met clinical criteria for cognitively unimpaired (n = 864), mild cognitive impairment (n = 148) or Alzheimer's clinical syndrome with dementia (n = 124). The latter two groups were combined into a cognitively impaired group (n = 272). We used multinomial regression models to estimate discrimination [concordance (C) statistics] among three amyloid PET stages (low, intermediate, high), four tau PET stages (Braak 0, 1-2, 3-4, 5-6) and a combined amyloid and tau PET stage (none/low versus intermediate/high severity) using plasma biomarkers as predictors separately within unimpaired and impaired individuals. Plasma analytes, p-tau181, Aß1-42 and Aß1-40 (analysed as the Aß42/Aß40 ratio), glial fibrillary acidic protein and neurofilament light chain were measured on the HD-X Simoa Quanterix platform. Plasma p-tau217 was also measured in a subset (n = 355) of cognitively unimpaired participants using the Lilly Meso Scale Discovery assay. Models with all Quanterix plasma analytes along with risk factors (age, sex and APOE) most often provided the best discrimination among amyloid PET stages (C = 0.78-0.82). Models with p-tau181 provided similar discrimination of tau PET stages to models with all four plasma analytes (C = 0.72-0.85 versus C = 0.73-0.86). Discriminating a PET proxy of intermediate/high from none/low Alzheimer's disease neuropathological change with all four Quanterix plasma analytes was excellent but not better than p-tau181 only (C = 0.88 versus 0.87 for unimpaired and C = 0.91 versus 0.90 for impaired). Lilly p-tau217 outperformed the Quanterix p-tau181 assay for discriminating high versus intermediate amyloid (C = 0.85 versus 0.74) but did not improve over a model with all Quanterix plasma analytes and risk factors (C = 0.85 versus 0.83). Plasma analytes along with risk factors can discriminate between amyloid and tau PET stages and between a PET surrogate for intermediate/high versus none/low neuropathological change with accuracy in the acceptable to excellent range. Combinations of plasma analytes are better than single analytes for many staging predictions with the exception that Quanterix p-tau181 alone usually performed equivalently to combinations of Quanterix analytes for tau PET discrimination.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Proteínas Amiloidogênicas , Biomarcadores , Envelhecimento , Proteínas tau , Peptídeos beta-AmiloidesRESUMO
BACKGROUND: Alzheimer disease (AD) and other dementias are associated with vascular changes and amyloid deposition, which may be reflected as density changes in the retinal capillaries. These changes may can be directly visualized and quantified with optical coherence tomography angiography (OCTA), making OCTA a potential noninvasive preclinical biomarker of small vessel disease and amyloid positivity. Our objective was to investigate the feasibility of retinal imaging metrics as noninvasive biomarkers of small vessel disease and amyloid positivity in the brain. METHODS: We investigated associations between OCTA and neuroimaging and cognitive metrics in 41 participants without dementia from the Mayo Clinic Study of Aging and Alzheimer's Disease Research Center. OCTA metrics included superficial, deep, and full retina capillary density of the fovea, parafovea, and macula as well as the area of the foveal avascular zone (FAZ). Neuroimaging metrics included a high burden of white matter hyperintensity (WMH), presence of cerebral microbleeds (CMB), lacunar infarcts, and amyloid positivity as evidenced on positron emission tomography (PET), whereas cognitive metrics included mini-mental status examination (MMSE) score. We performed generalized estimating equations to account for measurements in each eye while controlling for age and sex to estimate associations between OCTA metrics and neuroimaging and cognitive scores. RESULTS: Associations between OCTA and neuroimaging metrics were restricted to the fovea. OCTA showed decreased capillary density with high burden of WMH in both the superficial (P = 0.003), deep (P = 0.004), and full retina (P = 0.01) in the fovea but not the parafovea or whole macula. Similarly, participants with amyloid PET positivity had significantly decreased capillary density in the superficial fovea (P = 0.027) and deep fovea (P = 0.03) but higher density in the superficial parafovea (P = 0.038). Participants with amyloid PET positivity also had a significantly larger FAZ (P = 0.031), whereas in those with high WMH burden the difference did not reach statistical significance (P = 0.075). There was also a positive association between MMSE and capillary density of the full retina within the fovea (P = 0.037) and in the superficial parafovea (P = 0.046). No associations were found between OCTA metrics and presence of CMB or presence of lacunar infarcts. CONCLUSION: The associations of lower foveal capillary density with cerebral WMH and amyloid positivity suggest that further research is warranted to evaluate for shared mechanisms of disease between small vessel disease and AD pathologies.
RESUMO
INTRODUCTION: The timing of plasma biomarker changes is not well understood. The goal of this study was to evaluate the temporal co-evolution of plasma and positron emission tomography (PET) Alzheimer's disease (AD) biomarkers. METHODS: We included 1408 Mayo Clinic Study of Aging and Alzheimer's Disease Research Center participants. An accelerated failure time (AFT) model was fit with amyloid beta (Aß) PET, tau PET, plasma p-tau217, p-tau181, and glial fibrillary acidic protein (GFAP) as endpoints. RESULTS: Individual timing of plasma p-tau progression was strongly associated with Aß PET and GFAP progression. In the population, GFAP became abnormal first, then Aß PET, plasma p-tau, and tau PET temporal meta-regions of interest when applying cut points based on young, cognitively unimpaired participants. DISCUSSION: Plasma p-tau is a stronger indicator of a temporally linked response to elevated brain Aß than of tau pathology. While Aß deposition and a rise in GFAP are upstream events associated with tau phosphorylation, the temporal link between p-tau and Aß PET was the strongest. HIGHLIGHTS: Plasma p-tau progression was more strongly associated with Aß than tau PET. Progression on plasma p-tau was associated with Aß PET and GFAP progression. P-tau181 and p-tau217 become abnormal after Aß PET and before tau PET. GFAP became abnormal first, before plasma p-tau and Aß PET.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Peptídeos beta-Amiloides , Doença de Alzheimer/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Envelhecimento , Encéfalo/diagnóstico por imagem , Proteínas tau , BiomarcadoresRESUMO
BACKGROUND: We compared the ability of several plasma biomarkers versus amyloid positron emission tomography (PET) to predict rates of memory decline among cognitively unimpaired individuals. METHODS: We studied 645 Mayo Clinic Study of Aging participants. Predictor variables were age, sex, education, apolipoprotein E (APOE) ε4 genotype, amyloid PET, and plasma amyloid beta (Aß)42/40, phosphorylated tau (p-tau)181, neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and p-tau217. The outcome was a change in a memory composite measure. RESULTS: All plasma biomarkers, except NfL, were associated with mean memory decline in models with individual biomarkers. However, amyloid PET and plasma p-tau217, along with age, were key variables independently associated with mean memory decline in models combining all predictors. Confidence intervals were narrow for estimates of population mean prediction, but person-level prediction intervals were wide. DISCUSSION: Plasma p-tau217 and amyloid PET provide useful information about predicting rates of future cognitive decline in cognitively unimpaired individuals at the population mean level, but not at the individual person level.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Tomografia por Emissão de Pósitrons , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/complicações , Biomarcadores , Transtornos da Memória/diagnóstico por imagemRESUMO
This review makes the case that idiopathic normal pressure hydrocephalus (iNPH) is an outdated term because new information indicates that the syndrome is less idiopathic and that the cerebrospinal fluid (CSF) pressure of normal individuals is affected by several factors such as body mass index, age, and sex. Our review updates the epidemiology of iNPH and provides a clinical approach to the management of these patients. All the clinical features of iNPH are common in older individuals, and each has many causes, so the diagnosis is difficult. The first step in reaching an accurate diagnosis is to address the possible contributory factors to the gait abnormality and determine what if any role iNPH may be playing. The two best diagnostic tests are neuroimaging and cerebrospinal fluid (CSF) diversion (large volume lumbar puncture or external lumbar drainage) with pre/post gait evaluation. This review provides an update on the growing evidence that vascular disease, impaired CSF absorption, congenital, and genetic factors all contribute to the pathogenesis of iNPH. We suggest replacing the term iNPH with the term Hakim syndrome (HS) in acknowledgement of the first person to describe this syndrome. Lastly, we discuss the improvements in shunt technology and surgical techniques that have decreased the risks and long-term complications of shunt surgery.
Assuntos
Hidrocefalia de Pressão Normal , Idoso , Humanos , Derivações do Líquido Cefalorraquidiano/métodos , Marcha , Hidrocefalia de Pressão Normal/diagnóstico por imagem , Hidrocefalia de Pressão Normal/epidemiologia , Neuroimagem , Síndrome , Masculino , FemininoRESUMO
Quantitative susceptibility mapping (QSM) has been used to study susceptibility changes that may occur based on tissue composition and mineral deposition. Iron is a primary contributor to changes in magnetic susceptibility and of particular interest in applications of QSM to neurodegeneration and aging. Iron can contribute to neurodegeneration through inflammatory processes and via interaction with aggregation of disease-related proteins. To better understand the local susceptibility changes observed on QSM, its signal has been studied in association with other imaging metrics such as positron emission tomography (PET). The associations of QSM and PET may provide insight into the pathophysiology of disease processes, such as the role of iron in aging and neurodegeneration, and help to determine the diagnostic utility of QSM as an indirect indicator of disease processes typically evaluated with PET. In this review we discuss the proposed mechanisms and summarize prior studies of the associations of QSM and amyloid PET, tau PET, TSPO PET, FDG-PET, 15O-PET, and F-DOPA PET in evaluation of neurologic diseases with a focus on aging and neurodegeneration.
Assuntos
Envelhecimento , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Ferro/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Receptores de GABA/metabolismoRESUMO
A sensitive and accurate imaging technique capable of tracking the disease progression of Alzheimer's Disease (AD) driven amnestic dementia would be beneficial. A currently available method for pathology detection in AD with high accuracy is Positron Emission Tomography (PET) imaging, despite certain limitations such as low spatial resolution, off-targeting error, and radiation exposure. Non-invasive MRI scanning with quantitative magnetic susceptibility measurements can be used as a complementary tool. To date, quantitative susceptibility mapping (QSM) has widely been used in tracking deep gray matter iron accumulation in AD. The present work proposes that by compartmentalizing quantitative susceptibility into paramagnetic and diamagnetic components, more holistic information about AD pathogenesis can be acquired. Particularly, diamagnetic component susceptibility (DCS) can be a powerful indicator for tracking protein accumulation in the gray matter (GM), demyelination in the white matter (WM), and relevant changes in the cerebrospinal fluid (CSF). In the current work, voxel-wise group analysis of the WM and the CSF regions show significantly lower |DCS| (the absolute value of DCS) value for amnestic dementia patients compared to healthy controls. Additionally, |DCS| and τ PET standardized uptake value ratio (SUVr) were found to be associated in several GM regions typically affected by τ deposition in AD. Therefore, we propose that the separated diamagnetic susceptibility can be used to track pathological neurodegeneration in different tissue types and regions of the brain. With the initial evidence, we believe the usage of compartmentalized susceptibility demonstrates substantive potential as an MRI-based technique for tracking AD-driven neurodegeneration.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Córtex Cerebral , Progressão da Doença , Substância Cinzenta/diagnóstico por imagemRESUMO
It is now widely known that research brain MRI, CT, and PET images may potentially be re-identified using face recognition, and this potential can be reduced by applying face-deidentification ("de-facing") software. However, for research MRI sequences beyond T1-weighted (T1-w) and T2-FLAIR structural images, the potential for re-identification and quantitative effects of de-facing are both unknown, and the effects of de-facing T2-FLAIR are also unknown. In this work we examine these questions (where applicable) for T1-w, T2-w, T2*-w, T2-FLAIR, diffusion MRI (dMRI), functional MRI (fMRI), and arterial spin labelling (ASL) sequences. Among current-generation, vendor-product research-grade sequences, we found that 3D T1-w, T2-w, and T2-FLAIR were highly re-identifiable (96-98%). 2D T2-FLAIR and 3D multi-echo GRE (ME-GRE) were also moderately re-identifiable (44-45%), and our derived T2* from ME-GRE (comparable to a typical 2D T2*) matched at only 10%. Finally, diffusion, functional and ASL images were each minimally re-identifiable (0-8%). Applying de-facing with mri_reface version 0.3 reduced successful re-identification to ≤8%, while differential effects on popular quantitative pipelines for cortical volumes and thickness, white matter hyperintensities (WMH), and quantitative susceptibility mapping (QSM) measurements were all either comparable with or smaller than scan-rescan estimates. Consequently, high-quality de-facing software can greatly reduce the risk of re-identification for identifiable MRI sequences with only negligible effects on automated intracranial measurements. The current-generation echo-planar and spiral sequences (dMRI, fMRI, and ASL) each had minimal match rates, suggesting that they have a low risk of re-identification and can be shared without de-facing, but this conclusion should be re-evaluated if they are acquired without fat suppression, with a full-face scan coverage, or if newer developments reduce the current levels of artifacts and distortion around the face.
Assuntos
Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Neuroimagem , Artefatos , Marcadores de SpinRESUMO
BACKGROUND: Focally enlarged sulci (FES) are areas of proposed extraventricular fluid entrapment that may occur within idiopathic normal pressure hydrocephalus (iNPH) with radiographic evidence of disproportionately enlarged subarachnoid-space hydrocephalus (DESH), and should be differentiated from atrophy. PURPOSE: To evaluate for change in FES size and pituitary height after shunt placement in iNPH. STUDY TYPE: Retrospective. SUBJECTS: A total of 125 iNPH patients who underwent shunt surgery and 40 age-matched controls. FIELD STRENGTH/SEQUENCE: 1.5 T and 3 T. Axial T2w FLAIR, 3D T1w MPRAGE, 2D sagittal T1w. ASSESSMENT: FES were measured in three dimensions and volume was estimated by assuming an ellipsoid shape. Pituitary gland height was measured in the mid third of the gland in iNPH patients and controls. STATISTICAL TESTS: Wilcoxon signed-rank test for comparisons between MRI measurements; Wilcoxon rank sum test for comparison of cases/controls. Significance level was P < 0.05. RESULTS: Fifty percent of the patients had FES. FES volume significantly decreased between the pre and first postshunt MRI by a median of 303 mm3 or 30.0%. Pituitary gland size significantly increased by 0.48 mm or 14.4%. FES decreased significantly by 190 mm3 or 23.1% and pituitary gland size increased significantly by 0.25 mm or 6% between the first and last postshunt MRI. DATA CONCLUSION: Decrease in size of FES after shunt placement provides further evidence that these regions are due to disordered cerebrospinal fluid (CSF) dynamics and should not be misinterpreted as atrophy. A relatively smaller pituitary gland in iNPH patients that normalizes after shunt is a less-well recognized feature of altered CSF dynamics. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.
Assuntos
Hidrocefalia de Pressão Normal , Humanos , Hidrocefalia de Pressão Normal/patologia , Hidrocefalia de Pressão Normal/cirurgia , Estudos Retrospectivos , Espaço Subaracnóideo/patologia , Espaço Subaracnóideo/cirurgia , Imageamento por Ressonância Magnética/métodos , Atrofia/patologiaRESUMO
BACKGROUND: Phase-contrast cine magnetic resonance imaging (PC-MRI) has been used to measure cerebrospinal fluid (CSF) flow dynamics, but the influence of the area of the aqueduct and region of interest (ROI) on quantification of stroke volume (SV) has not been assessed. PURPOSE: To assess the influence of the area of the ROI in quantifying the aqueductal SV measured with PC-MRI within the cerebral aqueduct. MATERIAL AND METHODS: Nine healthy volunteers (mean age = 29.6 years) were enrolled in the study, and brain MRI examinations were performed on a 3.0-T system. Quantitative analysis of the aqueductal CSF flow was performed using manual ROI placement. ROIs were separately drawn for each of the 12 phases of the cardiac cycle, and changes in aqueduct size during the cardiac cycle were determined. The SV was calculated using 12 different aqueductal ROIs and compared with the SV calculated using a fixed ROI size. RESULTS: There was variation in the size of the aqueduct during the cardiac cycle. In addition, the measured SV increased with a greater area of the ROI. A significant difference in the calculated SVs with the 12 variable ROIs was observed compared with that using a fixed ROI throughout the cardiac cycle. CONCLUSION: To establish reliable reference values for the SV in future studies, a variable ROI should be considered.
Assuntos
Aqueduto do Mesencéfalo , Imagem Cinética por Ressonância Magnética , Humanos , Adulto , Aqueduto do Mesencéfalo/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/métodos , Volume Sistólico , Voluntários Saudáveis , Imageamento por Ressonância Magnética/métodos , Líquido CefalorraquidianoRESUMO
OBJECTIVE: Idiopathic normal pressure hydrocephalus (iNPH) results in significant morbidity in the elderly with symptoms of dementia, gait instability, and urinary incontinence. In well-selected patients, ventriculoperitoneal shunt (VPS) placement often results in clinical improvement. Most postshunt assessments of patients rely on subjective scales. The goal of this study was to assess the utility of remote activity monitoring to provide objective evidence of gait improvement following VPS placement for iNPH. METHODS: Patients with iNPH were prospectively enrolled and fitted with 5 activity monitors (on the hip and bilateral thighs and ankles) that they wore for 4 days preoperatively within 30 days of surgery and for 4 days within 30 days postoperatively. Monitors collected continuous data for number of steps, cadence, body position (upright, prone, supine, and lateral decubitus), gait entropy, and the proportion of each day spent active or static. Data were retrieved from the devices and a comparison of pre- and postoperative movement assessment was performed. The gait data were also correlated with formal clinical gait assessments before and after lumbar puncture and with motion analysis laboratory testing at baseline and 1 month and 1 year after VPS placement. RESULTS: Twenty patients fulfilled the inclusion and exclusion criteria (median age 76 years). The baseline median number of daily steps was 1929, the median percentage of the day spent inactive was 70%, the median percentage of the day with a static posture was 95%, the median gait velocity was 0.49 m/sec, and the median number of steps required to turn was 8. There was objective improvement in median entropy from pre- to postoperatively, increasing from 0.6 to 0.8 (p = 0.002). There were no statistically significant differences for any of the remaining variables measured by the activity monitors when comparing the preoperative to the 1-month postoperative time point. All variables from motion analysis testing showed statistically significant differences or a trend toward significance at 1 year after VPS placement. Among the significantly correlated variables at baseline, cadence was inversely correlated with percentage of gait cycle spent in the support phase (contact with ground vs swing phase). CONCLUSIONS: This pilot study suggests that activity monitoring provides an early objective measure of improvement in gait entropy after VPS placement among patients with iNPH, although a more significant improvement was noted on the detailed clinical gait assessments. Further long-term studies are needed to determine the utility of remote monitoring for assessing gait improvement following VPS placement.
Assuntos
Hidrocefalia de Pressão Normal , Derivação Ventriculoperitoneal , Humanos , Idoso , Derivação Ventriculoperitoneal/métodos , Hidrocefalia de Pressão Normal/cirurgia , Hidrocefalia de Pressão Normal/diagnóstico , Projetos Piloto , Resultado do Tratamento , Estudos LongitudinaisRESUMO
BACKGROUND: A low-cryogen, compact 3T (C3T) MRI scanner with high-performance gradients capable of simultaneously achieving 80 mT/m gradient amplitude and 700 T/m/second slew rate has been in use to study research patients since March 2016 but has not been implemented in the clinical practice. PURPOSE: To compare head MRI examinations obtained with the C3T system and a conventional whole-body 3T (WB3T) scanner in seven parameters across five commonly used brain imaging sequences. STUDY TYPE: Prospective. SUBJECTS: Thirty patients with a clinically indicated head MRI. SEQUENCE: 3T; T1 FLAIR, T1 MP-RAGE, 3D T2 FLAIR, T2 FSE, and DWI. ASSESSMENT: All patients tolerated the scans well. Three board-certified neuroradiologists scored the comparative quality of C3T and WB3T images in blinded fashion using a five-point Likert scale in terms of: signal-to-noise ratio, lesion conspicuity, motion artifact, gray/white matter contrast, cerebellar folia, susceptibility artifact, and overall quality. STATISTICAL TEST: Left-sided, right-sided, and two-sided Wilcoxon signed rank test; Fisher's method. A P value <0.05 was considered statistically significant. RESULTS: The C3T system performed better than the WB3T in virtually all comparisons, except for motion artifacts for the T1 FLAIR and T1 MP-RAGE sequences, where the WB3T system was deemed better. When combining all sequences together, the C3T system outperformed the WB3T system in all image quality parameters evaluated, except for motion artifact (P = 0.13). DATA CONCLUSION: The C3T scanner provided better overall image quality for all sequences, and performed better in all individual categories, except for motion artifact on the T1 FLAIR and T1 MP-RAGE. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 1.
Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Artefatos , Encéfalo/diagnóstico por imagem , Substância Cinzenta , Humanos , Estudos ProspectivosRESUMO
BACKGROUND: Localized regions of left-right image intensity asymmetry (LRIA) were incidentally observed on T2 -weighted (T2 -w) and T1 -weighted (T1 -w) diagnostic magnetic resonance imaging (MRI) images. Suspicion of herpes encephalitis resulted in unnecessary follow-up imaging. A nonbiological imaging artifact that can lead to diagnostic uncertainty was identified. PURPOSE: To investigate whether systematic LRIA exist for a range of scanner models and to determine if LRIA can introduce diagnostic uncertainty. STUDY TYPE: A retrospective study using the Alzheimer's Disease Neuroimaging Initiative (ADNI) data base. SUBJECTS: One thousand seven hundred fifty-three (median age: 72, males/females: 878/875) unique participants with longitudinal data were included. FIELD STRENGTH: 3T. SEQUENCES: T1 -w three-dimensional inversion-recovery spoiled gradient-echo (IR-SPGR) or magnetization-prepared rapid gradient-echo (MP-RAGE) and T2 -w fluid-attenuated inversion recovery (FLAIR) long tau fast spin echo inversion recovery (LT-FSE-IR). Only General Electric, Philips, and Siemens' product sequences were used. ASSESSMENT: LRIA was calculated as the left-right percent difference with respect to the mean intensity from automated anatomical atlas segmented regions. Three neuroradiologists with 37 (**), 32 (**), and 3 (**) years of experience rated the clinical impact of 30 T2 -w three-dimensional FLAIR exams with LRIA to determine the diagnostic uncertainty. Statistical comparisons between retrospective intensity normalized T1 m and original T1 -w images were made. STATISTICAL TESTS: For each image type, a linear mixed effects model was fit using LRIA scores from all scanners, regions, and participants as the outcome and age and sex as predictors. Statistical significance was defined as having a P-value <0.05. RESULTS: LRIA scores were significantly different from zero on most scanners. All clinicians were uncertain or recommended definite diagnostic follow-up in 62.5% of cases with LRIA >10%. Individuals with acute brain pathology or focal neurologic deficits are not enrolled in ADNI; therefore, focal signal abnormalities were considered false positives. DATA CONCLUSION: LRIA is system specific, systematic, creates diagnostic uncertainty, and impacts IR-SPGR, MP-RAGE, and LT-FSE-IR product sequences. LEVEL OF EVIDENCE: 2 Technical Efficacy Stage: 3.
Assuntos
Doença de Alzheimer , Imageamento por Ressonância Magnética , Idoso , Doença de Alzheimer/diagnóstico por imagem , Feminino , Humanos , Modelos Lineares , Imageamento por Ressonância Magnética/métodos , Masculino , Estudos RetrospectivosRESUMO
BACKGROUND. Understanding of dynamic changes of MRI findings in response to intracranial pressure (ICP) changes in idiopathic intracranial hypertension (IIH) is limited. Brain stiffness, as assessed by MR elastography (MRE), may reflect changes in ICP. OBJECTIVE. The purpose of this study was to compare pituitary height, ventricular size, and brain stiffness between patients with IIH and control individuals and to evaluate for changes in these findings in patients with IIH after interventions to reduce ICP. METHODS. This prospective study included 30 patients (28 women, two men; median age, 29.9 years) with IIH and papilledema and 21 control individuals (21 women, 0 men; median age, 29.1 years), recruited from January 2017 to July 2019. All participants underwent 3-T brain MRI with MRE; patients with IIH underwent additional MRI examinations with MRE after acute intervention (lumbar puncture with normal closing pressure; n = 11) and/or chronic intervention (medical management or venous sinus stenting with resolution or substantial reduction in papilledema; n = 12). Pituitary height was measured on sagittal MP-RAGE images. Ventricular volumes were estimated using unified segmentation, and postintervention changes were assessed by tensor-based morphometry. Stiffness pattern score and regional stiffness values were estimated from MRE. RESULTS. In patients with IIH, median pituitary height was smaller than in control individuals (3.1 vs 4.9 mm, p < .001) and was increased after chronic (4.0 mm, p = .05), but not acute (2.3 mm, p = .50), intervention. Ventricular volume was not different between patients with IIH and control individuals (p = .33) and did not change after acute (p = .83) or chronic (p = .97) intervention. In patients with IIH, median stiffness pattern score was greater than in control individuals (0.25 vs 0.15, p < .001) and decreased after chronic (0.23, p = .11) but not acute (0.25, p = .49) intervention. Median occipital lobe stiffness was 3.08 kPa in patients with IIH versus 2.94 kPa in control individuals (p = .07) and did not change after acute (3.24 kPa, p = .73) or chronic (3.10 kPa, p = .83) intervention. CONCLUSION. IIH is associated with a small pituitary and increased brain stiffness pattern score; both findings may respond to chronic interventions to lower ICP. CLINICAL IMPACT. The "partially empty sella" sign and brain stiffness pattern score may serve as dynamic markers of ICP in IIH.
Assuntos
Técnicas de Imagem por Elasticidade , Hipertensão Intracraniana , Papiledema , Pseudotumor Cerebral , Masculino , Humanos , Feminino , Adulto , Pseudotumor Cerebral/diagnóstico por imagem , Estudos Prospectivos , Imageamento por Ressonância Magnética , Hipertensão Intracraniana/diagnósticoRESUMO
OBJECTIVES: To report population-based, age-specific prevalence of infarctions as identified via 3D fluid-attenuated inversion recovery (FLAIR) imaging. MATERIALS AND METHODS: Participants without dementia in the Mayo Clinic Study of Aging (MCSA), a population-based study in Olmsted County, MN, age 50-89 who underwent 3D FLAIR imaging between 2017 and 2020 were included. Infarctions per participant were determined via visual interpretation. Inter- and intra-reader reliability were calculated. Infarction prevalence on 3D FLAIR was derived by standardization to the Olmsted County population and was compared to that previously reported on 2D FLAIR imaging. RESULTS: Among 580 participants (mean age 71 years, 46% female) the prevalence (95% confidence interval) of any infarction was 5.0% (0.0%-9.9%) at age 50-59 years and 38.8% (28.6%-49.0%) at 80-89 years. In addition to increasing with age, the prevalence varied by sex and type of infarction. Prevalence estimates of cortical infarcts were 0.9% (0.0%-2.7%) at age 50-59 years and 20.2% (10.7%-29.7%) at 80-89 years and lacunar infarcts 4.1% (0.0%-8.8%) at age 50-59 years and 31.2% (21.5%-41.0%) at 80-89 years. Prevalence estimates of any infarction by sex were: men, 8.7% (0.0%-18.7%) at 50-59 years and 54.9% (41.0%-68.8%) at 80-89 years and women, 2.4% (0.0%-7.3%) at age 50-59 years and 27.3% (12.9%-41.7%) at 80-89 years. Intra- and inter- reader reliability were very good (kappa = 0.85 and 0.82, respectively). After adjusting for age, sex and education, individuals imaged with 3D FLAIR were 1.5 times (95% CI 1.2-1.8, p<0.001) more likely to be identified as positive for infarction compared to those imaged with 2D FLAIR. CONCLUSIONS: Infarction prevalence increases with age and is greater in men than women. Infarction prevalence on 3D FLAIR imaging, which has become more widely implemented as an alternative to 2D FLAIR over the past several years, will be a useful reference in future work.
Assuntos
Envelhecimento , Imageamento por Ressonância Magnética , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imageamento Tridimensional/métodos , Infarto , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Prevalência , Reprodutibilidade dos TestesRESUMO
Disproportionately enlarged subarachnoid-space hydrocephalus (DESH), characterized by tight high convexity CSF spaces, ventriculomegaly, and enlarged Sylvian fissures, is thought to be an indirect marker of a CSF dynamics disorder. The clinical significance of DESH with regard to cognitive decline in a community setting is not yet well defined. The goal of this work is to determine if DESH is associated with cognitive decline. Participants in the population-based Mayo Clinic Study of Aging (MCSA) who met the following criteria were included: age ≥ 65 years, 3T MRI, and diagnosis of cognitively unimpaired or mild cognitive impairment at enrollment as well as at least one follow-up visit with cognitive testing. A support vector machine based method to detect the DESH imaging features on T1-weighted MRI was used to calculate a "DESH score", with positive scores indicating a more DESH-like imaging pattern. For the participants who were cognitively unimpaired at enrollment, a Cox proportional hazards model was fit with time defined as years from enrollment to first diagnosis of mild cognitive impairment or dementia, or as years to last known cognitively unimpaired diagnosis for those who did not progress. Linear mixed effects models were fit among all participants to estimate annual change in cognitive z scores for each domain (memory, attention, language, and visuospatial) and a global z score. For all models, covariates included age, sex, education, APOE genotype, cortical thickness, white matter hyperintensity volume, and total intracranial volume. The hazard of progression to cognitive impairment was an estimated 12% greater for a DESH score of +1 versus -1 (HR 1.12, 95% CI 0.97-1.31, p = 0.11). Global and attention cognition declined 0.015 (95% CI 0.005-0.025) and 0.016 (95% CI 0.005-0.028) z/year more, respectively, for a DESH score of +1 vs -1 (p = 0.01 and p = 0.02), with similar, though not statistically significant DESH effects in the other cognitive domains. Imaging features of disordered CSF dynamics are an independent predictor of subsequent cognitive decline in the MCSA, among other well-known factors including age, cortical thickness, and APOE status. Therefore, since DESH contributes to cognitive decline and is present in the general population, identifying individuals with DESH features may be important clinically as well as for selection in clinical trials.
Assuntos
Encéfalo/diagnóstico por imagem , Ventrículos Cerebrais/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Progressão da Doença , Hidrocefalia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Espaço Subaracnóideo/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Encéfalo/fisiologia , Ventrículos Cerebrais/fisiologia , Líquido Cefalorraquidiano/fisiologia , Pressão do Líquido Cefalorraquidiano/fisiologia , Disfunção Cognitiva/fisiopatologia , Estudos de Coortes , Feminino , Seguimentos , Humanos , Hidrocefalia/fisiopatologia , Estudos Longitudinais , Masculino , Valor Preditivo dos Testes , Fluxo Pulsátil/fisiologia , Espaço Subaracnóideo/fisiologiaRESUMO
Altered iron metabolism has been hypothesized to be associated with Alzheimer's disease pathology, and prior work has shown associations between iron load and beta amyloid plaques. Quantitative susceptibility mapping (QSM) is a recently popularized MR technique to infer local tissue susceptibility secondary to the presence of iron as well as other minerals. Greater QSM values imply greater iron concentration in tissue. QSM has been used to study relationships between cerebral iron load and established markers of Alzheimer's disease, however relationships remain unclear. In this work we study QSM signal characteristics and associations between susceptibility measured on QSM and established clinical and imaging markers of Alzheimer's disease. The study included 421 participants (234 male, median age 70 years, range 34-97 years) from the Mayo Clinic Study of Aging and Alzheimer's Disease Research Center; 296 (70%) had a diagnosis of cognitively unimpaired, 69 (16%) mild cognitive impairment, and 56 (13%) amnestic dementia. All participants had multi-echo gradient recalled echo imaging, PiB amyloid PET, and Tauvid tau PET. Variance components analysis showed that variation in cortical susceptibility across participants was low. Linear regression models were fit to assess associations with regional susceptibility. Expected increases in susceptibility were found with older age and cognitive impairment in the deep and inferior gray nuclei (pallidum, putamen, substantia nigra, subthalamic nucleus) (betas: 0.0017 to 0.0053 ppm for a 10 year increase in age, p = 0.03 to <0.001; betas: 0.0021 to 0.0058 ppm for a 5 point decrease in Short Test of Mental Status, p = 0.003 to p<0.001). Effect sizes in cortical regions were smaller, and the age associations were generally negative. Higher susceptibility was significantly associated with higher amyloid PET SUVR in the pallidum and putamen (betas: 0.0029 and 0.0012 ppm for a 20% increase in amyloid PET, p = 0.05 and 0.02, respectively), higher tau PET in the basal ganglia with the largest effect size in the pallidum (0.0082 ppm for a 20% increase in tau PET, p<0.001), and with lower cortical gray matter volume in the medial temporal lobe (0.0006 ppm for a 20% decrease in volume, p = 0.03). Overall, these findings suggest that susceptibility in the deep and inferior gray nuclei, particularly the pallidum and putamen, may be a marker of cognitive decline, amyloid deposition, and off-target binding of the tau ligand. Although iron has been demonstrated in amyloid plaques and in association with neurodegeneration, it is of insufficient quantity to be reliably detected in the cortex using this implementation of QSM.
Assuntos
Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Ferro/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Mapeamento Encefálico , Carbolinas , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Disfunção Cognitiva/metabolismo , Feminino , Globo Pálido/diagnóstico por imagem , Globo Pálido/metabolismo , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Substância Cinzenta/patologia , Humanos , Modelos Lineares , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Tomografia por Emissão de Pósitrons , Putamen/diagnóstico por imagem , Putamen/metabolismo , Compostos Radiofarmacêuticos , Substância Negra/diagnóstico por imagem , Substância Negra/metabolismo , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/metabolismo , Tiazóis , Proteínas tau/metabolismoRESUMO
In sickle cell disease (SCD), cerebral oxygen delivery is dependent on the cerebral vasculature's ability to increase blood flow and volume through relaxation of the smooth muscle that lines intracranial arteries. We hypothesised that anaemia extent and/or circulating markers of inflammation lead to concentric macrovascular arterial wall thickening, visible on intracranial vessel wall magnetic resonance imaging (VW-MRI). Adult and pediatric SCD (n = 69; age = 19.9 ± 8.6 years) participants and age- and sex-matched control participants (n = 38; age = 22.2 ± 8.9 years) underwent 3-Tesla VW-MRI; two raters measured basilar and bilateral supraclinoid internal carotid artery (ICA) wall thickness independently. Mean wall thickness was compared with demographic, cerebrovascular and haematological variables. Mean vessel wall thickness was elevated (P < 0·001) in SCD (1·07 ± 0·19 mm) compared to controls (0·97 ± 0·07 mm) after controlling for age and sex. Vessel wall thickness was higher in participants on chronic transfusions (P = 0·013). No significant relationship between vessel wall thickness and flow velocity, haematocrit, white blood cell count or platelet count was observed; however, trends (P < 0·10) for wall thickness increasing with decreasing haematocrit and increasing white blood cell count were noted. Findings are discussed in the context of how anaemia and circulating inflammatory markers may impact arterial wall morphology.
Assuntos
Anemia Falciforme/sangue , Artérias/diagnóstico por imagem , Contagem de Células Sanguíneas , Doenças Arteriais Intracranianas/diagnóstico por imagem , Adolescente , Adulto , Anemia Falciforme/complicações , Anemia Falciforme/diagnóstico por imagem , Anemia Falciforme/patologia , Artérias/patologia , Estudos de Casos e Controles , Circulação Cerebrovascular , Criança , Estudos Transversais , Feminino , Humanos , Doenças Arteriais Intracranianas/sangue , Doenças Arteriais Intracranianas/etiologia , Doenças Arteriais Intracranianas/patologia , Imageamento por Ressonância Magnética , Masculino , Adulto JovemRESUMO
OBJECTIVE. The Adaptive Image Receive (AIR) radiofrequency coil is an emergent technology that is lightweight and flexible and exhibits electrical characteristics that overcome many of the limitations of traditional rigid coil designs. The purpose of this study was to apply the AIR coil for whole-brain imaging and compare the performance of a prototype AIR coil array with the performance of conventional head coils. SUBJECTS AND METHODS. A phantom and 15 healthy adult participants were imaged. A prototype 16-channel head AIR coil was compared with conventional 8-and 32-channel head coils using clinically available MRI sequences. During consensus review, two board-certified neuroradiologists graded the AIR coil compared with an 8-channel coil and a 32-channel coil on a 5-point ordinal scale in multiple categories. One- and two-sided Wilcoxon signed rank tests were performed. Noise covariance matrices and geometry factor (g-factor) maps were calculated. RESULTS. The signal-to-noise ratio, structural sharpness, and overall image quality scores of the prototype 16-channel AIR coil were better than those of the 8-channel coil but were not as good as those of the 32-channel coil. Noise covariance matrices showed stable performance of the AIR coil across participants. The median g-factors for the 16-channel AIR coil were, overall, less than those of the 8-channel coil but were greater than those of the 32-channel coil. CONCLUSION. On average, the prototype 16-channel head AIR coil outperformed a conventional 8-channel head coil but did not perform as well as a conventional 32-channel head coil. This study shows the feasibility of the novel AIR coil technology for imaging the brain and provides insight for future coil design improvements.