Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33850049

RESUMO

Depression is a widespread and devastating mental illness and the search for rapid-acting antidepressants remains critical. There is now exciting evidence that the psychedelic compound psilocybin produces not only powerful alterations of consciousness, but also rapid and persistent antidepressant effects. How psilocybin exerts its therapeutic actions is not known, but it is widely presumed that these actions require altered consciousness, which is known to be dependent on serotonin 2A receptor (5-HT2AR) activation. This hypothesis has never been tested, however. We therefore asked whether psilocybin would exert antidepressant-like responses in mice and, if so, whether these responses required 5-HT2AR activation. Using chronically stressed male mice, we observed that a single injection of psilocybin reversed anhedonic responses assessed with the sucrose preference and female urine preference tests. The antianhedonic response to psilocybin was accompanied by a strengthening of excitatory synapses in the hippocampus-a characteristic of traditional and fast-acting antidepressants. Neither behavioral nor electrophysiological responses to psilocybin were prevented by pretreatment with the 5-HT2A/2C antagonist ketanserin, despite positive evidence of ketanserin's efficacy. We conclude that psilocybin's mechanism of antidepressant action can be studied in animal models and suggest that altered perception may not be required for its antidepressant effects. We further suggest that a 5-HT2AR-independent restoration of synaptic strength in cortico-mesolimbic reward circuits may contribute to its antidepressant action. The possibility of combining psychedelic compounds and a 5-HT2AR antagonist offers a potential means to increase their acceptance and clinical utility and should be studied in human depression.


Assuntos
Depressão/tratamento farmacológico , Alucinógenos/uso terapêutico , Hipocampo/efeitos dos fármacos , Psilocibina/uso terapêutico , Receptores 5-HT2 de Serotonina , Animais , Depressão/etiologia , Avaliação Pré-Clínica de Medicamentos , Alucinógenos/farmacologia , Ketanserina , Masculino , Camundongos Endogâmicos C57BL , Psilocibina/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/análise , Estresse Psicológico/complicações
2.
Plant Physiol ; 161(1): 134-47, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23096159

RESUMO

Tobacco mosaic virus (TMV) forms dense cytoplasmic bodies containing replication-associated proteins (virus replication complexes [VRCs]) upon infection. To identify host proteins that interact with individual viral components of VRCs or VRCs in toto, we isolated viral replicase- and VRC-enriched fractions from TMV-infected Nicotiana tabacum plants. Two host proteins in enriched fractions, ATP-synthase γ-subunit (AtpC) and Rubisco activase (RCA) were identified by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry or liquid chromatography-tandem mass spectrometry. Through pull-down analysis, RCA bound predominantly to the region between the methyltransferase and helicase domains of the TMV replicase. Tobamovirus, but not Cucumber mosaic virus or Potato virus X, infection of N. tabacum plants resulted in 50% reductions in Rca and AtpC messenger RNA levels. To investigate the role of these host proteins in TMV accumulation and plant defense, we used a Tobacco rattle virus vector to silence these genes in Nicotiana benthamiana plants prior to challenge with TMV expressing green fluorescent protein. TMV-induced fluorescent lesions on Rca- or AtpC-silenced leaves were, respectively, similar or twice the size of those on leaves expressing these genes. Silencing Rca and AtpC did not influence the spread of Tomato bushy stunt virus and Potato virus X. In AtpC- and Rca-silenced leaves TMV accumulation and pathogenicity were greatly enhanced, suggesting a role of both host-encoded proteins in a defense response against TMV. In addition, silencing these host genes altered the phenotype of the TMV infection foci and VRCs, yielding foci with concentric fluorescent rings and dramatically more but smaller VRCs. The concentric rings occurred through renewed virus accumulation internal to the infection front.


Assuntos
Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Nicotiana/virologia , Vírus do Mosaico do Tabaco/fisiologia , Proteínas de Cloroplastos/genética , Cloroplastos/virologia , Inativação Gênica , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Hospedeiro-Patógeno , Fenótipo , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potexvirus/metabolismo , Potexvirus/patogenicidade , Mapeamento de Interação de Proteínas , Transporte Proteico , Proteômica/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Nicotiana/genética , Nicotiana/metabolismo , Vírus do Mosaico do Tabaco/enzimologia , Vírus do Mosaico do Tabaco/patogenicidade , Tombusvirus/metabolismo , Tombusvirus/patogenicidade , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
3.
Neurobiol Stress ; 20: 100473, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35982732

RESUMO

The hippocampus exerts inhibitory feedback on the release of glucocorticoids. Because the major hippocampal efferent projections are excitatory, it has been hypothesized that this inhibition is mediated by populations of inhibitory neurons in the hypothalamus or elsewhere. These regions would be excited by hippocampal efferents and project to corticotropin-releasing factor (CRF) cells in the paraventricular nucleus of the hypothalamus (PVN). A direct demonstration of the synaptic responses elicited by hippocampal outputs in PVN cells or upstream GABAergic interneurons has not been provided previously. Here, we used viral vectors to express channelrhodopsin (ChR) and enhanced yellow fluorescent protein (EYFP) in pyramidal cells in the ventral hippocampus (vHip) in mice expressing tdTomato in GABA- or CRF-expressing neurons. We observed dense innervation of the bed nucleus of the stria terminalis (BNST) by labeled vHip axons and sparse labeling within the PVN. Using whole-cell voltage-clamp recording in parasagittal brain slices containing the BNST and PVN, photostimulation of vHip terminals elicited rapid excitatory postsynaptic currents (EPSCs) and longer-latency inhibitory postsynaptic currents (IPSCs) in both CRF+ and GAD + cells. The ratio of synaptic excitation and inhibition was maintained in CRF + cells during 20 Hz stimulus trains. Photostimulation of hippocampal afferents to the BNST and PVN in vivo inhibited the rise in blood glucocorticoid levels produced by acute restraint stress. We thus provide functional evidence suggesting that hippocampal output to the BNST contributes to a net inhibition of the hypothalamic-pituitary axis, providing further mechanistic insights into this process using methods with enhanced spatial and temporal resolution.

4.
Neuropsychopharmacology ; 45(8): 1263-1271, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32045935

RESUMO

Women who have experienced adverse childhood events (ACEs) around puberty are at the greatest risk for neuropsychiatric disorders across the lifespan. This population is exceptionally vulnerable to neuropsychiatric disease presentation during the hormonally dynamic state of pregnancy. We previously established that chronic adversity around puberty in female mice significantly altered their HPA axis function specifically during pregnancy, modeling the effects of pubertal ACEs we also reported in women. We hypothesized that the pregnancy hormone, allopregnanolone, was involved in presentation of the blunted stress response phenotype by its interaction with the molecular programming that had occurred during pubertal adversity experience. Here, in adult mice previously stressed during puberty, allopregnanolone administration was sufficient to reproduce the decreased corticosterone response after acute stress. Examination of neuronal activation and the electrophysiological properties of CRF neurons in the paraventricular nucleus of the hypothalamus (PVN) found no significant changes in synaptic function that corresponded with the blunted HPA axis reactivity. However, at the chromatin level, utilization of ATAC-Seq profiling demonstrated a dramatic remodeling of DNA accessibility in the PVN following pubertal adversity. Altogether, these data establish a potential molecular mechanism whereby adversity during puberty can enact lasting transcriptional control that manifests only during a unique period of the lifespan where dynamic hormonal changes occur. These results highlight a biological process that may impart an increased risk for a highly vulnerable population, whereby pubertal programming of the PVN results in aberrant HPA axis responsiveness when exposed to the hormonal changes unique to pregnancy.


Assuntos
Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Animais , Encéfalo/metabolismo , Cromatina , Corticosterona , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Sistema Hipotálamo-Hipofisário/metabolismo , Camundongos , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Gravidez , Estresse Psicológico
5.
Curr Biol ; 28(9): 1392-1404.e5, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29681476

RESUMO

Phasic dopamine (DA) release accompanies approach toward appetitive cues. However, a role for DA in the active avoidance of negative events remains undetermined. Warning signals informing footshock avoidance are associated with accumbal DA release, whereas depression of DA is observed with unavoidable footshock. Here, we reveal a causal role of phasic DA in active avoidance learning; specifically, optogenetic activation of DA neurons facilitates avoidance, whereas optical inhibition of these cells attenuates it. Furthermore, stimulation of DA neurons during presentation of a fear-conditioned cue accelerates the extinction of a passive defensive behavior (i.e., freezing). Dopaminergic control of avoidance requires endocannabinoids (eCBs), as perturbing eCB signaling in the midbrain disrupts avoidance, which is rescued by optical stimulation of DA neurons. Interestingly, once the avoidance task is learned, neither DA nor eCB manipulations affect performance, suggesting that once acquisition occurs, expression of this behavior is subserved by other anatomical frameworks. Our findings establish an instrumental role for DA release in learning active responses to aversive stimuli and its control by eCB signaling.


Assuntos
Aprendizagem da Esquiva/fisiologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Endocanabinoides/farmacologia , Núcleo Accumbens/fisiologia , Animais , Sinais (Psicologia) , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Medo/fisiologia , Masculino , Núcleo Accumbens/citologia , Núcleo Accumbens/efeitos dos fármacos , Optogenética , Ratos , Ratos Long-Evans , Recompensa
6.
Mol Plant Microbe Interact ; 18(3): 212-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15782635

RESUMO

The P6 protein of Cauliflower mosaic virus (CaMV) W260 elicits a hypersensitive response (HR) on inoculated leaves of Nicotiana edwardsonii. This defense response, common to many plant pathogens, has two key characteristics, cell death within the initially infected tissues and restriction of the pathogen to this area. We present evidence that a plant gene designated CCD1, originally identified in N. bigelovii, can selectively block the cell death pathway during HR, whereas the resistance pathway against W260 remains intact. Suppression of cell death was evident not only macroscopically but also microscopically. The suppression of HR-mediated cell death was specific to CaMV, as Tobacco mosaic virus was able to elicit HR in the plants that contained CCD1. CCD1 also blocks the development of a systemic cell death symptom induced specifically by the P6 protein of W260 in N. clevelandii. Introgression of CCD1 from N. bigelovii into N. clevelandii blocked the development of systemic cell death in response to W260 infection but could not prevent systemic cell death induced by Tomato bushy stunt virus. Thus, CCD1 blocks both local and systemic cell death induced by P6 of W260 but does not act as a general suppressor of cell death induced by other plant viruses. Furthermore, experiments with CCD1 provide further evidence that cell death could be uncoupled from resistance in the HR of Nicotiana edwardsonii to CaMV W260.


Assuntos
Caulimovirus/patogenicidade , Genes de Plantas , Doenças das Plantas/genética , Doenças das Plantas/virologia , Morte Celular , Cruzamentos Genéticos , Modelos Biológicos , Fenótipo , Nicotiana/genética , Nicotiana/virologia
7.
Sci STKE ; 2002(139): pe30, 2002 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-12096216

RESUMO

The cytoskeleton is important for controlling cell shape and cell motility and for organizing signaling complexes. Additionally, connections are being found between cytoskeletal proteins and the regulation of gene expression in the nucleus. De Lanerolle and Cole discuss new insights from plants that show that a plant member of the COOH-terminal binding protein (CtBP) and the brefeldin A adenosine diphosphate (ADP)-ribosylated subtrates (BARS) proteins, ANGUSTIFOLIA, may be a regulator of both the microtubule-based cytoskeleton and a transcriptional regulator. Additionally, they describe how actin and myosins may play similar roles in regulating gene expression in the nucleus of mammalian cells.


Assuntos
Núcleo Celular/genética , Proteínas do Citoesqueleto/genética , Transdução de Sinais/genética , Arabidopsis/citologia , Arabidopsis/embriologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Núcleo Celular/química , Núcleo Celular/fisiologia , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/fisiologia , Genes de Plantas/fisiologia , Transdução de Sinais/fisiologia
8.
Mol Plant Microbe Interact ; 17(9): 976-85, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15384488

RESUMO

A new variety of Nicotiana edwardsonii, designated N. edwardsonii cv. Columbia, expresses pathogenesis-related (PR) proteins in a temporal manner 45 to 49 days postplanting and also exhibits enhanced resistance to Tobacco mosaic virus, Tobacco necrosis virus, and Tomato bushy stunt virus. In contrast, PR proteins were not expressed in the original N. edwardsonii variety at comparable ages but were induced after onset of a hypersensitive response to viral infection. The temporal induction of PR proteins in 'Columbia' was correlated with increases in salicylic acid and glycosylated salicylic acid. Earlier studies noted that some Nicotiana hybrids derived from interspecific crosses constitutively express PR proteins, but the genetic basis of this phenomenon had not been investigated, likely because many interspecific Nicotiana crosses are sterile. However, the close genetic relationship between N. edwardsonii and 'Columbia' indicated that a hybrid between these two plants might be fertile, and this proved to be true. Genetic crosses between 'Columbia' and N. edwardsonii demonstrated that a single, dominant gene conditioned temporal expression of PR proteins and enhanced resistance. This gene was designated TPR1 (for temporal expression of PR proteins).


Assuntos
Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Nicotiana/genética , Doenças das Plantas/virologia , Vírus do Mosaico do Tabaco/patogenicidade , Tobamovirus/patogenicidade , Imunidade Inata/genética , Folhas de Planta/virologia , Nicotiana/virologia
9.
Proc Natl Acad Sci U S A ; 101(16): 6297-302, 2004 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-15079073

RESUMO

Nicotiana benthamiana often displays more intense symptoms after infection by RNA viruses than do other Nicotiana species. Here, we examined the role of RNA-dependent RNA polymerases (RdRPs) in N. benthamiana antiviral defense. cDNAs representing only two genes encoding RdRPs were identified in N. benthamiana. One RdRP was similar in sequence to SDE1/SGS2 required for maintenance of transgene silencing, whereas the second, named NbRdRP1m, was >90% identical in sequence to the salicylic acid (SA)-inducible RdRP from Nicotiana tabacum required for defense against viruses. NbRdRP1m expression was induced by SA treatment or challenge with Tobacco mosaic virus, but the gene and transcript sequences differed from those of other SA-inducible RdRPs in that they contained a 72-nt insert with tandem in-frame stop codons in the 5' portion of the ORF. N. benthamiana plants transformed with an SA-inducible RdRP gene from Medicago truncatula were more resistant to infection by Tobacco mosaic virus, Turnip vein-clearing virus, and Sunn hemp mosaic virus (members of Tobamovirus genus), but not to Cucumber mosaic virus and Potato virus X (members of different genera than the tobamoviruses). Our results indicate that N. benthamiana lacks an active SA- and virus-inducible RdRP and thus is hypersusceptible to viruses normally limited in their accumulation by this RdRP. These findings are significant for those studying virus-induced gene silencing, the hypersensitive response and systemic acquired resistance.


Assuntos
Nicotiana/virologia , RNA Polimerase Dependente de RNA/metabolismo , Sequência de Bases , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Inativação Gênica , Dados de Sequência Molecular , Plantas Geneticamente Modificadas/virologia , RNA Polimerase Dependente de RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA