RESUMO
The Mechanostat Theory states that osteocytes sense both the intensity and directionality of the strains induced by mechanical usage and modulate the bone design accordingly. In long bones, this process may adapt anterior-posterior and lateral-medial strength to their mechanical environment showing regional specificity. Anuran species are ideal for analyzing the muscle-bone relationships related to the different mechanical stresses induced by their many locomotor modes and habitat uses. This work aimed to explore the relationships between indicators of the force of the most relevant muscles to locomotion and the mechanical properties of femur and tibia fibula in preserved samples of three anuran species with different habitat use (aquatic, arboreal) and locomotion modes (swimmer, jumper, walker/climber). For that purpose, we measured the anatomical cross-sectional area of each dissected muscle and correlated it with the moments of inertia and bone strength indices. Significant, species-specific covariations between muscle and bone parameters were observed. Pseudis platensis, the aquatic swimmer, showed the largest muscles, followed by Boana faber, the jumper and Phyllomedusa sauvagii, the walker/climber. As we expected, bigger muscles correlate with bone parameters in all the species. Nevertheless, smaller muscles also play an important role in bone design. In aquatic species, muscle interaction enhances mostly lateral bending strength throughout the femur and lateral and antero-posterior bending strength in the tibia fibula. In the jumper species, muscles affected the femur and tibia fibula mostly in anterior-posterior bending. In the walker/climber species, responses involving both antero-posterior and lateral bending strengths were observed in the femur and tibia fibula. These results show that bones will be more or less resistant to lateral and antero-posterior bending according to the different mechanical challenges of locomotion in aquatic vs. arboreal habitats. This study provides new evidence of the muscle-bone relationships in three frog species associated with their different locomotion and habitat uses, highlighting the crucial role of muscle in determining the architectural properties of bones.
Assuntos
Anuros , Osso e Ossos , Animais , Anuros/fisiologia , Fêmur/fisiologia , Locomoção/fisiologia , Músculos , Tíbia/fisiologiaRESUMO
Long bones are subjected to mechanical loads during locomotion that will influence their biomechanical properties through a feedback mechanism (the bone mechanostat). This mechanism adapts the spatial distribution of the mineralized tissue to resist compression, bending and torsion. Among vertebrates, anurans represent an excellent group to study long bone properties because they vary widely in locomotor modes and habitat use, which enforce different skeletal loadings. In this study, we hypothesized that (a) the cortical bone mass, density and design of anuran femur and tibiofibula would reflect the mechanical influences of the different locomotor modes and habitat use, and (b) the relationships between the architectural efficiency of cortical design (cross-sectional moments of inertia) and the intrinsic stiffness of cortical tissue [cortical mineral density; the 'distribution/quality' (d/q) relationship] would describe some inter-specific differences in the efficiency of the bone mechanostat to improve bone design under different mechanical loads. To test this hypothesis, we determined tomographic (peripheral quantitative computed tomography) indicators of bone mass, mineralization, and design along the femur and tibiofibula of four anuran species with different modes of locomotion and use of habitat. We found inter-specific differences in all measures between the distal and proximal ends and mid-diaphysis of the bones. In general, terrestrial-hopper species had the highest values. Arboreal-walker species had the lowest values for all variables except for cortical bone mineral density, which was lowest in aquatic-swimmer species. The d/q relationships showed similar responses of bone modeling as a function of cortical stiffness for aquatic and arboreal species, whereas terrestrial-hoppers had higher values for moments of inertia regardless of the tissue compliance to be deformed. These results provide new evidence regarding the significant role of movement and habitat use in addition to the biomechanical properties of long bones within a morpho-functional and comparative context in anuran species.
Assuntos
Anuros/fisiologia , Fêmur/fisiologia , Fíbula/fisiologia , Locomoção/fisiologia , Tíbia/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Densidade Óssea/fisiologia , Ecossistema , Fêmur/diagnóstico por imagem , Fíbula/diagnóstico por imagem , Masculino , Tíbia/diagnóstico por imagem , Tomografia Computadorizada por Raios XRESUMO
The present study aims: (1) to explore the influence of lean mass (LM) on bone mineral content (BMC), (2) to investigate the pubertal influences on the BMC-LM relation, and (3) to perform Z-score charts of BMC-LM relation, stratified by gender and reproductive status categorized by age ranges. A cross-sectional analysis was conducted using 4001 healthy subjects between 7 and 90 years participating in the Health Workers Cohort Study. Of these, 720 participants were ≤ 19 years, 2417 were women ≥ 20 years, and 864 were men ≥ 20 years. Using Dual X-ray absorptiometry (DXA), we measured BMC and LM. Participants' pubertal development was assessed according to Tanner's stage scale. To describe BMC-LM relation, simple correlation coefficients were computed. To produce best-fit equations, an ANOVA test was conducted. Z-score graphs for the BMC-LM relation were obtained. In general, the BMC-LM correlations were linear and highly significant. For boys, curves were virtually parallel, with similar intercepts and a progressive displacement of values toward the upper-right region of the graph, for each Tanner subgroup. For girls, curves for Tanner 1-2 and 4-5 stages were parallel; but, in girls Tanner 4-5, the intercepts were significantly higher by about +300-400 g of BMC (P < 0.001). For postmenopausal women, the curve was parallel to that for the premenopausal but showed a lower intercept (P < 0.001). We provide DXA reference data on a well-characterized cohort of 4001 healthy subjects. These reference curves provide a reference value for the assessment and monitoring of bone health in all age groups included in the present study.
Assuntos
Peso Corporal , Densidade Óssea , Reprodução , Caracteres Sexuais , Magreza/fisiopatologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Composição Corporal , Criança , Estudos de Coortes , Estudos Transversais , Feminino , Pessoal de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência , Adulto JovemRESUMO
We evaluated the association between leisure-time physical activity (LTPA), bone mineral content (BMC), and lean mass (LM) in whole body (wb) and limbs of the Mexican adult population. Our results demonstrate that some types of LTPA with relatively high/medium impact on bones such as football, basketball, tennis, and weightlifting improve BMC and LM. PURPOSE: To evaluate the effect of different kinds of leisure-time physical activity (LTPA) on bone mass values and its association with lean mass (LM) in the whole body (wb) and limbs of a large sample of Mexican men and premenopausal (pre-MP) women. METHODS: We conducted a cross-sectional analysis of data from the Health Workers Cohort Study. Bone mineral content (BMC, kg), bone area (cm2), and LM (kg) were measured with DXA. The LTPA level and the "sedentary" condition were determined using a validated questionnaire adapted for the Mexican population. One-way ANOVA tests evaluated the differences in weight, height, body mass index, and wb, lower limb (ll) and upper limb (ul) BMC and LM between the active (those who engaged in LTPA) and sedentary group. Relationships between BMC and LM values were analyzed. Slopes of the curves and Z scores of LTPA groups with respect to the sedentary group were compared. RESULTS: In men, both wb-BMC and ll-BMC were significantly higher in the groups performing basketball, football, tennis, weightlifting, and running, and all wb-LM, ll-LM, and ul-LM were higher in running, weightlifting, football, and basketball groups with respect to the sedentary group. Both the Z scores and the slopes of BMC-vs-LM relationships were higher than the controls, but only in the ll of male basketball and football players. CONCLUSION: Our findings demonstrate that some types of LTPA with relatively high/medium impact on bones, such as football, basketball, tennis, and weightlifting, improve both BMC and LM compared to sedentary individuals. Finally, this relationship is stronger for the bones found in the legs and it seems that women are less sensitive to this effect, possibly due to hormonal, dietary, and pharmacological reasons.
Assuntos
Composição Corporal , Densidade Óssea , Absorciometria de Fóton , Adulto , Estudos de Coortes , Estudos Transversais , Exercício Físico , Feminino , Humanos , MasculinoRESUMO
This study analyses the evaluation of tomographic indicators of tibia structure, assuming that the usual loading pattern shifts from uniaxial compression close to the heel to a combined compression, torsion and bending scheme towards the knee. To this end, pQCT scans were obtained at 5% intervals of the tibia length (S5-S95 sites from heel to knee) in healthy men and women (10/10) aged 20-40 years. Indicators of bone mass [cortical area, cortical/total bone mineral content (BMC)], diaphyseal design (peri/endosteal perimeters, cortical thickness, circularity, bending/torsion moments of inertia - CSMIs), and material quality [(cortical vBMD (bone mineral density)] were determined. The longitudinal patterns of variation of these measures were similar between genders, but male values were always higher except for cortical vBMD. Expression of BMC data as percentages of the minimal values obtained along the bone eliminated those differences. The correlative variations in cortical area, BMC and thickness, periosteal perimeter and CSMIs along the bone showed that cortical bone mass was predominantly associated with cortical thickness toward the mid-diaphysis, and with bone diameter and CSMIs moving more proximally. Positive relationships between CSMIs (y) and total BMC (x) showed men's values shifting to the upper-right region of the graph and women's values shifting to the lower-left region. Total BMC decayed about 33% from S5 to S15 (where minimum total BMC and CSMI values and variances and maximum circularity were observed) and increased until S45, reaching the original S5 value at S40. The observed gender-related differences reflected the natural allometric relationships. However, the data also suggested that men distribute their available cortical mass more efficiently than women. The minimum amount and variance of mass indicators and CSMIs, and the largest circularity observed at S15 reflected the assumed adaptation to compression pattern at that level. The increase in CSMIs (successively for torsion, A-P bending, and lateral bending), the decrease in circularity values and the changes in cortical thickness and periosteal perimeter toward the knee described the progressive adaptation to increasing torsion and bending stresses. In agreement with the biomechanical background, the described relationships: (i) identify the sites at which some changes in tibial stresses and diaphyseal structure take place, possibly associated with fracture incidence; (ii) allow prediction of mass indicators at any site from single determinations; (iii) establish the proportionality between the total bone mass at regions with highly predominant trabecular and cortical bone of the same individual, suitable for a specific evaluation of changes in trabecular mass; and (iv) evaluate the ability of bone tissue to self-distribute the available cortical bone according to specific stress patterns, avoiding many anthropometric and gender-derived influences.
Assuntos
Densidade Óssea/fisiologia , Tíbia/anatomia & histologia , Adulto , Antropometria , Índice de Massa Corporal , Feminino , Humanos , Masculino , Fatores Sexuais , Estatística como Assunto , Tíbia/diagnóstico por imagem , Tíbia/fisiologia , Tomografia Computadorizada por Raios X/métodos , Adulto JovemRESUMO
La expansión modeladora de la geometría cortical de un hueso inducida por su entorno mecánico podría ser difícil de modificar por estímulos ulteriores con diferente direccionalidad. Este estudio, que por primera vez combina datos tomográficos del peroné (pQCT) y dinamométricos de la musculatura peronea lateral, intenta demostrar que, en individuos jóvenes no entrenados, el entrenamiento en fútbol produce cambios geométricos peroneos expansivos, similares a los del rugby, que podrían interferir en los efectos de un entrenamiento ulterior direccionalmente diferente (carrera larga). Confirmando la hipótesis, los resultados indican, con evidencias originales, 1) la relevancia creciente del uso del pie (rotación externa y eversión provocadas por los peroneos laterales) para la determinación de la geometría peronea (incremento del desarrollo de los indicadores de masa y de diseño óseos), evidenciada por la secuencia creciente de efectos: carrera < fútbol < rugby; 2) la predominancia de esos efectos sobre el desarrollo centro-proximal del peroné para resistir a la flexión lateral, y en la región distal para resistir el buckling (principal sitio y causa de fractura del hueso) y 3.) la relevancia de la anticipación de esos efectos para interferir en la manifestación de los cambios producidos por un entrenamiento ulterior (carrera), cuando los del primero (fútbol) afectan la modelación cortical de modo expansivo. Esta última deducción demuestra, en forma inédita, que un cambio modelatorio expansivo tempranamente inducido sobre la estructura cortical ósea 'delimitaría el terreno'para la manifestación de cualquier otro efecto ulterior por estímulos de distinta direccionalidad. (AU)
The modeling-dependent, geometrical expansion of cortical bone induced by the mechanical environment could be hard to modify by subsequent stimulations with a different directionality. The current study aimed to demonstrate that in young, untrained individuals, training in soccer or rugby enhances the geometric properties of the fibula cortical shell in such a way that the geometrical changes could interfere on the effects of a second training in which the loads are induced in a different direction, e.g. long-distance running. The original findings reported herein confirm our hypothesis and support 1) The relevance of the use of the foot (external rotation and eversion produced by peroneus muscles) to determine fibula geometry (improved development of indicators of bone mass and design) as evidenced by the increasing nature of the effects induced by running < soccer < rugby trainings; 2) The predominance of those effects on the ability of the fibula to resist lateral bending in the centralproximal region (insertion of peroneus muscles), and to resist buckling in the distal region (the main cause and site of the most frequent bone fractures), and 3) The interaction of the effects of a previous training with those of a subsequent training with a different orientation of the loads when the former induced a modeling-dependent expansion of the cortex. Our results support the proposed hypothesis with original arguments by showing that a first, expansive effect induced on cortical bone modeling would set the stage the manifestation of any subsequent effect derived from mechanical stimuli. (AU)
Assuntos
Humanos , Masculino , Adolescente , Adulto , Adulto Jovem , Exercício Físico/fisiologia , Fíbula/crescimento & desenvolvimento , Corrida/fisiologia , Futebol/fisiologia , Esportes/fisiologia , Tomografia , Densidade Óssea , Fraturas Ósseas/prevenção & controle , Força Muscular/fisiologia , Dinamômetro de Força Muscular , Fíbula/diagnóstico por imagem , Osso Cortical/diagnóstico por imagem , Pé/crescimento & desenvolvimento , Pé/fisiologia , Pé/diagnóstico por imagem , Futebol Americano/fisiologiaRESUMO
La "razón de ser" de nuestros huesos y esqueletos constituye un dilema centralizado en los conceptos biológicos de "estructura" y "organización", cuya solución necesitamos comprender para interpretar, diagnosticar, tratar y monitorear correctamente las osteopatías fragilizantes. Últimamente se ha reunido conocimiento suficiente para proponer aproximaciones razonables a ese objetivo. La que exponemos aquí requiere la aplicación de no menos de 6 criterios congruentes: 1) Un criterio cosmológico, que propone un origen común para todas las cosas; 2) Un criterio biológico, que explica el origen común de todos los huesos; 3) Un enfoque epistemológico, que desafía nuestra capacidad de comprensión del concepto concreto de estructura y del concepto abstracto de organización, focalizada en la noción rectora de direccionalidad espacial; 4) Una visión ecológica, que destaca la importancia del entorno mecánico de cada organismo para la adecuación de la calidad mecánica de sus huesos a las "funciones de sostén" que les adjudicamos; 5) Una correlación entre todo ese conocimiento y el necesario para optimizar nuestra aptitud para resolver los problemas clínicos implicados y 6) Una jerarquización del papel celular en el manejo de las interacciones genético-ambientales necesario para asimilar todo el problema a una simple cuestión de organización direccional de la estructura de cada hueso. Solo aplicando estos 6 criterios estaríamos en condiciones de responder a la incógnita planteada por el título. La conclusión de esta interpretación de la conducta y función de los huesos debería afectar el fundamento de la mayoría de las indicaciones farmacológicas destinadas al tratamiento de la fragilidad ósea. (AU)
The nature of the general behavior of our bones as weight-bearing structures is a matter of two biological concepts, namely, structure and organization, which are relevant to properly interpret, diagnose, treat, and monitor all boneweakening diseases. Different approaches can be proposed to trace the corresponding relationships. The one we present here involves six congruent criteria, namely, 1) a cosmological proposal of a common origin for everything; 2) a biological acknowledgement of a common origin for all bones; 3) the epistemological questioning of our understanding of the concrete concept of structure and the abstract notion of organization, focused on the lead idea of directionality; 4) the ecological insight that emphasizes the relevance of the mechanical environment of every organism to the naturally-selected adjustment of the mechanical properties of their mobile bones to act as struts or levers; 5) The clinical aspects of all the alluded associations; 6) The central role of bone cells to control the genetics/ environment interactions of any individual as needed to optimize the directionality of the structure of each of his/her bones to keep their mechanical ability within physiological limits. From our point of view, we could only solve the riddle posed by the title by addressing all of these six criteria. The striking conclusion of our analysis suggests that the structure (not the mass) of every bone would be controlled not only to take care of its mechanical ability, but also to cope with other properties which show a higher priority concerning natural selection. The matter would be that this interpretation of bone behavior and 'function' should affect the rationales for most pharmacological indications currently made to take care of bone fragility. (AU)
Assuntos
Humanos , Osso e Ossos/fisiologia , Doenças Ósseas Metabólicas/diagnóstico , Osteogênese Imperfeita/diagnóstico , Osteogênese Imperfeita/terapia , Osteoporose/diagnóstico , Osteoporose/terapia , Osso e Ossos/anatomia & histologia , Osso e Ossos/citologia , Osso e Ossos/ultraestrutura , Doenças Ósseas Metabólicas/terapia , Epigênese GenéticaRESUMO
Densitometrically, the skeleton is currently conceived as 'a systemically regulated mass of mineralized material that is born, grows, reaches a more or less high peak, and then declines faster or slower as to develop a correspondingly high or low fracture risk'. Alternatively, from a biomechanical point of view, the skeleton can be conceived as 'a biomechanically-regulated structure that can be systemically disturbed (in the cybernetic sense), the strength of which depends on the intrinsic stiffness (material properties) and the spatial distribution (architectural properties) of the mineralized tissue'. The biomechanical feedback system involved (bone 'mechanostat') would not control bone mass to optimize bone strength; it would rather control bone material quality and architecture (through a modulation of bone modeling and remodeling) in order to optimize bone stiffness. The natural stimuli for the bone mechanostat would be the customary strains of bone tissue (sensed by osteocytes) that are induced by gravitational forces and, more importantly, the contractions of regional muscles. According to this view, the development of any bone-weakening disease should be related to either (1) an intrinsic illness of the system (primary disturbances of bone cells), (2) a lack of mechanical stimulation (disuse-induced bone losses), or (3) a systemically-induced shift of the system's setpoint (systemic or secondary bone diseases). This short review aims to conciliate those views: (1) taking profit of the diagnostic possibilities provided by densitometric bone 'mass' determinations; (2) proposing other resources to assess bone mechanical properties; and (3) analyzing the muscle-bone interactions. These are crucial for achieving a differential diagnosis between disuse and primary or secondary bone disturbances, based either (1) on the densitometric determination of bone and muscle masses that would provide an anthropometric diagnosis of osteopenia (not osteoporosis because no extrapolations to bone strength can be made this way) or (2) on the cross-sectional analyses of bone structure or strength and muscle strength provided by bone tomography, magnetic resonance or other techniques that could afford a diagnosis of osteoporosis according to biomechanical criteria.
Assuntos
Idoso/fisiologia , Saúde , Atividade Motora/fisiologia , Aptidão Física/fisiologia , Estudos Transversais , Humanos , Projetos de Pesquisa , Fatores de RiscoRESUMO
En consonancia con la orientación tradicional de nuestras investigaciones, la Osteología está incorporando progresivamente el análisis estructural-biomecánico óseo y las interacciones músculo-esqueléticas. En este artículo se sintetizan los aportes originales del CEMFoC a la Osteología moderna en el terreno biomecánico en forma didáctica, para que el lector aprecie sus posibles aplicaciones clínicas. Los hallazgos aportaron evidencias sucesivas en apoyo de dos proposiciones fundamentales: a) los huesos deben interpretarse como estructuras resistivas, biológicamente servocontroladas ("Los huesos tienden siempre a mantener un factor de seguridad que permite al cuerpo trabajar normalmente sin fracturarse" Paradigma de Utah) y b) los huesos interactúan con su entorno mecánico, determinado principalmente por las contracciones musculares, en forma subordinada al entorno metabólico ("Los huesos son lo que los músculos quieren que sean, siempre que las hormonas lo permitan"). Los avances producidos se refieren, tanto cronológica como didácticamente, al conocimiento osteológico en general y al desarrollo de recursos novedosos para el diagnóstico no invasivo de fragilidad ósea, para distinguir entre osteopenias y osteoporosis, y para discriminar entre sus etiologías 'mecánica' y 'sistémica'. Finalmente, el nuevo conocimiento se integra en la proposición de un algoritmo diagnóstico para osteopenias y osteoporosis. El espíritu general de la presentación destaca que la evaluación osteomuscular dinámicamente integrada genera un nuevo espacio de análisis personalizado de los pacientes para la atención de cualquier osteopatía fragilizante con criterio biomecánico. (AU)
In consonance with the traditional spirit of our studies, skeletal research is being progressively focused on the structural-biomechanical analysis of bone and the muscle-bone interactions. In this article, the CEMFoC's members summarize their original findings in bone biomechanics and their potential clinical applications. These findings provided evidence supporting two fundamental hypotheses, namely, A. bones constitute resistive structures, which are biologically servo-controlled ('Bones tend to maintain a safety factor which allows the body to function normally avoiding fractures' the 'Utah paradigm'), and B. the interactions of bones with their mechanical environment mainly are determined by the contraction of local muscles - 'bone-muscle units'), and are subordinated to the control of the metabolic environment ('Bones are what muscles wish them to be, provided that hormones allow for it'). The achievements in the field are presented in a chronological and didactical sequence concerning the general knowledge in Osteology and the development of novel resources for non-invasive diagnosis of bone fragility, aiming to distinguish between osteopenias and osteoporosis and the 'mechanical' and 'metabolic' etiology of these conditions. Finally, the integrated new knowledge is presented as supporting for a proposed diagnostic algorithm for osteopenias and osteoporosis. In general terms, the article highlights the dynamic evaluation of the musculoskeletal system as a whole, opening a new diagnostic field for a personalized evaluation of the patients affected by a boneweakening disease, based on functional and biomechanical criteria. (AU)
Assuntos
Humanos , Animais , Ratos , Osso e Ossos/diagnóstico por imagem , Osteologia/tendências , Sistema Musculoesquelético/diagnóstico por imagem , Osteogênese Imperfeita/diagnóstico por imagem , Osteoporose/etiologia , Osteoporose/diagnóstico por imagem , Hormônio Paratireóideo/administração & dosagem , Hormônio Paratireóideo/uso terapêutico , Fenômenos Biomecânicos , Osso e Ossos/anatomia & histologia , Osso e Ossos/metabolismo , Doenças Ósseas Metabólicas/etiologia , Doenças Ósseas Metabólicas/diagnóstico por imagem , Algoritmos , Calcitonina/uso terapêutico , Colecalciferol/farmacologia , Hormônio do Crescimento Humano/uso terapêutico , Difosfonatos/farmacologia , Glucocorticoides/efeitos adversos , Glucocorticoides/farmacologia , Sistema Musculoesquelético/anatomia & histologia , Sistema Musculoesquelético/metabolismoAssuntos
Humanos , Esqueleto , Osso e Ossos , Tomografia , Densidade Óssea , Densitometria , Desenvolvimento MusculoesqueléticoRESUMO
In order to analyze the effects on whole-bone behavior of aluminum accumulation, 14 rats, aged 90 days, received i.p. doses of 27 mg/day of elemental Al, as Al(OH)3, during 26 weeks, while 14 rats remained as controls. Their femur diaphyses were studied tomographically by peripheral quantitative computed tomography (pQCT) and mechanically tested in bending. The load/deformation curves obtained allowed distinction between effects observed during the linearly elastic (Hookean) and nonlinear (non-Hookean, or plastic) behaviors of bones before and after the yield point, respectively. Treatment reduced the cortical bone mineralization (volumetric bone mineral density [BMD], -2%; P < 0.01), with a negative impact on the bending stiffness (Young's elastic modulus) and the yield stress of cortical bone (-18% and -13%; P < 0.05). Despite the absence of any cortical mass increase (cross-sectional area), improved spatial distribution of cortical tissue concerning anterior-posterior bending stress (cross-sectional moment of inertia, 10%; P < 0.05) occurred through a modulation of modeling drifts. Up to the yield point, neither the structural strength (load supported), the strain, nor the structural stiffness (load/deformation ratio) of the diaphyses were affected. This suggests an adaptive response of bone geometry to the impairment of bone material stiffness. However, Al intoxication significantly reduced the ultimate load and the post-yield fraction of that load (-6% and -27%; P < 0.05). This suggests that the proposed, adaptive response could have improved bone design so as to make it adequate for maintaining a normal pre-yield diaphyseal stiffness and strength according to the bone mechanostat theory, but not so as to provide complete protection of the diaphyseal post-yield (and ultimate) strength. Although a relative inhibition of bone formation could not be discarded, an Al-induced impairment of the bone ability to resist loads beyond the yield point could have caused the unusual disparity observed between effects on bone (elastic) stiffness and (ultimate) strength. In addition, to explain the unusual finding, these results suggest that little-studied microstructural factors (spatial arrangement of elements within the mineralized tissue) affecting the post-yield behavior of cortical bone, regardless of bone mineralization in these and other conditions, ought to be further investigated in specifically designed studies as a novel, promising resource in skeletal research.