Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(23): 233801, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354410

RESUMO

We propose superluminal solitons residing in the momentum gap (k gap) of nonlinear photonic time crystals. These gap solitons are structured as plane waves in space while being periodically self-reconstructing wave packets in time. The solitons emerge from modes with infinite group velocity causing superluminal evolution, which is the opposite of the stationary nature of the analogous Bragg gap soliton residing at the edge of an energy gap (or a spatial gap) with zero group velocity. We explore the faster-than-light pulsed propagation of these k-gap solitons in view of Einstein's causality by introducing a truncated input seed as a precursor of a signal velocity forerunner, and find that the superluminal propagation of k-gap solitons does not break causality.


Assuntos
Fótons , Reprodução , Movimento (Física)
2.
Phys Rev Lett ; 127(9): 093901, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34506166

RESUMO

Synthetic-space topological insulators are topological systems with at least one spatial dimension replaced by a periodic arrangement of modes, in the form of a ladder of energy levels, cavity modes, or some other sequence of modes. Such systems can significantly enrich the physics of topological insulators, in facilitating higher dimensions, nonlocal coupling, and more. Thus far, all synthetic-space topological insulators relied on active modulation to facilitate transport in the synthetic dimensions. Here, we propose dynamically invariant synthetic-space photonic topological insulators: a two-dimensional evolution-invariant photonic structure exhibiting topological properties in synthetic dimensions. This nonmagnetic structure is static, lacking any kind of modulation in the evolution coordinate, yet it displays an effective magnetic field in synthetic space, characterized by a Chern number of one. We study the evolution of topological states along the edge, and on the interface between two such structures with opposite synthetic-space chirality, and demonstrate their robust unidirectional propagation in the presence of defects and disorder. Such topological structures can be realized in photonics and cold atoms and provide a fundamentally new mechanism for topological insulators.

3.
Light Sci Appl ; 9(1): 200, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33353936

RESUMO

Artificial gauge fields the control over the dynamics of uncharged particles by engineering the potential landscape such that the particles behave as if effective external fields are acting on them. Recent years have witnessed a growing interest in artificial gauge fields generated either by the geometry or by time-dependent modulation, as they have been enablers of topological phenomena and synthetic dimensions in many physical settings, e.g., photonics, cold atoms, and acoustic waves. Here, we formulate and experimentally demonstrate the generalized laws of refraction and reflection at an interface between two regions with different artificial gauge fields. We use the symmetries in the system to obtain the generalized Snell law for such a gauge interface and solve for reflection and transmission. We identify total internal reflection (TIR) and complete transmission and demonstrate the concept in experiments. In addition, we calculate the artificial magnetic flux at the interface of two regions with different artificial gauge fields and present a method to concatenate several gauge interfaces. As an example, we propose a scheme to make a gauge imaging system-a device that can reconstruct (image) the shape of an arbitrary wavepacket launched from a certain position to a predesigned location.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA