Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
FASEB J ; 36(8): e22443, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35816277

RESUMO

Barth Syndrome (BTHS) is a rare X-linked genetic disorder caused by mutation in the TAFAZZIN gene. Tafazzin (Taz) deficiency in BTHS patients results in an increased risk of infections. Mesenchymal stem cells (MSCs) are well known for their immune-inhibitory function. We examined how Taz-deficiency in murine MSCs impact their ability to modulate the function of lipopolysaccharide (LPS)-activated wild type (WT) B lymphocytes. MSCs from tafazzin knockdown (TazKD) mice exhibited a reduction in mitochondrial cardiolipin compared to wild type (WT) MSCs. However, mitochondrial bioenergetics and membrane potential were unaltered. In contrast, TazKD MSCs exhibited increased reactive oxygen species generation and increased glycolysis. The increased glycolysis was associated with an elevated proliferation, phosphatidylinositol-3-kinase expression and expression of the immunosuppressive markers indoleamine-2,3-dioxygenase, cytotoxic T-lymphocyte-associated protein 4, interleukin-10, and cluster of differentiation 59 compared to controls. Inhibition of glycolysis with 2-deoxyglucose attenuated the TazKD-mediated increased expression of cytotoxic T-lymphocyte-associated protein 4 and interleukin-10. When co-cultured with LPS-activated WT B cells, TazKD MSCs inhibited B cell proliferation and growth rate and reduced B cell secretion of immunoglobulin M compared to controls. In addition, co-culture of LPS-activated WT B cells with TazKD MSCs promoted B cell differentiation toward interleukin-10 secreting plasma cells and B regulatory cells compared to controls. The results indicate that Taz deficiency in MSCs promote reprogramming of activated B lymphocytes toward immunosuppressive phenotypes.


Assuntos
Síndrome de Barth , Células-Tronco Mesenquimais , Aciltransferases/genética , Animais , Linfócitos B/metabolismo , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Interleucina-10/genética , Lipopolissacarídeos/toxicidade , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fenótipo , Fatores de Transcrição/metabolismo
2.
Diabetologia ; 65(4): 733-747, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35091821

RESUMO

AIMS/HYPOTHESIS: Obesity and hepatic steatosis are risk factors for gestational diabetes mellitus (GDM), a common complication of pregnancy. Adiponectin is a fat-derived hormone that improves hepatic steatosis and insulin sensitivity. Low levels of circulating adiponectin are associated with GDM development. We hypothesised that adiponectin deficiency causes fatty liver during pregnancy, contributing to the development of GDM. METHODS: To determine the role of adiponectin in fatty liver development during pregnancy, we compared pregnant (third week of pregnancy) adiponectin knockout (KO) mice (strain B6;129-Adipoqtm1Chan/J) with wild-type mice and assessed several variables of hepatic lipid metabolism and glucose homeostasis. The impact of adiponectin supplementation was measured by administering adenovirus-mediated full-length adiponectin at the end of the second week of pregnancy and comparing with green fluorescent protein control. RESULTS: In the third week of pregnancy, fasted pregnant adiponectin KO mice were hyperglycaemic on a low-fat diet (9.2 mmol/l vs 7.7 mmol/l in controls, p<0.05) and were glucose and pyruvate intolerant relative to wild-type mice. Pregnant adiponectin KO mice developed hepatic steatosis and a threefold elevation in hepatic triacylglycerols (p<0.05) relative to wild-type mice. Gestational weight gain and food consumption were similar in KO and wild-type mice. Adenoviral-mediated adiponectin supplementation to pregnant adiponectin KO mice improved glucose tolerance, prevented fasting hyperglycaemia and attenuated fatty liver development. CONCLUSIONS/INTERPRETATION: Adiponectin deficiency increased hepatic lipid accumulation during the period of pregnancy associated with increased fat utilisation. Consequently, adiponectin deficiency contributed to glucose intolerance, dysregulated gluconeogenesis and hyperglycaemia, all of which are characteristic of GDM. Increasing adiponectin in the last week of pregnancy alleviated hepatic steatosis and restored normal glucose homeostasis during pregnancy.


Assuntos
Diabetes Gestacional , Fígado Gorduroso , Hiperglicemia , Resistência à Insulina , Adiponectina/deficiência , Adiponectina/metabolismo , Animais , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Fígado Gorduroso/metabolismo , Feminino , Glucose/metabolismo , Humanos , Hiperglicemia/metabolismo , Fígado/metabolismo , Erros Inatos do Metabolismo , Camundongos , Camundongos Knockout , Gravidez
3.
Cell Tissue Res ; 390(3): 429-439, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36129532

RESUMO

Barth syndrome (BTHS) is a rare X-linked genetic disease caused by mutations in TAFAZZIN. The tafazzin (Taz) protein is a cardiolipin remodeling enzyme required for maintaining mitochondrial function. Patients with BTHS exhibit impaired mitochondrial respiratory chain and metabolic function and are susceptible to serious infections. B lymphocytes (B cells) play a vital role in humoral immunity required to eradicate circulating antigens from pathogens. Intact mitochondrial respiration is required for proper B-cell function. We investigated whether Taz deficiency in mouse B cells altered their response to activation by anti-cluster of differentiation 40 (anti-CD40) + interleukin-4 (IL-4). B cells were isolated from 3-4-month-old wild type (WT) or tafazzin knockdown (TazKD) mice and were stimulated with anti-CD40 + IL-4 for 24 h and cellular bioenergetics, surface marker expression, proliferation, antibody production, and proteasome and immunoproteasome activities determined. TazKD B cells exhibited reduced mRNA expression of Taz, lowered levels of cardiolipin, and impairment in both oxidative phosphorylation and glycolysis compared to WT B cells. In addition, anti-CD40 + IL-4 stimulated TazKD B cells expressed lower levels of the immunogenic surface markers, cluster of differentiation 86 (CD86) and cluster of differentiation 69 (CD69), exhibited a lower proliferation rate, reduced production of immunoglobulin M and immunoglobulin G, and reduced proteasome and immunoproteasome proteolytic activities compared to WT B cells stimulated with anti-CD40 + IL-4. The results indicate that Taz is required to support T-cell-dependent signaling activation of mouse B cells.


Assuntos
Aciltransferases , Linfócitos B , Síndrome de Barth , Cardiolipinas , Animais , Camundongos , Aciltransferases/deficiência , Aciltransferases/genética , Linfócitos B/metabolismo , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Cardiolipinas/metabolismo , Interleucina-4/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/metabolismo , Antígenos CD40/metabolismo
4.
FASEB J ; 35(12): e22023, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34767647

RESUMO

B lymphocytes are responsible for humoral immunity and play a key role in the immune response. Optimal mitochondrial function is required to support B cell activity during activation. We examined how deficiency of tafazzin, a cardiolipin remodeling enzyme required for mitochondrial function, alters the metabolic activity of B cells and their response to activation by lipopolysaccharide in mice. B cells were isolated from 3-month-old wild type or tafazzin knockdown mice and incubated for up to 72 h with lipopolysaccharide and cell proliferation, expression of cell surface markers, secretion of antibodies and chemokines, proteasome and immunoproteasome activities, and metabolic function determined. In addition, proteomic analysis was performed to identify altered levels of proteins involved in survival, immunogenic, proteasomal and mitochondrial processes. Compared to wild type lipopolysaccharide activated B cells, lipopolysaccharide activated tafazzin knockdown B cells exhibited significantly reduced proliferation, lowered expression of cluster of differentiation 86 and cluster of differentiation 69 surface markers, reduced secretion of immunoglobulin M antibody, reduced secretion of keratinocytes-derived chemokine and macrophage-inflammatory protein-2, reduced proteasome and immunoproteasome activities, and reduced mitochondrial respiration and glycolysis. Proteomic analysis revealed significant alterations in key protein targets that regulate cell survival, immunogenicity, proteasomal processing and mitochondrial function consistent with the findings of the above functional studies. The results indicate that the cardiolipin transacylase enzyme tafazzin plays a key role in regulating mouse B cell function and metabolic activity during activation through modulation of mitochondrial function.


Assuntos
Aciltransferases/fisiologia , Linfócitos B/patologia , Glicólise , Lipopolissacarídeos/toxicidade , Mitocôndrias/patologia , Proteoma/metabolismo , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Proteoma/análise , Proteoma/efeitos dos fármacos
5.
J Nutr ; 151(4): 892-901, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33484149

RESUMO

BACKGROUND: There are few evidence-based strategies to attenuate the risk of metabolic syndrome in offspring exposed to gestational diabetes mellitus (GDM). Berberine (BBR) is an isoquinoline alkaloid extracted from Chinese herbs and exhibits glucose lowering properties. OBJECTIVES: We hypothesized that dietary BBR would improve health outcomes in the mouse offspring of GDM dams. METHODS: Wild-type C57BL/6 female mice were fed either a Lean-inducing low-fat diet (L-LF,10% kcal fat, 35% kcal sucrose) or a GDM-inducing high-fat diet (GDM-HF, 45% kcal fat, 17.5% sucrose) for 6 wk prior to breeding with wild-type C57BL/6 male mice throughout pregnancy and the suckling period. The resulting Lean and GDM-exposed male and female offspring were randomly assigned an LF (10% kcal fat, 35% kcal sucrose), HF (45% kcal fat, 17.5% sucrose), or high-fat berberine (HFB) (45% kcal fat, 17.5% sucrose diet) containing BBR (160 mg/kg/d, HFB) at weaning for 12 wk. The main outcome was to evaluate the effects of BBR on obesity, pancreatic islet function, and cardiac contractility in GDM-exposed HF-fed offspring. Significance between measurements was determined using a 2 (gestational exposure) × 3 (diet) factorial design by a 2- way ANOVA using Tukey post-hoc analysis. RESULTS: In the GDM-HF group, body weights were significantly increased (16%) compared with those in baseline (L-LF) animals (P < 0.05). Compared with the L-LF animals, the GDM-HF group had a reduction in pancreatic insulin glucose-stimulated insulin secretion (74%) and increased cardiac isovolumetric contraction time (IVCT; ∼150%) (P < 0.05). Compared with GDM-HF animals, the GDM-HFB group with the dietary addition of BBR had significantly reduced body weight (16%), increased glucose-stimulated insulin secretion from pancreatic islets (254%), and reduced systolic heart function (46% IVCT) (P < 0.05). CONCLUSIONS: In a mouse model of GDM, dietary BBR treatment provided protection from obesity and the development of pancreatic islet and cardiac dysfunction.


Assuntos
Berberina/administração & dosagem , Diabetes Gestacional/dietoterapia , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Adiposidade/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Feminino , Glucose/metabolismo , Cardiopatias/prevenção & controle , Insulina/sangue , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Obesidade/prevenção & controle , Gravidez , Efeitos Tardios da Exposição Pré-Natal/dietoterapia
6.
J Mol Cell Cardiol ; 144: 24-34, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32418915

RESUMO

Cardiolipin (CL) is a unique tetra-acyl phospholipid localized to the inner mitochondrial membrane and essential for normal respiratory function. It has been previously reported that the failing human heart and several rodent models of cardiac pathology have a selective loss of CL. A rare genetic disease, Barth syndrome (BTHS), is similarly characterized by a cardiomyopathy due to reduced levels of cardiolipin. A mouse model of cardiolipin deficiency was recently developed by knocking-down the cardiolipin biosynthetic enzyme tafazzin (TAZ KD). These mice develop an age-dependent cardiomyopathy due to mitochondrial dysfunction. Since reduced mitochondrial capacity in the heart may promote the accumulation of lipids, we examined whether cardiolipin deficiency in the TAZ KD mice promotes the development of a lipotoxic cardiomyopathy. In addition, we investigated whether treatment with resveratrol, a small cardioprotective nutraceutical, attenuated the aberrant lipid accumulation and associated cardiomyopathy. Mice deficient in tafazzin and the wildtype littermate controls were fed a low-fat diet, or a high-fat diet with or without resveratrol for 16 weeks. In the absence of obesity, TAZ KD mice developed a hypertrophic cardiomyopathy characterized by reduced left-ventricle (LV) volume (~36%) and 30-50% increases in isovolumetric contraction (IVCT) and relaxation times (IVRT). The progression of cardiac hypertrophy with tafazzin-deficiency was associated with several underlying pathological processes including altered mitochondrial complex I mediated respiration, elevated oxidative damage (~50% increase in reactive oxygen species, ROS), the accumulation of triglyceride (~250%) as well as lipids associated with lipotoxicity (diacylglyceride ~70%, free-cholesterol ~44%, ceramide N:16-35%) compared to the low-fat fed controls. Treatment of TAZ KD mice with resveratrol maintained normal LV volumes and preserved systolic function of the heart. The beneficial effect of resveratrol on cardiac function was accompanied by a significant improvement in mitochondrial respiration, ROS production and oxidative damage to the myocardium. Resveratrol treatment also attenuated the development of cardiac steatosis in tafazzin-deficient mice through reduced de novo fatty acid synthesis. These results indicate for the first time that cardiolipin deficiency promotes the development of a hypertrophic lipotoxic cardiomyopathy. Furthermore, we determined that dietary resveratrol attenuates the cardiomyopathy by reducing ROS, cardiac steatosis and maintaining mitochondrial function.


Assuntos
Cardiolipinas/metabolismo , Cardiomiopatia Hipertrófica/etiologia , Cardiomiopatia Hipertrófica/metabolismo , Suscetibilidade a Doenças , Metabolismo dos Lipídeos , Animais , Biomarcadores , Cardiomiopatia Hipertrófica/diagnóstico , Modelos Animais de Doenças , Ecocardiografia , Complexo I de Transporte de Elétrons/metabolismo , Testes de Função Cardíaca , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Resveratrol/farmacologia
7.
J Physiol ; 597(16): 4175-4192, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31240717

RESUMO

KEY POINTS: Maternal resveratrol (RESV) administration in gestational diabetes (GDM) restored normoglycaemia and insulin secretion. GDM-induced obesity was prevented in male GDM+RESV offspring but not in females. GDM+RESV offspring exhibited improved glucose tolerance and insulin sensitivity. GDM+RESV restored hepatic glucose homeostasis in offspring. Glucose-stimulated insulin secretion was enhanced in GDM+RESV offspring. ABSTRACT: Gestational diabetes (GDM), the most common complication of pregnancy, is associated with adverse metabolic health outcomes in offspring. Using a rat model of diet-induced GDM, we investigated whether maternal resveratrol (RESV) supplementation (147 mg kg-1  day-1 ) in the third week of pregnancy could improve maternal glycaemia and protect the offspring from developing metabolic dysfunction. Female Sprague-Dawley rats consumed a high-fat and sucrose (HFS) diet to induce GDM. Lean controls consumed a low-fat (LF) diet. In the third trimester, when maternal hyperglycaemia was observed, the HFS diet was supplemented with RESV. At weaning, offspring were randomly assigned a LF or HFS diet until 15 weeks of age. In pregnant dams, RESV restored glucose tolerance, normoglycaemia and improved insulin secretion. At 15 weeks of age, GDM+RESV-HFS male offspring were less obese than the GDM-HFS offspring. By contrast, the female GDM+RESV-HFS offspring were similarly as obese as the GDM-HFS group. Hepatic steatosis, insulin resistance, glucose intolerance and dysregulated gluconeogenesis were observed in the male GDM offspring and were attenuated in the offspring of GDM+RESV dams. The dysregulation of several metabolic genes (e.g. ppara, lpl, pepck and g6p) in the livers of GDM offspring was attenuated in the GDM+RESV offspring group. Glucose stimulated insulin secretion was also improved in the islets from offspring of GDM+RESV dams. Thus, maternal RESV supplementation during the third trimester of pregnancy and lactation induced several beneficial metabolic health outcomes for both mothers and offspring. Therefore, RESV could be an alternative to current GDM treatments.


Assuntos
Diabetes Gestacional/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Intolerância à Glucose/prevenção & controle , Ilhotas Pancreáticas/efeitos dos fármacos , Resveratrol/farmacologia , Animais , Antioxidantes/farmacologia , Diabetes Gestacional/induzido quimicamente , Feminino , Glucose/metabolismo , Homeostase , Ilhotas Pancreáticas/fisiopatologia , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Sprague-Dawley , Resveratrol/administração & dosagem , Fatores Sexuais
8.
Int J Mol Sci ; 19(7)2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30002286

RESUMO

Barth Syndrome (BTHS) is a rare X-linked genetic disease in which the specific biochemical deficit is a reduction in the mitochondrial phospholipid cardiolipin (CL) as a result of a mutation in the CL transacylase tafazzin. We compared the phosphokinome profile in Epstein-Barr-virus-transformed lymphoblasts prepared from a BTHS patient with that of an age-matched control individual. As expected, mass spectrometry analysis revealed a significant (>90%) reduction in CL in BTHS lymphoblasts compared to controls. In addition, increased oxidized phosphatidylcholine (oxPC) and phosphatidylethanolamine (PE) levels were observed in BTHS lymphoblasts compared to control. Given the broad shifts in metabolism associated with BTHS, we hypothesized that marked differences in posttranslational modifications such as phosphorylation would be present in the lymphoblast cells of a BTHS patient. Phosphokinome analysis revealed striking differences in the phosphorylation levels of phosphoproteins in BTHS lymphoblasts compared to control cells. Some phosphorylated proteins, for example, adenosine monophosphate kinase, have been previously validated as bonafide modified phosphorylation targets observed in tafazzin deficiency or under conditions of reduced cellular CL. Thus, we report multiple novel phosphokinome targets in BTHS lymphoblasts and hypothesize that alteration in the phosphokinome profile may provide insight into the pathophysiology of BTHS and potential therapeutic targets.


Assuntos
Síndrome de Barth/metabolismo , Linfócitos/metabolismo , Fosfoproteínas/metabolismo , Síndrome de Barth/patologia , Humanos , Linfócitos/patologia
9.
Biochim Biophys Acta ; 1861(10): 1544-54, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26972373

RESUMO

Mitochondrial oxidation of fatty acids accounts for the majority of cardiac ATP production in the heart. Fatty acid utilization by cardiac mitochondria is controlled at the level of fatty acid uptake, lipid synthesis, mobilization and mitochondrial import and oxidation. Consequently defective mitochondrial function appears to be central to the development of heart failure. Cardiolipin is a key mitochondrial phospholipid required for the activity of the electron transport chain. In heart failure, loss of cardiolipin and tetralinoleoylcardiolipin helps to fuel the generation of excessive reactive oxygen species that are a by-product of inefficient mitochondrial electron transport chain complexes I and III. In this vicious cycle, reactive oxygen species generate lipid peroxides and may, in turn, cause oxidation of cardiolipin catalyzed by cytochrome c leading to cardiomyocyte apoptosis. Hence, preservation of cardiolipin and mitochondrial function may be keys to the prevention of heart failure development. In this review, we summarize cardiac energy metabolism and the important role that fatty acid uptake and metabolism play in this process and how defects in these result in heart failure. We highlight the key role that cardiolipin and sirtuins play in cardiac mitochondrial ß-oxidation. In addition, we review the potential of pharmacological modulation of cardiolipin through the polyphenolic molecule resveratrol as a sirtuin-activator in attenuating mitochondrial dysfunction. Finally, we provide novel experimental evidence that resveratrol treatment increases cardiolipin in isolated H9c2 cardiac myocytes and tetralinoleoylcardiolipin in the heart of the spontaneously hypertensive rat and hypothesize that this leads to improvement in mitochondrial function. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.


Assuntos
Cardiolipinas/metabolismo , Metabolismo Energético , Insuficiência Cardíaca/metabolismo , Mitocôndrias Cardíacas/metabolismo , Sirtuínas/metabolismo , Animais , Humanos , Oxirredução
10.
J Biol Chem ; 290(17): 10981-93, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25759382

RESUMO

Doxorubicin (DOX) is a chemotherapeutic agent effective in the treatment of many cancers. However, cardiac dysfunction caused by DOX limits its clinical use. DOX is believed to be harmful to cardiomyocytes by interfering with the mitochondrial phospholipid cardiolipin and causing inefficient electron transfer resulting in the production of reactive oxygen species (ROS). Sirtuin-3 (SIRT3) is a class III lysine deacetylase that is localized to the mitochondria and regulates mitochondrial respiration and oxidative stress resistance enzymes such as superoxide dismutase-2 (SOD2). The purpose of this study was to determine whether SIRT3 prevents DOX-induced mitochondrial ROS production. Administration of DOX to mice suppressed cardiac SIRT3 expression, and DOX induced a dose-dependent decrease in SIRT3 and SOD2 expression in H9c2 cardiomyocytes. SIRT3-null mouse embryonic fibroblasts produced significantly more ROS in the presence of DOX compared with wild-type cells. Overexpression of wild-type SIRT3 increased cardiolipin levels and rescued mitochondrial respiration and SOD2 expression in DOX-treated H9c2 cardiomyocytes and attenuated the amount of ROS produced following DOX treatment. These effects were absent when a deacetylase-deficient SIRT3 was expressed in H9c2 cells. Our results suggest that overexpression of SIRT3 attenuates DOX-induced ROS production, and this may involve increased SOD2 expression and improved mitochondrial bioenergetics. SIRT3 activation could be a potential therapy for DOX-induced cardiac dysfunction.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Doxorrubicina/efeitos adversos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Sirtuína 3/biossíntese , Animais , Antibióticos Antineoplásicos/farmacologia , Cardiolipinas/genética , Cardiolipinas/metabolismo , Linhagem Celular , Doxorrubicina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Cardiopatias/induzido quimicamente , Cardiopatias/enzimologia , Cardiopatias/genética , Cardiopatias/patologia , Camundongos , Miócitos Cardíacos/patologia , Estresse Oxidativo/genética , Consumo de Oxigênio/genética , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/genética , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética
11.
J Physiol ; 593(14): 3181-97, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25922055

RESUMO

Maternal obesity is associated with a high risk for gestational diabetes mellitus (GDM), which is a common complication of pregnancy. The influence of maternal obesity and GDM on the metabolic health of the offspring is poorly understood. We hypothesize that GDM associated with maternal obesity will cause obesity, insulin resistance and hepatic steatosis in the offspring. Female Sprague-Dawley rats were fed a high-fat (45%) and sucrose (HFS) diet to cause maternal obesity and GDM. Lean control pregnant rats received low-fat (LF; 10%) diets. To investigate the interaction between the prenatal environment and postnatal diets, rat offspring were assigned to LF or HFS diets for 12 weeks, and insulin sensitivity and hepatic steatosis were evaluated. Pregnant GDM dams exhibited excessive gestational weight gain, hyperinsulinaemia and hyperglycaemia. Offspring of GDM dams gained more weight than the offspring of lean dams due to excess adiposity. The offspring of GDM dams also developed hepatic steatosis and insulin resistance. The postnatal consumption of a LF diet did not protect offspring of GDM dams against these metabolic disorders. Analysis of the hepatic metabolome revealed increased diacylglycerol and reduced phosphatidylethanolamine in the offspring of GDM dams compared to offspring of lean dams. Consistent with altered lipid metabolism, the expression of CTP:phosphoethanolamine cytidylyltransferase, and peroxisomal proliferator activated receptor-α mRNA was reduced in the livers of GDM offspring. GDM exposure programs gene expression and hepatic metabolite levels and drives the development of hepatic steatosis and insulin resistance in young adult rat offspring.


Assuntos
Diabetes Gestacional/metabolismo , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Metaboloma , Obesidade/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Diabetes Gestacional/etiologia , Dieta Hiperlipídica/efeitos adversos , Diglicerídeos/metabolismo , Fígado Gorduroso/etiologia , Feminino , Metabolismo dos Lipídeos , Obesidade/etiologia , PPAR alfa/genética , PPAR alfa/metabolismo , Fosfatidiletanolaminas/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Ratos , Ratos Sprague-Dawley , Sacarose/toxicidade
12.
Biochim Biophys Acta ; 1821(5): 754-61, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21979151

RESUMO

Phosphatidylcholine (PC) is the major phospholipid component of all plasma lipoprotein classes. PC is the only phospholipid which is currently known to be required for lipoprotein assembly and secretion. Impaired hepatic PC biosynthesis significantly reduces the levels of circulating very low density lipoproteins (VLDLs) and high density lipoproteins (HDLs). The reduction in plasma VLDLs is due in part to impaired hepatic secretion of VLDLs. Less PC within the hepatic secretory pathway results in nascent VLDL particles with reduced levels of PC. These particles are recognized as being defective and are degraded within the secretory system by an incompletely defined process that occurs in a post-endoplasmic reticulum compartment, consistent with degradation directed by the low-density lipoprotein receptor and/or autophagy. Moreover, VLDL particles are taken up more readily from the circulation when the PC content of the VLDLs is reduced, likely due to a preference of cell surface receptors and/or enzymes for lipoproteins that contain less PC. Impaired PC biosynthesis also reduces plasma HDLs by inhibiting hepatic HDL formation and by increasing HDL uptake from the circulation. These effects are mediated by elevated expression of ATP-binding cassette transporter A1 and hepatic scavenger receptor class B type 1, respectively. Hepatic PC availability has recently been linked to the progression of liver and heart disease. These findings demonstrate that hepatic PC biosynthesis can regulate the amount of circulating lipoproteins and suggest that hepatic PC biosynthesis may represent an important pharmaceutical target. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Lipoproteínas VLDL , Fígado/metabolismo , Fosfatidilcolinas , Animais , Apolipoproteínas E/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , Lipoproteínas VLDL/sangue , Lipoproteínas VLDL/metabolismo , Redes e Vias Metabólicas , Fosfatidilcolinas/biossíntese , Fosfatidilcolinas/metabolismo , Receptores de LDL/metabolismo
13.
Circ Res ; 108(6): 686-94, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21273556

RESUMO

RATIONALE: Phosphatidylcholine (PC) is the predominant phospholipid component of circulating lipoproteins. The majority of PC is formed by the choline pathway. However, approximately one-third of hepatic PC can also be synthesized by phosphatidylethanolamine N-methyltransferase (PEMT). PEMT is required for normal secretion of very-low-density lipoproteins from the liver. We hypothesized that lack of PEMT would attenuate atherosclerosis and improve myocardial function. OBJECTIVE: Investigate the contribution of PEMT to atherosclerotic lesion formation and cardiac function in mice that lack apolipoprotein E. METHODS AND RESULTS: Mice deficient in apolipoprotein E (Pemt(+/+)/Apoe(-/-)) and mice lacking both PEMT and apoE (Pemt(-/-)/Apoe(-/-)) were fed a chow diet for 1 year. The atherogenic lipoprotein profile of plasma of Apoe(-/-) mice was significantly improved by PEMT deficiency, with lower levels of triacylglycerol (45%) and cholesterol (≈25%) in the very-low-density lipoprotein and low-density/intermediate-density lipoprotein fractions, respectively (P < 0.05). Atherosclerotic lesion area was reduced by ≈30%, and aortic cholesteryl ester and cholesterol content were also reduced by ≈40% by PEMT deficiency (P < 0.05). By in vivo echocardiography, we detected a ≈50% improvement in systolic function in the Pemt(-/-)/Apoe(-/-) compared with Pemt(+/+)/Apoe(-/-) mice (P < 0.05). This was accompanied by a significant reduction in cardiac triacylglycerol (34%) in mice lacking PEMT. CONCLUSIONS: These results indicate that treatment strategies aimed at inhibition of PEMT might prevent the accumulation of cardiac triacylglycerol that predisposes individuals to compromised cardiac function.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/prevenção & controle , Cardiopatias/prevenção & controle , Fosfatidilcolinas/deficiência , Fosfatidiletanolamina N-Metiltransferase/deficiência , Triglicerídeos/antagonistas & inibidores , Envelhecimento , Animais , Aorta , Aterosclerose/etiologia , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Colesterol/sangue , Coração/fisiopatologia , Cardiopatias/etiologia , Cardiopatias/fisiopatologia , Metabolismo dos Lipídeos , Lipoproteínas/sangue , Fígado/metabolismo , Camundongos , Camundongos Knockout , Miocárdio/enzimologia , Miocárdio/patologia , Fosfatidilcolinas/biossíntese
14.
Nat Metab ; 5(12): 2184-2205, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37996701

RESUMO

Barth syndrome (BTHS) is a life-threatening genetic disorder with unknown pathogenicity caused by mutations in TAFAZZIN (TAZ) that affect remodeling of mitochondrial cardiolipin (CL). TAZ deficiency leads to accumulation of mono-lyso-CL (MLCL), which forms a peroxidase complex with cytochrome c (cyt c) capable of oxidizing polyunsaturated fatty acid-containing lipids. We hypothesized that accumulation of MLCL facilitates formation of anomalous MLCL-cyt c peroxidase complexes and peroxidation of polyunsaturated fatty acid phospholipids as the primary BTHS pathogenic mechanism. Using genetic, biochemical/biophysical, redox lipidomic and computational approaches, we reveal mechanisms of peroxidase-competent MLCL-cyt c complexation and increased phospholipid peroxidation in different TAZ-deficient cells and animal models and in pre-transplant biopsies from hearts of patients with BTHS. A specific mitochondria-targeted anti-peroxidase agent inhibited MLCL-cyt c peroxidase activity, prevented phospholipid peroxidation, improved mitochondrial respiration of TAZ-deficient C2C12 myoblasts and restored exercise endurance in a BTHS Drosophila model. Targeting MLCL-cyt c peroxidase offers therapeutic approaches to BTHS treatment.


Assuntos
Síndrome de Barth , Animais , Humanos , Síndrome de Barth/genética , Síndrome de Barth/patologia , Citocromos c , Fosfolipídeos , Cardiolipinas , Ácidos Graxos Insaturados , Peroxidases
15.
J Biol Chem ; 286(19): 17338-50, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21454708

RESUMO

Triacylglycerols are stored in eukaryotic cells within lipid droplets (LD). The LD core is enwrapped by a phospholipid monolayer with phosphatidylcholine (PC), the major phospholipid, and phosphatidylethanolamine (PE), a minor component. We demonstrate that the onset of LD formation is characterized by a change in cellular PC, PE, and phosphatidylserine (PS). With induction of differentiation of 3T3-L1 fibroblasts into adipocytes, the cellular PC/PE ratio decreased concomitant with LD formation, with the most pronounced decline between confluency and day 5. The mRNA for PS synthase-1 (forms PS from PC) and PS decarboxylase (forms PE from PS) increased after day 5. Activity and protein of PE N-methyltransferase (PEMT), which produces PC by methylation of PE, are absent in 3T3-L1 fibroblasts but were induced at day 5. High fat challenge induced PEMT expression in mouse adipose tissue. PE, produced via PS decarboxylase, was the preferred substrate for methylation to PC. A PEMT-GFP fusion protein decorated the periphery of LD. PEMT knockdown in 3T3-L1 adipocytes correlated with increased basal triacylglycerol hydrolysis. Pemt(-/-) mice developed desensitization against adenosine-mediated inhibition of basal hydrolysis in adipose tissue, and adipocyte hypotrophy was observed in Pemt(-/-) animals on a high fat diet. Knock-out of PEMT in adipose tissue down-regulated PS synthase-1 mRNA, suggesting coordination between PE supply and converting pathways during LD biosynthesis. We conclude that two consecutive processes not previously related to LD biogenesis, (i) PE production via PS and (ii) PE conversion via PEMT, are implicated in LD formation and stability.


Assuntos
Lipídeos/química , Metilação , Fosfatidiletanolaminas/química , Células 3T3 , Adipócitos/citologia , Tecido Adiposo/metabolismo , Animais , Inativação Gênica , Proteínas de Fluorescência Verde/metabolismo , Hidrólise , Masculino , Camundongos , Camundongos Transgênicos , Fosfatidilcolinas/química , Fosfatidilserinas/química
16.
PLoS One ; 17(2): e0263520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35143544

RESUMO

Pulmonary vascular remodeling (PVR) in utero results in the development of heart failure. The alterations that occur in cardiac lipid and mitochondrial bioenergetics during the development of in utero PVR was unknown. In this study, PVR was induced in pups in utero by exposure of pregnant dams to indomethacin and hypoxia and cardiac lipids, echocardiographic function and cardiomyocyte mitochondrial function were subsequently examined. Perinatal rat pups with PVR exhibited elevated left and right cardiac ventricular internal dimensions and reduced ejection fraction and fractional shortening compared to controls. Cardiac myocytes from these pups exhibited increased glycolytic capacity and glycolytic reserve compared to controls. However, respiration with glucose as substrate was unaltered. Fatty acid oxidation and ATP-insensitive respiration were increased in isolated cardiac myocytes from these pups compared to controls indicating a mitochondrial dysfunction. Although abundance of mitochondrial respiratory chain complexes was unaltered, increased trilinoleoyl-lysocardiolipin levels in these pups was observed. A compensatory increase in both cardiolipin and phosphatidylethanolamine content were observed due to increased synthesis of these phospholipids. These data indicate that alterations in cardiac cardiolipin and phospholipid metabolism in PVR rat pups is associated with the mitochondrial bioenergetic and cardiac functional defects observed in their hearts.


Assuntos
Cardiolipinas/metabolismo , Mitocôndrias Cardíacas/metabolismo , Doenças Mitocondriais/metabolismo , Remodelação Vascular , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Hipóxia/induzido quimicamente , Indometacina , Miócitos Cardíacos/metabolismo , Fosfolipídeos/metabolismo , Gravidez , Ratos , Testes de Função Respiratória , Remodelação Vascular/efeitos dos fármacos
17.
J Biol Chem ; 285(16): 11880-91, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20150657

RESUMO

Phosphatidylcholine is made in all nucleated mammalian cells via the CDP-choline pathway. Another major pathway for phosphatidylcholine biosynthesis in liver is catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). We have now identified 3T3-L1 adipocytes as a cell culture model that expresses PEMT endogenously. We have found that PEMT mRNA and protein levels increased dramatically in 3T3-L1 cells upon differentiation to adipocytes. 5'-Deletion analysis of the PEMT promoter-luciferase constructs stably expressed in 3T3-L1 adipocytes identified a regulatory region between -471 and -371 bp (relative to the transcriptional start site). Competitive and supershift assays demonstrated binding sites for transcription factors Sp1, Sp3 (-408 to -413), and YY1 (-417 to -420). During differentiation of 3T3-L1 cells to adipocytes, the amount of Sp1 protein decreased by approximately 50% just prior to activation of PEMT. Transduction of 3T3-L1 adipocytes with retrovirus containing Sp1 cDNA demonstrated that Sp1 inhibited PEMT transcriptional activity. Similarly, short hairpin RNA directed against Sp1 in 3T3-L1 adipocytes enhanced PEMT transcriptional activation. Chromatin immunoprecipitation assays confirmed that Sp1 binds to the PEMT promoter, and this interaction decreases upon differentiation to adipocytes. These experiments directly link increased PEMT expression in adipocytes to decreased transcriptional expression of Sp1. In addition, our data established that Sp1 binding was required for tamoxifen-mediated inhibition of Pemt promoter activity.


Assuntos
Adipócitos/metabolismo , Fígado/metabolismo , Fosfatidiletanolamina N-Metiltransferase/genética , Fator de Transcrição Sp1/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Sequência de Bases , Sítios de Ligação/genética , Diferenciação Celular , Primers do DNA/genética , Hepatócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Fator de Transcrição Sp1/antagonistas & inibidores , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp3/metabolismo , Tamoxifeno/farmacologia , Transcrição Gênica , Fator de Transcrição YY1/metabolismo
18.
Hepatology ; 52(4): 1258-65, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20658461

RESUMO

UNLABELLED: Tamoxifen is an anti-estrogen drug widely used for the treatment of hormone-sensitive breast cancer. Approximately 43% of breast cancer patients treated with tamoxifen develop hepatic steatosis. The mechanism or mechanisms by which tamoxifen may induce lipid accumulation in the liver are unclear. Mice were injected with tamoxifen or vehicle (sesame oil containing 1% benzyl alcohol) for 5 consecutive days. In comparison with the vehicle, tamoxifen increased hepatic triacylglycerol levels by 72%. The levels of plasma triacylglycerol were similar between the tamoxifen-treated and control groups. We found increased radiolabeling of triacylglycerol and phospholipids from [(3)H]acetate (∼50%) but not [(14)C]oleate in hepatocytes from tamoxifen-treated mice versus control mice. Fatty acid uptake, triacylglycerol secretion, and fatty acid oxidation remained unchanged in isolated hepatocytes after tamoxifen treatment. The apparent increase in fatty acid synthesis was explained by a marked decrease in the phosphorylation of acetyl coenzyme A carboxylase, which resulted in its activation. CONCLUSION: Our data suggest that increased de novo fatty acid synthesis is the primary event leading to tamoxifen-induced steatosis in the mouse liver. Inhibition of fatty acid synthesis might, therefore, ameliorate steatosis/steatohepatitis in breast cancer patients treated with tamoxifen.


Assuntos
Ácidos Graxos/biossíntese , Fígado/metabolismo , Tamoxifeno/farmacologia , Triglicerídeos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Fígado Gorduroso/induzido quimicamente , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidiletanolamina N-Metiltransferase/metabolismo , RNA Mensageiro/metabolismo , Tamoxifeno/efeitos adversos
19.
Sci Rep ; 11(1): 15770, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349203

RESUMO

Berberine (BBR) is an isoquinoline alkaloid from plants known to improve cardiac mitochondrial function in gestational diabetes mellitus (GDM) offspring but the mechanism is poorly understood. We examined the role of the mitochondrial phospholipid cardiolipin (CL) in mediating this cardiac improvement. C57BL/6 female mice were fed either a Lean-inducing low-fat diet or a GDM-inducing high-fat diet for 6 weeks prior to breeding. Lean and GDM-exposed male offspring were randomly assigned a low-fat, high-fat, or high-fat diet containing BBR at weaning for 12 weeks. The content of CL was elevated in the heart of GDM offspring fed a high fat diet containing BBR. The increase in total cardiac CL was due to significant increases in the most abundant and functionally important CL species, tetralinoleoyl-CL and this correlated with an increase in the expression of the CL remodeling enzyme tafazzin. Additionally, BBR treatment increased expression of cardiac enzymes involved in fatty acid uptake and oxidation and electron transport chain subunits in high fat diet fed GDM offspring. Thus, dietary BBR protection from cardiac dysfunction in GDM exposed offspring involves improvement in mitochondrial function mediated through increased synthesis of CL.


Assuntos
Berberina/farmacologia , Cardiolipinas/metabolismo , Diabetes Gestacional/etiologia , Dieta Hiperlipídica/efeitos adversos , Cardiopatias/etiologia , Cardiopatias/prevenção & controle , Troca Materno-Fetal/fisiologia , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Berberina/administração & dosagem , Transporte de Elétrons/efeitos dos fármacos , Ácidos Graxos/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Oxirredução/efeitos dos fármacos , Gravidez
20.
bioRxiv ; 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34729562

RESUMO

Barth Syndrome (BTHS) is a rare X-linked genetic disorder caused by mutation in the TAFAZZIN gene which encodes the cardiolipin (CL) transacylase tafazzin (Taz). Taz deficiency in BTHS patients results in reduced CL in their tissues and a neutropenia which contributes to the risk of infections. However, the impact of Taz deficiency in other cells of the immune system is poorly understood. Mesenchymal stem cells (MSCs) are well known for their immune inhibitory function. We examined whether Taz-deficiency in murine MSCs impacted their ability to modulate lipopolysaccharide (LPS)-activated wild type (WT) murine B lymphocytes. MSCs from tafazzin knockdown (TazKD) mice exhibited a 50% reduction in CL compared to wild type (WT) MSCs. However, mitochondrial oxygen consumption rate and membrane potential were unaltered. In contrast, TazKD MSCs exhibited increased glycolysis compared to WT MSCs and this was associated with elevated proliferation, phosphatidylinositol-3-kinase expression and expression of the immunosuppressive markers indoleamine-2,3-dioxygenase, cytotoxic T-lymphocyte-associated protein 4, interleukin-10, and cluster of differentiation 59. When co-cultured with LPS-activated WT B cells, TazKD MSCs inhibited B cell proliferation and growth rate and reduced B cell secretion of IgM to a greater extent than B cells co-cultured with WT MSCs. In addition, co-culture of LPS-activated WT B cells with TazKD MSCs induced B cell differentiation toward potent immunosuppressive phenotypes including interleukin-10 secreting plasma cells and B regulatory cells compared to activated B cells co-cultured with WT MSCs. These results indicate that Taz deficiency in MSCs enhances MSCs-mediated immunosuppression of activated B lymphocytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA