Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(38): e2209234119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095214

RESUMO

The spatial and temporal patterns of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases and COVID-19 deaths in the United States are poorly understood. We show that variations in the cumulative reported cases and deaths by county, state, and date exemplify Taylor's law of fluctuation scaling. Specifically, on day 1 of each month from April 2020 through June 2021, each state's variance (across its counties) of cases is nearly proportional to its squared mean of cases. COVID-19 deaths behave similarly. The lower 99% of counts of cases and deaths across all counties are approximately lognormally distributed. Unexpectedly, the largest 1% of counts are approximately Pareto distributed, with a tail index that implies a finite mean and an infinite variance. We explain why the counts across the entire distribution conform to Taylor's law with exponent two using models and mathematics. The finding of infinite variance has practical consequences. Local jurisdictions (counties, states, and countries) that are planning for prevention and care of largely unvaccinated populations should anticipate the rare but extremely high counts of cases and deaths that occur in distributions with infinite variance. Jurisdictions should prepare collaborative responses across boundaries, because extremely high local counts of cases and deaths may vary beyond the resources of any local jurisdiction.


Assuntos
COVID-19 , COVID-19/mortalidade , Humanos , SARS-CoV-2/isolamento & purificação , Estados Unidos/epidemiologia
2.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34772810

RESUMO

We generalize Taylor's law for the variance of light-tailed distributions to many sample statistics of heavy-tailed distributions with tail index α in (0, 1), which have infinite mean. We show that, as the sample size increases, the sample upper and lower semivariances, the sample higher moments, the skewness, and the kurtosis of a random sample from such a law increase asymptotically in direct proportion to a power of the sample mean. Specifically, the lower sample semivariance asymptotically scales in proportion to the sample mean raised to the power 2, while the upper sample semivariance asymptotically scales in proportion to the sample mean raised to the power [Formula: see text] The local upper sample semivariance (counting only observations that exceed the sample mean) asymptotically scales in proportion to the sample mean raised to the power [Formula: see text] These and additional scaling laws characterize the asymptotic behavior of commonly used measures of the risk-adjusted performance of investments, such as the Sortino ratio, the Sharpe ratio, the Omega index, the upside potential ratio, and the Farinelli-Tibiletti ratio, when returns follow a heavy-tailed nonnegative distribution. Such power-law scaling relationships are known in ecology as Taylor's law and in physics as fluctuation scaling. We find the asymptotic distribution and moments of the number of observations exceeding the sample mean. We propose estimators of α based on these scaling laws and the number of observations exceeding the sample mean and compare these estimators with some prior estimators of α.

3.
Theor Popul Biol ; 154: 118-125, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37949177

RESUMO

We consider the dynamics of a collection of n>1 populations in which each population has its own rate of growth or decay, fixed in continuous time, and migrants may flow from one population to another over a fixed network, at a rate, fixed over time, times the size of the sending population. This model is represented by an ordinary linear differential equation of dimension n with constant coefficients arrayed in an essentially nonnegative matrix. This paper identifies conditions on the parameters of the model (specifically, conditions on the eigenvalues and eigenvectors) under which the variance of the n population sizes at a given time is asymptotically (as time increases) proportional to a power of the mean of the population sizes at that given time. A power-law variance function is known in ecology as Taylor's Law and in physics as fluctuation scaling. Among other results, we show that Taylor's Law holds asymptotically, with variance asymptotically proportional to the mean squared, on an open dense subset of the class of models considered here.


Assuntos
Ecologia , Densidade Demográfica
4.
Proc Natl Acad Sci U S A ; 114(1): E47-E56, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27994156

RESUMO

The spatial distribution of individuals of any species is a basic concern of ecology. The spatial distribution of parasites matters to control and conservation of parasites that affect human and nonhuman populations. This paper develops a quantitative theory to predict the spatial distribution of parasites based on the distribution of parasites in hosts and the spatial distribution of hosts. Four models are tested against observations of metazoan hosts and their parasites in littoral zones of four lakes in Otago, New Zealand. These models differ in two dichotomous assumptions, constituting a 2 × 2 theoretical design. One assumption specifies whether the variance function of the number of parasites per host individual is described by Taylor's law (TL) or the negative binomial distribution (NBD). The other assumption specifies whether the numbers of parasite individuals within each host in a square meter of habitat are independent or perfectly correlated among host individuals. We find empirically that the variance-mean relationship of the numbers of parasites per square meter is very well described by TL but is not well described by NBD. Two models that posit perfect correlation of the parasite loads of hosts in a square meter of habitat approximate observations much better than two models that posit independence of parasite loads of hosts in a square meter, regardless of whether the variance-mean relationship of parasites per host individual obeys TL or NBD. We infer that high local interhost correlations in parasite load strongly influence the spatial distribution of parasites. Local hotspots could influence control and conservation of parasites.


Assuntos
Demografia/métodos , Interações Hospedeiro-Parasita/fisiologia , Modelos Biológicos , Parasitos/crescimento & desenvolvimento , Animais , Distribuição Binomial , Ecologia , Humanos , Nova Zelândia , Carga Parasitária , Dinâmica Populacional
5.
Proc Natl Acad Sci U S A ; 114(26): 6788-6793, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28559312

RESUMO

Taylor's law (TL) is a widely observed empirical pattern that relates the variances to the means of groups of nonnegative measurements via an approximate power law: variance g ≈ a [Formula: see text] mean gb , where g indexes the group of measurements. When each group of measurements is distributed in space, the exponent b of this power law is conjectured to reflect aggregation in the spatial distribution. TL has had practical application in many areas since its initial demonstrations for the population density of spatially distributed species in population ecology. Another widely observed aspect of populations is spatial synchrony, which is the tendency for time series of population densities measured in different locations to be correlated through time. Recent studies showed that patterns of population synchrony are changing, possibly as a consequence of climate change. We use mathematical, numerical, and empirical approaches to show that synchrony affects the validity and parameters of TL. Greater synchrony typically decreases the exponent b of TL. Synchrony influenced TL in essentially all of our analytic, numerical, randomization-based, and empirical examples. Given the near ubiquity of synchrony in nature, it seems likely that synchrony influences the exponent of TL widely in ecologically and economically important systems.

6.
Gerontology ; 65(2): 136-144, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30544101

RESUMO

Usually, population aging is measured to inform fiscal and social planning because it is considered to indicate the burden that an elderly population presents to the economic, social security, and health systems of a society. Measures of population aging are expected to indicate shifts in the distribution of individuals' attributes (e.g., chronological age, health) within a population that are relevant to assessing the burden. We claim that chronological age - even though it is the attribute most broadly used - may frequently not be the best measure to satisfy this purpose. A distribution of chronological age per se does not present a burden. Rather, burdens arise from the characteristics that supposedly or actually accompany chronological ages. We posit that in addition to chronological age, meaningful measures of population aging should reflect, for instance, the distribution of economic productivity, health, functional capacities, or biological age, as these attributes may more directly assess the burden on the socioeconomic and health systems. Here, we illustrate some limitations of measures of population aging based on each kind of measure, including chronological age, and review alternative measures that may better inform fiscal, social, and health planning.


Assuntos
Envelhecimento , Dinâmica Populacional/estatística & dados numéricos , Fatores Socioeconômicos , Envelhecimento/fisiologia , Envelhecimento/psicologia , Cognição , Humanos , Expectativa de Vida , Desempenho Físico Funcional
7.
Ecol Lett ; 21(12): 1800-1811, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30230159

RESUMO

Population densities of a species measured in different locations are often correlated over time, a phenomenon referred to as synchrony. Synchrony results from dispersal of individuals among locations and spatially correlated environmental variation, among other causes. Synchrony is often measured by a correlation coefficient. However, synchrony can vary with timescale. We demonstrate theoretically and experimentally that the timescale-specificity of environmental correlation affects the overall magnitude and timescale-specificity of synchrony, and that these effects are modified by population dispersal. Our laboratory experiments linked populations of flour beetles by changes in habitat size and dispersal. Linear filter theory, applied to a metapopulation model for the experimental system, predicted the observed timescale-specific effects. The timescales at which environmental covariation occurs can affect the population dynamics of species in fragmented habitats.


Assuntos
Besouros , Ecologia , Animais , Ecossistema , Densidade Demográfica , Dinâmica Populacional
8.
Proc Natl Acad Sci U S A ; 112(25): 7749-54, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-25852144

RESUMO

Taylor's law (TL), a widely verified quantitative pattern in ecology and other sciences, describes the variance in a species' population density (or other nonnegative quantity) as a power-law function of the mean density (or other nonnegative quantity): Approximately, variance = a(mean)(b), a > 0. Multiple mechanisms have been proposed to explain and interpret TL. Here, we show analytically that observations randomly sampled in blocks from any skewed frequency distribution with four finite moments give rise to TL. We do not claim this is the only way TL arises. We give approximate formulae for the TL parameters and their uncertainty. In computer simulations and an empirical example using basal area densities of red oak trees from Black Rock Forest, our formulae agree with the estimates obtained by least-squares regression. Our results show that the correlated sampling variation of the mean and variance of skewed distributions is statistically sufficient to explain TL under random sampling, without the intervention of any biological or behavioral mechanisms. This finding connects TL with the underlying distribution of population density (or other nonnegative quantity) and provides a baseline against which more complex mechanisms of TL can be compared.

9.
Proc Natl Acad Sci U S A ; 112(6): 1791-6, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25550506

RESUMO

How do the lifestyles (free-living unparasitized, free-living parasitized, and parasitic) of animal species affect major ecological power-law relationships? We investigated this question in metazoan communities in lakes of Otago, New Zealand. In 13,752 samples comprising 1,037,058 organisms, we found that species of different lifestyles differed in taxonomic distribution and body mass and were well described by three power laws: a spatial Taylor's law (the spatial variance in population density was a power-law function of the spatial mean population density); density-mass allometry (the spatial mean population density was a power-law function of mean body mass); and variance-mass allometry (the spatial variance in population density was a power-law function of mean body mass). To our knowledge, this constitutes the first empirical confirmation of variance-mass allometry for any animal community. We found that the parameter values of all three relationships differed for species with different lifestyles in the same communities. Taylor's law and density-mass allometry accurately predicted the form and parameter values of variance-mass allometry. We conclude that species of different lifestyles in these metazoan communities obeyed the same major ecological power-law relationships but did so with parameters specific to each lifestyle, probably reflecting differences among lifestyles in population dynamics and spatial distribution.


Assuntos
Peso Corporal/fisiologia , Ecologia/métodos , Lagos/parasitologia , Modelos Biológicos , Parasitos/fisiologia , Animais , Demografia , Nova Zelândia , Densidade Demográfica , Dinâmica Populacional , Especificidade da Espécie
10.
Proc Natl Acad Sci U S A ; 112(25): 7755-60, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-25941384

RESUMO

Taylor's law (TL) states that the variance V of a nonnegative random variable is a power function of its mean M; i.e., V = aM(b). TL has been verified extensively in ecology, where it applies to population abundance, physics, and other natural sciences. Its ubiquitous empirical verification suggests a context-independent mechanism. Sample exponents b measured empirically via the scaling of sample mean and variance typically cluster around the value b = 2. Some theoretical models of population growth, however, predict a broad range of values for the population exponent b pertaining to the mean and variance of population density, depending on details of the growth process. Is the widely reported sample exponent b ≃ 2 the result of ecological processes or could it be a statistical artifact? Here, we apply large deviations theory and finite-sample arguments to show exactly that in a broad class of growth models the sample exponent is b ≃ 2 regardless of the underlying population exponent. We derive a generalized TL in terms of sample and population exponents b(jk) for the scaling of the kth vs. the jth cumulants. The sample exponent b(jk) depends predictably on the number of samples and for finite samples we obtain b(jk) ≃ k = j asymptotically in time, a prediction that we verify in two empirical examples. Thus, the sample exponent b ≃ 2 may indeed be a statistical artifact and not dependent on population dynamics under conditions that we specify exactly. Given the broad class of models investigated, our results apply to many fields where TL is used although inadequately understood.


Assuntos
Modelos Teóricos , Dinâmica Populacional , Pesquisa Empírica
11.
Am Nat ; 188(1): 76-86, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27322123

RESUMO

Factors constraining the structure of food webs can be investigated by comparing classes of ecosystems. We find that pelagic ecosystems, those based on one-celled primary producers, have longer food chains than terrestrial ecosystems. Yet pelagic ecosystems have lower primary productivity, contrary to the hypothesis that greater energy flows permit higher trophic levels. We hypothesize that longer food chain length in pelagic ecosystems, compared with terrestrial ecosystems, is associated with smaller pelagic animal body size permitting more rapid trophic energy transfer. Assuming negative allometric dependence of biomass production rate on body mass at each trophic level, the lowest three pelagic animal trophic levels are estimated to add biomass more rapidly than their terrestrial counterparts by factors of 12, 4.8, and 2.6. Pelagic animals consequently transport primary production to a fifth trophic level 50-190 times more rapidly than animals in terrestrial webs. This difference overcomes the approximately fivefold slower pelagic basal productivity, energetically explaining longer pelagic food chains. In addition, ectotherms, dominant at lower pelagic animal trophic levels, have high metabolic efficiency, also favoring higher rates of trophic energy transfer in pelagic ecosystems. These two animal trophic flow mechanisms imply longer pelagic food chains, reestablishing an important role for energetics in food web structure.


Assuntos
Organismos Aquáticos , Tamanho Corporal , Cadeia Alimentar , Animais , Biomassa , Ecossistema
12.
Ecology ; 97(12): 3402-3413, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27912025

RESUMO

Taylor's law (TL) asserts that the variance in a species' population density is a power-law function of its mean population density: log(variance) = a + b × log(mean). TL is widely verified. We show here that empirical time series of density of the Hokkaido gray-sided vole, Myodes rufocanus, sampled 1962-1992 at 85 locations, satisfied temporal and spatial forms of TL. The slopes (b ± standard error) of the temporal and spatial TL were estimated to be 1.613 ± 0.141 and 1.430 ± 0.132, respectively. A previously verified autoregressive Gompertz model of the dynamics of these populations generated time series of density which reproduced the form of temporal and spatial TLs, but with slopes that were significantly steeper than the slopes estimated from data. The density-dependent components of the Gompertz model were essential for the temporal TL. Adding to the Gompertz model assumptions that populations with higher mean density have reduced variance of density-independent perturbations and that density-independent perturbations are spatially correlated among populations yielded simulated time series that satisfactorily reproduced the slopes from data. The slopes (b ± standard error) of the enhanced simulations were 1.619 ± 0.199 for temporal TL and 1.575 ± 0.204 for spatial TL.


Assuntos
Distribuição Animal/fisiologia , Arvicolinae/fisiologia , Modelos Biológicos , Animais , Simulação por Computador , Japão , Dinâmica Populacional , Fatores de Tempo
13.
Proc Natl Acad Sci U S A ; 109(39): 15829-34, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23019367

RESUMO

Two widely tested empirical patterns in ecology are combined here to predict how the variation of population density relates to the average body size of organisms. Taylor's law (TL) asserts that the variance of the population density of a set of populations is a power-law function of the mean population density. Density-mass allometry (DMA) asserts that the mean population density of a set of populations is a power-law function of the mean individual body mass. Combined, DMA and TL predict that the variance of the population density is a power-law function of mean individual body mass. We call this relationship "variance-mass allometry" (VMA). We confirmed the theoretically predicted power-law form and the theoretically predicted parameters of VMA, using detailed data on individual oak trees (Quercus spp.) of Black Rock Forest, Cornwall, New York. These results connect the variability of population density to the mean body mass of individuals.


Assuntos
Ecossistema , Modelos Biológicos , Quercus/fisiologia , Árvores/fisiologia , New York
14.
Theor Popul Biol ; 93: 30-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24444811

RESUMO

Taylor's power law of fluctuation scaling (TL) states that for population density, population abundance, biomass density, biomass abundance, cell mass, protein copy number, or any other nonnegative-valued random variable in which the mean and the variance are positive, variance=a(mean)(b),a>0, or equivalently log variance=loga+b×log mean. Many empirical examples and practical applications of TL are known, but understanding of TL's origins and interpretations remains incomplete. We show here that, as time becomes large, TL arises from multiplicative population growth in which successive random factors are chosen by a Markov chain. We give exact formulas for a and b in terms of the Markov transition matrix and the values of the successive multiplicative factors. In this model, the mean and variance asymptotically increase exponentially if and only if b>2 and asymptotically decrease exponentially if and only if b<2.


Assuntos
Cadeias de Markov , Dinâmica Populacional , Processos Estocásticos
15.
Proc Natl Acad Sci U S A ; 108(29): 11830-5, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21730138

RESUMO

In most societies, women at age 39 with higher levels of education have fewer children. To understand this association, we investigated the effects of childbearing on educational attainment and the effects of education on fertility in the 1964 birth cohort of Norwegian women. Using detailed annual data from ages 17 to 39, we estimated the probabilities of an additional birth, a change in educational level, and enrollment in the coming year, conditional on fertility history, educational level, and enrollment history at the beginning of each year. A simple model reproduced a declining gradient of children ever born with increasing educational level at age 39. When a counterfactual simulation assumed no effects of childbearing on educational progression or enrollment (without changing the estimated effects of education on childbearing), the simulated number of children ever born decreased very little with increasing completed educational level, contrary to data. However, when another counterfactual simulation assumed no effects of current educational level and enrollment on childbearing (without changing the estimated effects of childbearing on education), the simulated number of children ever born decreased with increasing completed educational level nearly as much as the decrease in the data. In summary, in these Norwegian data, childbearing impeded education much more than education impeded childbearing. These results suggest that women with advanced degrees have lower completed fertility on the average principally because women who have one or more children early are more likely to leave or not enter long educational tracks and never attain a high educational level.


Assuntos
Escolaridade , Fertilidade/fisiologia , Paridade , Estudos de Coortes , Simulação por Computador , Feminino , Finlândia , Humanos , Modelos Estatísticos
16.
Front Immunol ; 15: 1330253, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410519

RESUMO

Recognizing the "essential" factors that contribute to a clinical outcome is critical for designing appropriate therapies and prioritizing limited medical resources. Demonstrating a high correlation between a factor and an outcome does not necessarily imply an essential role of the factor to the outcome. Human protective adaptive immune responses to pathogens vary among (and perhaps within) pathogenic strains, human individual hosts, and in response to other factors. Which of these has an "essential" role? We offer three statistical approaches that predict the presence of newly contributing factor(s) and then quantify the influence of host, pathogen, and the new factors on immune responses. We illustrate these approaches using previous data from the protective adaptive immune response (cellular and humoral) by human hosts to various strains of the same pathogenic bacterial species. Taylor's law predicts the existence of other factors potentially contributing to the human protective adaptive immune response in addition to inter-individual host and intra-bacterial species inter-strain variability. A mixed linear model measures the relative contribution of the known variables, individual human hosts and bacterial strains, and estimates the summed contributions of the newly predicted but unknown factors to the combined adaptive immune response. A principal component analysis predicts the presence of sub-variables (currently not defined) within bacterial strains and individuals that may contribute to the combined immune response. These observations have statistical, biological, clinical, and therapeutic implications.


Assuntos
Imunidade Adaptativa , Interações Hospedeiro-Patógeno , Humanos
17.
Proc Biol Sci ; 280(1757): 20122955, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23427171

RESUMO

Taylor's law (TL) asserts that the variance of the density (individuals per area or volume) of a set of comparable populations is a power-law function of the mean density of those populations. Despite the empirical confirmation of TL in hundreds of species, there is little consensus about why TL is so widely observed and how its estimated parameters should be interpreted. Here, we report that the Lewontin-Cohen (henceforth LC) model of stochastic population dynamics, which has been widely discussed and applied, leads to a spatial TL in the limit of large time and provides an explicit, exact interpretation of its parameters. The exponent of TL exceeds 2 if and only if the LC model is supercritical (growing on average), equals 2 if and only if the LC model is deterministic, and is less than 2 if and only if the LC model is subcritical (declining on average). TL and the LC model describe the spatial variability and the temporal dynamics of populations of trees on long-term plots censused over 75 years at the Black Rock Forest, Cornwall, NY, USA.


Assuntos
Modelos Biológicos , Árvores/crescimento & desenvolvimento , New York , Densidade Demográfica , Dinâmica Populacional , Processos Estocásticos , Fatores de Tempo
18.
Theor Popul Biol ; 88: 94-100, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23689021

RESUMO

Taylor's law (TL), a widely verified empirical relationship in ecology, states that the variance of population density is approximately a power-law function of mean density. The growth-rate theorem (GR) states that, in a subdivided population, the rate of change of the overall growth rate is proportional to the variance of the subpopulations' growth rates. We show that continuous-time exponential change implies GR at every time and, asymptotically for large time, TL with power-law exponent 2. We also show why diverse population-dynamic models predict TL in the limit of large time by identifying simple features these models share: If the mean population density and the variance of population density are (exactly or asymptotically) non-constant exponential functions of a parameter (e.g., time), then the variance of density is (exactly or asymptotically) a power-law function of mean density.


Assuntos
Modelos Teóricos , Crescimento Demográfico , Humanos
20.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37905108

RESUMO

Mechanical force controls the opening and closing of mechanosensitive ion channels atop the hair bundles of the inner ear. The filamentous tip link connecting transduction channels to the tallest neighboring stereocilium modulates the force transmitted to the channels and thus changes their probability of opening. Each tip link comprises four molecules: a dimer of protocadherin 15 and a dimer of cadherin 23, all of which are stabilized by Ca2+ binding. Using a high-speed optical trap to examine dimeric PCDH15, we find that the protein's configuration is sensitive to Ca2+ and that the molecule exhibits limited unfolding at a physiological Ca2+ concentration. PCDH15 can therefore modulate its stiffness without undergoing large unfolding events in physiological Ca2+ conditions. The experimentally determined stiffness of PCDH15 accords with published values for the stiffness of the gating spring, the mechanical element that controls the opening of mechanotransduction channels. When PCDH15 has a point mutation, V507D, associated with non-syndromic hearing loss, unfolding events occur more frequently under tension and refolding events occur less often than in the wild-type protein. Our results suggest that the maintenance of appropriate tension in the gating spring is critical to the appropriate transmission of force to transduction channels, and hence to hearing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA