Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(31): 15590-15595, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31308237

RESUMO

The building blocks of a virus derived from de novo biosynthesis during infection and/or catabolism of preexisting host cell biomass, and the relative contribution of these 2 sources has important consequences for understanding viral biogeochemistry. We determined the uptake of extracellular nitrogen (N) and its biosynthetic incorporation into both virus and host proteins using an isotope-labeling proteomics approach in a model marine cyanobacterium Synechococcus WH8102 infected by a lytic cyanophage S-SM1. By supplying dissolved N as 15N postinfection, we found that proteins in progeny phage particles were composed of up to 41% extracellularly derived N, while proteins of the infected host cell showed almost no isotope incorporation, demonstrating that de novo amino acid synthesis continues during infection and contributes specifically and substantially to phage replication. The source of N for phage protein synthesis shifted over the course of infection from mostly host derived in the early stages to more medium derived later on. We show that the photosystem II reaction center proteins D1 and D2, which are auxiliary metabolic genes (AMGs) in the S-SM1 genome, are made de novo during infection in an apparently light-dependent manner. We also identified a small set of host proteins that continue to be produced during infection; the majority are homologs of AMGs in S-SM1 or other viruses, suggesting selective continuation of host protein production during infection. The continued acquisition of nutrients by the infected cell and their utilization for phage replication are significant for both evolution and biogeochemical impact of viruses.


Assuntos
Organismos Aquáticos , Proteínas de Bactérias , Bacteriófagos , Nitrogênio/metabolismo , Complexo de Proteína do Fotossistema II , Synechococcus , Proteínas Virais , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Organismos Aquáticos/virologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Synechococcus/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
Environ Microbiol ; 22(1): 433-446, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31736217

RESUMO

The Laurentian Great Lakes are a vast, interconnected freshwater system spanning strong physicochemical gradients, thus constituting a powerful natural laboratory for addressing fundamental questions about microbial ecology and evolution. We present a comparative analysis of pelagic microbial communities across all five Laurentian Great Lakes, focusing on Bacterial and Archaeal picoplankton characterized via 16S rRNA amplicon sequencing. We collected samples throughout the water column from the major basins of each lake in spring and summer over 2 years. Two oligotypes, classified as LD12 (Alphaproteobacteria) and acI-B1 (Actinobacteria), were among the most abundant in every sample. At the same time, microbial communities showed distinct patterns with depth during summer stratification. Deep hypolimnion samples were frequently dominated by a Chloroflexi oligotype that reached up to 19% relative abundance. Stratified surface communities differed between the colder, less productive upper lakes (Superior, Michigan, Huron) and warmer, more productive lower lakes (Erie, Ontario), in part due to an Actinobacteria oligotype (acI-C2) that averaged 7.7% of sequences in the lower lakes but <0.2% in the upper lakes. Together, our findings suggest that both hydrologic connectivity and local selective pressures shape microbial communities in the Great Lakes and establish a framework for future investigations.


Assuntos
Actinobacteria/isolamento & purificação , Alphaproteobacteria/isolamento & purificação , Archaea/isolamento & purificação , Chloroflexi/isolamento & purificação , Lagos/microbiologia , Microbiota/genética , Actinobacteria/classificação , Actinobacteria/genética , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Archaea/classificação , Archaea/genética , Chloroflexi/classificação , Chloroflexi/genética , Michigan , Filogenia , Plâncton/classificação , Plâncton/genética , RNA Ribossômico 16S/genética
3.
Environ Microbiol ; 20(8): 3001-3011, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30047191

RESUMO

Dissolved organic matter (DOM) plays a central role in the microbial ecology and biogeochemistry of aquatic environments, yet little is known about how the mechanism of DOM release from its ultimate source, primary producer biomass, affects the molecular composition of the inputs to the dissolved pool. Here we used a model marine phytoplankton, the picocyanobacterium Synechococcus WH7803, to compare the composition of DOM released by three mechanisms: exudation, mechanical cell lysis and infection by the lytic phage S-SM1. A broad, untargeted analytical approach reveals the complexity of this freshly sourced DOM, and comparative analysis between DOM produced by the different mechanisms suggests that exudation and viral lysis are sources of unsaturated, oxygen-rich and possibly novel biomolecules. Furthermore, viral lysis of WH7803 by S-SM1 releases abundant peptides derived from specific proteolysis of the major light-harvesting protein phycoerythrin, raising the possibility that phage infection of these abundant cyanobacteria could be a significant source of high molecular weight dissolved organic nitrogen compounds.


Assuntos
Bacteriófagos/fisiologia , Compostos Orgânicos/química , Água do Mar/química , Synechococcus/química , Synechococcus/virologia , Biomassa , Peptídeos/química , Fitoplâncton/química , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/virologia , Água do Mar/microbiologia , Água do Mar/virologia , Synechococcus/crescimento & desenvolvimento
4.
Environ Microbiol ; 20(8): 2898-2912, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29749714

RESUMO

Prasinophytes are widespread marine algae for which responses to nutrient limitation and viral infection are not well understood. We studied the picoprasinophyte, Micromonas pusilla, grown under phosphate-replete (0.65 ± 0.07 d-1 ) and 10-fold lower (low)-phosphate (0.11 ± 0.04 d-1 ) conditions, and infected by the phycodnavirus MpV-SP1. Expression of 17% of Micromonas genes in uninfected cells differed by >1.5-fold (q < 0.01) between nutrient conditions, with genes for P-metabolism and the uniquely-enriched Sel1-like repeat (SLR) family having higher relative transcript abundances, while phospholipid-synthesis genes were lower in low-P than P-replete. Approximately 70% (P-replete) and 30% (low-P) of cells were lysed 24 h post-infection, and expression of ≤5.8% of host genes changed relative to uninfected treatments. Host genes for CAZymes and glycolysis were activated by infection, supporting importance in viral production, which was significantly lower in slower growing (low-P) hosts. All MpV-SP1 genes were expressed, and our analyses suggest responses to differing host-phosphate backgrounds involve few viral genes, while the temporal program of infection involves many more, and is largely independent of host-phosphate background. Our study (i) identifies genes previously unassociated with nutrient acclimation or viral infection, (ii) provides insights into the temporal program of prasinovirus gene expression by hosts and (iii) establishes cell biological aspects of an ecologically important host-prasinovirus system that differ from other marine algal-virus systems.


Assuntos
Clorófitas/virologia , Regulação da Expressão Gênica de Plantas , Fosfatos/química , Phycodnaviridae/fisiologia , Transcrição Gênica/fisiologia , Organismos Aquáticos , Clorófitas/metabolismo , Fosfatos/metabolismo , Phycodnaviridae/genética
5.
Proc Natl Acad Sci U S A ; 108(45): E1045-51, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21873238

RESUMO

Rhodopseudomonas palustris TIE-1 is a gram-negative bacterium that produces structurally diverse hopanoid lipids that are similar to eukaryotic steroids. Its genome encodes several homologues to proteins involved in eukaryotic steroid trafficking. In this study, we explored the possibility that two of these proteins are involved in intracellular hopanoid transport. R. palustris has a sophisticated membrane system comprising outer, cytoplasmic, and inner cytoplasmic membranes. It also divides asymmetrically, producing a mother and swarmer cell. We deleted genes encoding two putative hopanoid transporters that belong to the resistance-nodulation-cell division superfamily. Phenotypic analyses revealed that one of these putative transporters (HpnN) is essential for the movement of hopanoids from the cytoplasmic to the outer membrane, whereas the other (Rpal_4267) plays a minor role. C(30) hopanoids, such as diploptene, are evenly distributed between mother and swarmer cells, whereas hpnN is required for the C(35) hopanoid, bacteriohopanetetrol, to remain localized to the mother cell type. Mutant cells lacking HpnN grow like the WT at 30 °C but slower at 38 °C. Following cell division at 38 °C, the ΔhpnN cells remain connected by their cell wall, forming long filaments. This phenotype may be attributed to hopanoid mislocalization because a double mutant deficient in both hopanoid biosynthesis and transport does not form filaments. However, the lack of hopanoids severely compromises cell growth at higher temperatures more generally. Because hopanoid mutants only manifest a strong phenotype under certain conditions, R. palustris is an attractive model organism in which to study their transport and function.


Assuntos
Proteínas da Membrana Bacteriana Externa/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Rodopseudomonas/metabolismo , Ciclo Celular , Meios de Cultura , Filogenia , Transporte Proteico , Temperatura
6.
Appl Environ Microbiol ; 79(12): 3619-27, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23563938

RESUMO

Transition metals are known to cause toxic effects through their interaction with oxygen, but toxicity under anoxic conditions is poorly understood. Here we investigated the effects of iron (Fe) and copper (Cu) on the anaerobic growth and gene expression of the purple phototrophic bacterium Rhodopseudomonas palustris TIE-1. We found that Fe(II) and Cu(II) act synergistically to delay anaerobic growth at environmentally relevant metal concentrations. Cu(I) and Cu(II) had similar effects both alone and in the presence of ascorbate, a Cu(II) reductant, indicating that reduction of Cu(II) to Cu(I) by Fe(II) is not sufficient to explain the growth inhibition. Addition of Cu(II) increased the toxicity of Co(II) and Ni(II); in contrast, Ni(II) toxicity was diminished in the presence of Fe(II). The synergistic anaerobic toxicity of Fe(II) and Cu(II) was also observed for Escherichia coli MG1655, Shewanella oneidensis MR-1, and Rhodobacter capsulatus SB1003. Gene expression analyses for R. palustris identified three regulatory genes that respond to Cu(II) and not to Fe(II): homologs of cueR and cusR, two known proteobacterial copper homeostasis regulators, and csoR, a copper regulator recently identified in Mycobacterium tuberculosis. Two P-type ATPase efflux pumps, along with an F(o)F(1) ATP synthase, were also upregulated by Cu(II) but not by Fe(II). An Escherichia coli mutant deficient in copA, cus, and cueO showed a smaller synergistic effect, indicating that iron might interfere with one or more of the copper homeostasis systems. Our results suggest that interactive effects of transition metals on microbial physiology may be widespread under anoxic conditions, although the molecular mechanisms remain to be more fully elucidated.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Cobre/toxicidade , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Ferro/toxicidade , Anaerobiose , Sinergismo Farmacológico , Espectrometria de Massas , Análise em Microsséries , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie
7.
Nature ; 449(7158): 83-6, 2007 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-17805294

RESUMO

Interactions between bacterial hosts and their viruses (phages) lead to reciprocal genome evolution through a dynamic co-evolutionary process. Phage-mediated transfer of host genes--often located in genome islands--has had a major impact on microbial evolution. Furthermore, phage genomes have clearly been shaped by the acquisition of genes from their hosts. Here we investigate whole-genome expression of a host and phage, the marine cyanobacterium Prochlorococcus MED4 and the T7-like cyanophage P-SSP7, during lytic infection, to gain insight into these co-evolutionary processes. Although most of the phage genome was linearly transcribed over the course of infection, four phage-encoded bacterial metabolism genes formed part of the same expression cluster, even though they are physically separated on the genome. These genes--encoding photosystem II D1 (psbA), high-light inducible protein (hli), transaldolase (talC) and ribonucleotide reductase (nrd)--are transcribed together with phage DNA replication genes and seem to make up a functional unit involved in energy and deoxynucleotide production for phage replication in resource-poor oceans. Also unique to this system was the upregulation of numerous genes in the host during infection. These may be host stress response genes and/or genes induced by the phage. Many of these host genes are located in genome islands and have homologues in cyanophage genomes. We hypothesize that phage have evolved to use upregulated host genes, leading to their stable incorporation into phage genomes and their subsequent transfer back to hosts in genome islands. Thus activation of host genes during infection may be directing the co-evolution of gene content in both host and phage genomes.


Assuntos
Bacteriófagos/genética , Evolução Molecular , Perfilação da Expressão Gênica , Genoma Bacteriano/genética , Genoma Viral/genética , Prochlorococcus/genética , Prochlorococcus/virologia , Bacteriófagos/fisiologia , Regulação da Expressão Gênica/genética , Genes Bacterianos/genética , Genes Virais/genética , Interações Hospedeiro-Parasita , Biologia Marinha , Água do Mar/microbiologia , Água do Mar/virologia , Fatores de Tempo , Transcrição Gênica/genética
8.
Proc Natl Acad Sci U S A ; 107(43): 18634-9, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20937887

RESUMO

Bacterial populations harbor vast genetic diversity that is continually shaped by abiotic and biotic selective pressures, as well as by neutral processes. Individuals coexisting in the same geographically defined population often have significantly different gene content, but whether this variation is largely adaptive or neutral remains poorly understood. Here we quantify heterogeneity in gene content for two model marine microbes, Prochlorococcus and Pelagibacter, within and between populations in the Atlantic and Pacific Oceans, to begin to understand the selective pressures that are shaping these "population genomes." We discovered a large fraction of genes that are rare in each population, reflecting continual gene transfer and loss. Despite this high variation within each population, only a few genes significantly differ in abundance between the two biogeochemically distinct environments; nearly all of these are related to phosphorus acquisition and are enriched in the Atlantic relative to the Pacific. Moreover, P-related genes from the two sites form phylogenetically distinct clusters, whereas housekeeping genes do not, consistent with a recent spread of adaptive P-related genes in the Atlantic populations. These findings implicate phosphorus availability as the dominant selective force driving divergence between these populations, and demonstrate the promise of this approach for revealing selective agents in more complex microbial systems.


Assuntos
Ecossistema , Biologia Marinha , Metagenômica , Seleção Genética , Alphaproteobacteria/genética , Oceano Atlântico , DNA Bacteriano/genética , Frequência do Gene , Genoma Bacteriano , Oceano Pacífico , Filogenia , Prochlorococcus/genética , Água do Mar/microbiologia
9.
Proc Natl Acad Sci U S A ; 107(19): 8537-42, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20421508

RESUMO

The rise of atmospheric oxygen has driven environmental change and biological evolution throughout much of Earth's history and was enabled by the evolution of oxygenic photosynthesis in the cyanobacteria. Dating this metabolic innovation using inorganic proxies from sedimentary rocks has been difficult and one important approach has been to study the distributions of fossil lipids, such as steranes and 2-methylhopanes, as biomarkers for this process. 2-methylhopanes arise from degradation of 2-methylbacteriohopanepolyols (2-MeBHPs), lipids thought to be synthesized primarily by cyanobacteria. The discovery that 2-MeBHPs are produced by an anoxygenic phototroph, however, challenged both their taxonomic link with cyanobacteria and their functional link with oxygenic photosynthesis. Here, we identify a radical SAM methylase encoded by the hpnP gene that is required for methylation at the C-2 position in hopanoids. This gene is found in several, but not all, cyanobacteria and also in alpha -proteobacteria and acidobacteria. Thus, one cannot extrapolate from the presence of 2-methylhopanes alone, in modern environments or ancient sedimentary rocks, to a particular taxonomic group or metabolism. To understand the origin of this gene, we reconstructed the evolutionary history of HpnP. HpnP proteins from cyanobacteria, Methylobacterium species, and other alpha-proteobacteria form distinct phylogenetic clusters, but the branching order of these clades could not be confidently resolved. Hence,it is unclear whether HpnP, and 2-methylhopanoids, originated first in the cyanobacteria. In summary, existing evidence does not support the use of 2-methylhopanes as biomarkers for oxygenic photosynthesis.


Assuntos
Sedimentos Geológicos/química , Metiltransferases/metabolismo , Rodopseudomonas/enzimologia , Triterpenos/análise , Triterpenos/metabolismo , Acetilação , Cromatografia Gasosa-Espectrometria de Massas , Transferases Intramoleculares/metabolismo , Família Multigênica/genética , Filogenia , Rodopseudomonas/genética , Triterpenos/química
10.
Nat Microbiol ; 8(3): 498-509, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36635571

RESUMO

Microbial growth in many environments is limited by nitrogen availability, yet there is limited understanding of how complex communities compete for and allocate this resource. Here we develop a broadly applicable approach to track biosynthetic incorporation of 15N-labelled nitrogen substrates into microbial community proteomes, enabling quantification of protein turnover and N allocation to specific cellular functions in individual taxa. Application to oligotrophic ocean surface water identifies taxa-specific substrate preferences and a distinct subset of protein functions undergoing active biosynthesis. The cyanobacterium Prochlorococcus is the most effective competitor for acquisition of ammonium and urea and shifts its proteomic allocation of N over the day/night cycle. Our approach reveals that infrastructure and protein-turnover functions comprise substantial biosynthetic demand for N in Prochlorococcus and a range of other microbial taxa. The direct interrogation of the proteomic underpinnings of N limitation with 15N-tracking proteomics illuminates how nutrient stress differentially influences metabolism in co-existing microbes.


Assuntos
Cianobactérias , Microbiota , Nitrogênio/metabolismo , Proteoma , Proteômica , Cianobactérias/metabolismo
11.
J Bacteriol ; 194(5): 1195-204, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22194456

RESUMO

Pseudomonas aeruginosa is a ubiquitous gram-negative bacterium best known as the predominant opportunistic pathogen infecting the lungs of cystic fibrosis patients. In this context, it is thought to form biofilms, within which locally reducing and acidic conditions can develop that favor the stability of ferrous iron [Fe(II)]. Because iron is a signal that stimulates biofilm formation, we performed a microarray study to determine whether P. aeruginosa strain PA14 exhibits a specific transcriptional response to extracellular Fe(II). Among the genes that were most upregulated in response to Fe(II) were those encoding the two-component system BqsR/BqsS, previously identified for its role in P. aeruginosa strain PAO1 biofilm decay (13); here, we demonstrate its role in extracellular Fe(II) sensing. bqsS and bqsR form an operon together with two small upstream genes, bqsP and bqsQ, and one downstream gene, bqsT. BqsR/BqsS sense extracellular Fe(II) at physiologically relevant concentrations (>10 µM) and elicit a specific transcriptional response, including its autoregulation. The sensor distinguishes between Fe(II), Fe(III), and other dipositive cations [Ca(II), Cu(II), Mg(II), Mn(II), Zn(II)] under aerobic or anaerobic conditions. The gene that is most upregulated by BqsR/BqsS, as measured by quantitative reverse transcription-PCR (qRT-PCR), is PA14_04180, which is predicted to encode a periplasmic oligonucleotide/oligosaccharide-binding domain (OB-fold) protein. Coincident with phenazine production during batch culture growth, Fe(II) becomes the majority of the total iron pool and bqsS is upregulated. The existence of a two-component system that senses Fe(II) indicates that extracellular Fe(II) is an important environmental signal for P. aeruginosa.


Assuntos
Compostos Ferrosos/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/fisiologia , Transdução de Sinais , Cátions Bivalentes/metabolismo , Perfilação da Expressão Gênica , Humanos , Metais/metabolismo , Análise em Microsséries , Modelos Biológicos , Óperon , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
mBio ; 13(3): e0237921, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35435701

RESUMO

Microbial nitrification is a critical process governing nitrogen availability in aquatic systems. Freshwater nitrifiers have received little attention, leaving many unanswered questions about their taxonomic distribution, functional potential, and ecological interactions. Here, we reconstructed genomes to infer the metabolism and ecology of free-living picoplanktonic nitrifiers across the Laurentian Great Lakes, a connected series of five of Earth's largest lakes. Surprisingly, ammonia-oxidizing bacteria (AOB) related to Nitrosospira dominated over ammonia-oxidizing archaea (AOA) at nearly all stations, with distinct ecotypes prevailing in the transparent, oligotrophic upper lakes compared to Lakes Erie and Ontario. Unexpectedly, one ecotype of Nitrosospira encodes proteorhodopsin, which could enhance survival under conditions where ammonia oxidation is inhibited or substrate limited. Nitrite-oxidizing bacteria (NOB) "Candidatus Nitrotoga" and Nitrospira fluctuated in dominance, with the latter prevailing in deeper, less-productive basins. Genome reconstructions reveal highly reduced genomes and features consistent with genome streamlining, along with diverse adaptations to sunlight and oxidative stress and widespread capacity for organic nitrogen use. Our findings expand the known functional diversity of nitrifiers and establish their ecological genomics in large lake ecosystems. By elucidating links between microbial biodiversity and biogeochemical cycling, our work also informs ecosystem models of the Laurentian Great Lakes, a critical freshwater resource experiencing rapid environmental change. IMPORTANCE Microorganisms play critical roles in Earth's nitrogen cycle. In lakes, microorganisms called nitrifiers derive energy from reduced nitrogen compounds. In doing so, they transform nitrogen into a form that can ultimately be lost to the atmosphere by a process called denitrification, which helps mitigate nitrogen pollution from fertilizer runoff and sewage. Despite their importance, freshwater nitrifiers are virtually unexplored. To understand their diversity and function, we reconstructed genomes of freshwater nitrifiers across some of Earth's largest freshwater lakes, the Laurentian Great Lakes. We discovered several new species of nitrifiers specialized for clear low-nutrient waters and distinct species in comparatively turbid Lake Erie. Surprisingly, one species may be able to harness light energy by using a protein called proteorhodopsin, despite the fact that nitrifiers typically live in deep dark water. Our work reveals the unique biodiversity of the Great Lakes and fills key gaps in our knowledge of an important microbial group, the nitrifiers.


Assuntos
Amônia , Ecossistema , Amônia/metabolismo , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Genoma , Lagos/microbiologia , Nitrificação , Nitrogênio/metabolismo , Oxirredução , Filogenia , Rodopsinas Microbianas
13.
Proc Natl Acad Sci U S A ; 105(10): 3805-10, 2008 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-18316740

RESUMO

Metagenomics is expanding our knowledge of the gene content, functional significance, and genetic variability in natural microbial communities. Still, there exists limited information concerning the regulation and dynamics of genes in the environment. We report here global analysis of expressed genes in a naturally occurring microbial community. We first adapted RNA amplification technologies to produce large amounts of cDNA from small quantities of total microbial community RNA. The fidelity of the RNA amplification procedure was validated with Prochlorococcus cultures and then applied to a microbial assemblage collected in the oligotrophic Pacific Ocean. Microbial community cDNAs were analyzed by pyrosequencing and compared with microbial community genomic DNA sequences determined from the same sample. Pyrosequencing-based estimates of microbial community gene expression compared favorably to independent assessments of individual gene expression using quantitative PCR. Genes associated with key metabolic pathways in open ocean microbial species-including genes involved in photosynthesis, carbon fixation, and nitrogen acquisition-and a number of genes encoding hypothetical proteins were highly represented in the cDNA pool. Genes present in the variable regions of Prochlorococcus genomes were among the most highly expressed, suggesting these encode proteins central to cellular processes in specific genotypes. Although many transcripts detected were highly similar to genes previously detected in ocean metagenomic surveys, a significant fraction ( approximately 50%) were unique. Thus, microbial community transcriptomic analyses revealed not only indigenous gene- and taxon-specific expression patterns but also gene categories undetected in previous DNA-based metagenomic surveys.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Prochlorococcus/genética , Água do Mar/microbiologia , DNA Bacteriano/genética , DNA Complementar/biossíntese , DNA Complementar/genética , Perfilação da Expressão Gênica , Biblioteca Gênica , Redes e Vias Metabólicas/genética , Técnicas de Amplificação de Ácido Nucleico , Oceano Pacífico , Filogenia , Prochlorococcus/isolamento & purificação , RNA Bacteriano/genética , RNA Mensageiro/genética , Análise de Sequência de DNA
14.
Front Microbiol ; 12: 641700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897649

RESUMO

The availability of phosphorus limits primary production in large regions of the oceans, and marine microbes use a variety of strategies to overcome this limitation. One strategy is the production of alkaline phosphatase (APase), which allows hydrolysis of larger dissolved organic phosphorus (DOP) compounds in the periplasm or at the cell surface for transport of orthophosphate into the cell. Cell lysis, driven by grazing and viral infection, releases phosphorus-containing cell components, along with active enzymes that could persist after lysis. The importance of this continued enzymatic activity for orthophosphate regeneration is unknown. We used three model bacteria - Escherichia coli K-12 MG1655, Synechococcus sp. WH7803, and Prochlorococcus sp. MED4 - to assess the impact of continued APase activity after cell lysis, via lysozyme treatment, on orthophosphate regeneration. Direct release of orthophosphate scaled with cell size and was reduced under phosphate-starved conditions where APase activity continued for days after lysis. All lysate incubations showed post-lysis orthophosphate generation suggesting phosphatases other than APase maintain activity. Rates of DOP hydrolysis and orthophosphate remineralization varied post-lysis among strains. Escherichia coli K-12 MG1655 rates of remineralization were 0.6 and 1.2 amol cell-1hr-1 under deplete and replete conditions; Synechococcus WH7803 lysates ranged from 0.04 up to 0.3 amol cell-1hr-1 during phosphorus deplete and replete conditions, respectively, while in Prochlorococcus MED4 lysates, rates were stable at 0.001 amol cell-1hr-1 in both conditions. The range of rates of hydrolysis and regeneration underscores the taxonomic and biochemical variability in the process of nutrient regeneration and further highlights the complexity of quantitatively resolving the major fluxes within the microbial loop.

15.
PLoS Genet ; 3(12): e231, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18159947

RESUMO

Prochlorococcus is a marine cyanobacterium that numerically dominates the mid-latitude oceans and is the smallest known oxygenic phototroph. Numerous isolates from diverse areas of the world's oceans have been studied and shown to be physiologically and genetically distinct. All isolates described thus far can be assigned to either a tightly clustered high-light (HL)-adapted clade, or a more divergent low-light (LL)-adapted group. The 16S rRNA sequences of the entire Prochlorococcus group differ by at most 3%, and the four initially published genomes revealed patterns of genetic differentiation that help explain physiological differences among the isolates. Here we describe the genomes of eight newly sequenced isolates and combine them with the first four genomes for a comprehensive analysis of the core (shared by all isolates) and flexible genes of the Prochlorococcus group, and the patterns of loss and gain of the flexible genes over the course of evolution. There are 1,273 genes that represent the core shared by all 12 genomes. They are apparently sufficient, according to metabolic reconstruction, to encode a functional cell. We describe a phylogeny for all 12 isolates by subjecting their complete proteomes to three different phylogenetic analyses. For each non-core gene, we used a maximum parsimony method to estimate which ancestor likely first acquired or lost each gene. Many of the genetic differences among isolates, especially for genes involved in outer membrane synthesis and nutrient transport, are found within the same clade. Nevertheless, we identified some genes defining HL and LL ecotypes, and clades within these broad ecotypes, helping to demonstrate the basis of HL and LL adaptations in Prochlorococcus. Furthermore, our estimates of gene gain events allow us to identify highly variable genomic islands that are not apparent through simple pairwise comparisons. These results emphasize the functional roles, especially those connected to outer membrane synthesis and transport that dominate the flexible genome and set it apart from the core. Besides identifying islands and demonstrating their role throughout the history of Prochlorococcus, reconstruction of past gene gains and losses shows that much of the variability exists at the "leaves of the tree," between the most closely related strains. Finally, the identification of core and flexible genes from this 12-genome comparison is largely consistent with the relative frequency of Prochlorococcus genes found in global ocean metagenomic databases, further closing the gap between our understanding of these organisms in the lab and the wild.


Assuntos
Evolução Biológica , Genoma Bacteriano , Prochlorococcus/genética , Cromossomos Bacterianos/genética , Ecossistema , Genes Bacterianos , Filogenia , Prochlorococcus/classificação , Prochlorococcus/isolamento & purificação , Prochlorococcus/metabolismo , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Especificidade da Espécie , Synechococcus/classificação , Synechococcus/genética
16.
Nat Rev Microbiol ; 18(1): 21-34, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31690825

RESUMO

Ecosystems are controlled by 'bottom-up' (resources) and 'top-down' (predation) forces. Viral infection is now recognized as a ubiquitous top-down control of microbial growth across ecosystems but, at the same time, cell death by viral predation influences, and is influenced by, resource availability. In this Review, we discuss recent advances in understanding the biogeochemical impact of viruses, focusing on how metabolic reprogramming of host cells during lytic viral infection alters the flow of energy and nutrients in aquatic ecosystems. Our synthesis revealed several emerging themes. First, viral infection transforms host metabolism, in part through virus-encoded metabolic genes; the functions performed by these genes appear to alleviate energetic and biosynthetic bottlenecks to viral production. Second, viral infection depends on the physiological state of the host cell and on environmental conditions, which are challenging to replicate in the laboratory. Last, metabolic reprogramming of infected cells and viral lysis alter nutrient cycling and carbon export in the oceans, although the net impacts remain uncertain. This Review highlights the need for understanding viral infection dynamics in realistic physiological and environmental contexts to better predict their biogeochemical consequences.


Assuntos
Organismos Aquáticos/virologia , Interações entre Hospedeiro e Microrganismos , Metabolismo , Água do Mar/microbiologia , Replicação Viral , Vírus/crescimento & desenvolvimento , Ecossistema , Oceanos e Mares
17.
ISME J ; 13(2): 523-536, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30297849

RESUMO

Bacterial genomes evolve in complex ecosystems and are best understood in this natural context, but replicating such conditions in the lab is challenging. We used transposon sequencing to define the fitness consequences of gene disruption in the bacterium Caulobacter crescentus grown in natural freshwater, compared with axenic growth in common laboratory media. Gene disruptions in amino-acid and nucleotide sugar biosynthesis pathways and in metabolic substrate transport machinery impaired fitness in both lake water and defined minimal medium relative to complex peptone broth. Fitness in lake water was enhanced by insertions in genes required for flagellum biosynthesis and reduced by insertions in genes involved in biosynthesis of the holdfast surface adhesin. We further uncovered numerous hypothetical and uncharacterized genes for which disruption impaired fitness in lake water, defined minimal medium, or both. At the genome scale, the fitness profile of mutants cultivated in lake water was more similar to that in complex peptone broth than in defined minimal medium. Microfiltration of lake water did not significantly affect the terminal cell density or the fitness profile of the transposon mutant pool, suggesting that Caulobacter does not strongly interact with other microbes in this ecosystem on the measured timescale. Fitness of select mutants with defects in cell surface biosynthesis and environmental sensing were significantly more variable across days in lake water than in defined medium, presumably owing to day-to-day heterogeneity in the lake environment. This study reveals genetic interactions between Caulobacter and a natural freshwater environment, and provides a new avenue to study gene function in complex ecosystems.


Assuntos
Caulobacter crescentus/genética , Água Doce/microbiologia , Aptidão Genética , Genoma Bacteriano , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Flagelos/genética , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica
18.
Trends Microbiol ; 15(9): 398-407, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17693088

RESUMO

Prochlorococcus is a simple cyanobacterium that is abundant throughout large regions of the oceans, and has become a useful model for studying the nature and regulation of biological diversity across all scales of complexity. Recent work has revealed that environmental factors such as light, nutrients and predation influence diversity in different ways, changing our image of the structure and dynamics of the global Prochlorococcus population. Advances in metagenomics, transcription profiling and global ecosystem modeling promise to deliver an even greater understanding of this system and further demonstrate the power of cross-scale systems biology.


Assuntos
Prochlorococcus/fisiologia , Adaptação Fisiológica , Ecologia , Genoma Arqueal , Luz , Fósforo/metabolismo , Prochlorococcus/genética
19.
Environ Microbiol ; 10(10): 2810-23, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18673386

RESUMO

Oceanic phages are critical components of the global ecosystem, where they play a role in microbial mortality and evolution. Our understanding of phage diversity is greatly limited by the lack of useful genetic diversity measures. Previous studies, focusing on myophages that infect the marine cyanobacterium Synechococcus, have used the coliphage T4 portal-protein-encoding homologue, gene 20 (g20), as a diversity marker. These studies revealed 10 sequence clusters, 9 oceanic and 1 freshwater, where only 3 contained cultured representatives. We sequenced g20 from 38 marine myophages isolated using a diversity of Synechococcus and Prochlorococcus hosts to see if any would fall into the clusters that lacked cultured representatives. On the contrary, all fell into the three clusters that already contained sequences from cultured phages. Further, there was no obvious relationship between host of isolation, or host range, and g20 sequence similarity. We next expanded our analyses to all available g20 sequences (769 sequences), which include PCR amplicons from wild uncultured phages, non-PCR amplified sequences identified in the Global Ocean Survey (GOS) metagenomic database, as well as sequences from cultured phages, to evaluate the relationship between g20 sequence clusters and habitat features from which the phage sequences were isolated. Even in this meta-data set, very few sequences fell into the sequence clusters without cultured representatives, suggesting that the latter are very rare, or sequencing artefacts. In contrast, sequences most similar to the culture-containing clusters, the freshwater cluster and two novel clusters, were more highly represented, with one particular culture-containing cluster representing the dominant g20 genotype in the unamplified GOS sequence data. Finally, while some g20 sequences were non-randomly distributed with respect to habitat, there were always numerous exceptions to general patterns, indicating that phage portal proteins are not good predictors of a phage's host or the habitat in which a particular phage may thrive.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/genética , Variação Genética , Prochlorococcus/virologia , Synechococcus/virologia , Proteínas Virais/genética , Bacteriófagos/fisiologia , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , Ecossistema , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência , Montagem de Vírus
20.
PLoS Biol ; 3(5): e144, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15828858

RESUMO

The oceanic cyanobacteria Prochlorococcus are globally important, ecologically diverse primary producers. It is thought that their viruses (phages) mediate population sizes and affect the evolutionary trajectories of their hosts. Here we present an analysis of genomes from three Prochlorococcus phages: a podovirus and two myoviruses. The morphology, overall genome features, and gene content of these phages suggest that they are quite similar to T7-like (P-SSP7) and T4-like (P-SSM2 and P-SSM4) phages. Using the existing phage taxonomic framework as a guideline, we examined genome sequences to establish "core" genes for each phage group. We found the podovirus contained 15 of 26 core T7-like genes and the two myoviruses contained 43 and 42 of 75 core T4-like genes. In addition to these core genes, each genome contains a significant number of "cyanobacterial" genes, i.e., genes with significant best BLAST hits to genes found in cyanobacteria. Some of these, we speculate, represent "signature" cyanophage genes. For example, all three phage genomes contain photosynthetic genes (psbA, hliP) that are thought to help maintain host photosynthetic activity during infection, as well as an aldolase family gene (talC) that could facilitate alternative routes of carbon metabolism during infection. The podovirus genome also contains an integrase gene (int) and other features that suggest it is capable of integrating into its host. If indeed it is, this would be unprecedented among cultured T7-like phages or marine cyanophages and would have significant evolutionary and ecological implications for phage and host. Further, both myoviruses contain phosphate-inducible genes (phoH and pstS) that are likely to be important for phage and host responses to phosphate stress, a commonly limiting nutrient in marine systems. Thus, these marine cyanophages appear to be variations of two well-known phages-T7 and T4-but contain genes that, if functional, reflect adaptations for infection of photosynthetic hosts in low-nutrient oceanic environments.


Assuntos
Bacteriófago T7/genética , Bacteriófagos/genética , Genoma Bacteriano , Genoma Viral , Prochlorococcus/genética , Bacteriófago T7/classificação , Bacteriófagos/classificação , RNA Polimerases Dirigidas por DNA/genética , Ecossistema , Dados de Sequência Molecular , Prochlorococcus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA