Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(40): 14973-14982, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37766509

RESUMO

Blue energy refers to the osmotic energy released while combining solutions of different salinity. Recently, single-membrane-based capacitive reverse electrodialysis cells were developed for blue energy harvesting. The performance of these cells is limited by the low ion-electron flux transfer efficiency of the capacitive electrodes in the current operating regimes. To optimize it, we point out an original boosting strategy of using a secondary voltage source E0 placed in series with the capacitive concentration cell. The net recovered power is defined as the difference between the power dissipated in the load resistor and the power supplied by the secondary voltage. Experimental results indicate a maximum power density of 5.26 W·m-2 (where the salinity difference is 0.17 and 5.13 M), which corresponds to a 59.8% increase compared with its power density of 3.29 W·m-2 without boosting strategy. A good agreement on power density is reached for theoretical simulations and experimental results. Influential factors are systematically studied to further reveal the boosting strategy.

2.
Soft Matter ; 17(25): 6182-6201, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34096955

RESUMO

In the context of enhanced oil recovery or soil remediation, we study the role of interactions between polymers and surfactants on the injectivity of formulations containing mixtures of polymers and surfactants. We show that contrary to the first intuition, the formation of aggregates in polymers surfactants formulations is not necessarily a hindrance to the injection of these formulations into pores. It is important above all to compare the size of aggregates according to the applied shear rate and the pore size to find the formulations that may induce clogging. We highlight a new positive and unexpected phenomenon. The small aggregates that do not lead to clogging ensure the transport of the surfactant vesicles in the porous medium and limit the adsorption of the latter.

3.
Phys Rev Lett ; 125(25): 254506, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416400

RESUMO

We study the spreading of a Newtonian fluid by a deformable blade, a common industrial problem, characteristic of elastohydrodynamic situations. Here, we consider the case of a finite reservoir of liquid, emptying as the liquid is spread. We evidence the role of a central variable: the wetting length l_{w}, which sets a boundary between the wet and dry parts of the blade. We show that the deposited film thickness e depends quadratically with l_{w}. We study this problem experimentally and numerically by integration of the elastohydrodynamic equations, and finally propose a scaling law model to explain how l_{w} influences the spreading dynamics.

4.
Langmuir ; 36(27): 7795-7800, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32543206

RESUMO

There is a large debate on the destabilization mechanism of emulsions. We present a simple technique using mechanical compression to destabilize oil-in-water emulsions. Upon compression of the emulsion, the continuous aqueous phase is squeezed out, while the dispersed oil phase progressively deforms from circular to honeycomb-like shapes. The films that separate the oil droplets are observed to thin and break at a critical oil/water ratio, leading to coalescence events. Electrostatic interactions and local droplet rearrangements do not determine film rupture. Instead, the destabilization occurs like an avalanche propagating through the system, starting at areas where the film thickness is smallest.

5.
Phys Rev Lett ; 123(14): 148002, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702185

RESUMO

We study experimentally and theoretically the thickness of the coating obtained by pulling out a rod from a reservoir of yield-stress fluid. Opposite to Newtonian fluids, the coating thickness for a fluid of large enough yield stress is determined solely by the flow inside the reservoir and not by the flow inside the meniscus. The stress field inside the reservoir determines the thickness of the coating layer. The thickness is observed to increase nonlinearly with the sizes of the rod and of the reservoir. We develop a theoretical framework that describes this behavior and allows us to precisely predict the coating thickness.

6.
Soft Matter ; 15(3): 504-514, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30607416

RESUMO

In this work, we propose a new way to measure the viscosity of samples in a microfluidic device. By analysing the shape of droplets after an expansion, we can measure the viscosity of the phase inside the droplet knowing the surface tension between the two liquids, the flow rate, the geometry of the channel and the viscosity of the continuous phase. This work paves the way for future high throughput studies in the framework of digital microfluidics.

7.
Proc Natl Acad Sci U S A ; 113(40): 11088-11093, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27647890

RESUMO

Graphene oxide (GO), the main precursor of graphene-based materials made by solution processing, is known to be very stiff. Indeed, it has a Young's modulus comparable to steel, on the order of 300 GPa. Despite its very high stiffness, we show here that GO is superflexible. We quantitatively measure the GO bending rigidity by characterizing the flattening of thermal undulations in response to shear forces in solution. Characterizations are performed by the combination of synchrotron X-ray diffraction at small angles and in situ rheology (rheo-SAXS) experiments using the high X-ray flux of a synchrotron source. The bending modulus is found to be 1 kT, which is about two orders of magnitude lower than the bending rigidity of neat graphene. This superflexibility compares with the fluidity of self-assembled liquid bilayers. This behavior is discussed by considering the mechanisms at play in bending and stretching deformations of atomic monolayers. The superflexibility of GO is a unique feature to develop bendable electronics after reduction, films, coatings, and fibers. This unique combination of properties of GO allows for flexibility in processing and fabrication coupled with a robustness in the fabricated structure.

8.
Langmuir ; 34(9): 2996-3002, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463083

RESUMO

Drying graphene oxide (GO) films are subject to extensive wrinkling, which largely affects their final properties. Wrinkles were shown to be suitable in biotechnological applications; however, they negatively affect the electronic properties of the films. Here, we report on wrinkle tuning and patterning of GO films under stress-controlled conditions during drying. GO flakes assemble at an air-solvent interface; the assembly forms a skin at the surface and may bend due to volume shrinkage while drying. We applied a modification of evaporative lithography to spatially define the evaporative stress field. Wrinkle alignment is achieved over cm2 areas. The wavelength (i.e., wrinkle spacing) is controlled in the µm range by the film thickness and GO concentration. Furthermore, we propose the use of nanoparticles to control capillary forces to suppress wrinkling. An example of a controlled pattern is given to elucidate the potential of the technique. The results are discussed in terms of classical elasticity theory. Wrinkling is the result of bending of the wet solid skin layer assembled on a highly elastic GO dispersion. Wavelength selection is the result of energy minimization between the bending of the skin and the elastic deformation of the GO supporting dispersion. The results strongly suggest the possibility to tune wrinkles and patterns by simple physicochemical routes.

9.
Soft Matter ; 14(6): 879-893, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29215124

RESUMO

We study the flow of suspensions of non-Brownian particles dispersed into a Newtonian solvent. Combining capillary rheometry and conventional rheometry, we evidence a succession of two shear thinning regimes separated by a shear thickening one. Through X-ray radiography measurements, we show that during each of those regimes, the flow remains homogeneous and does not involve particle migration. Using a quartz-tuning fork based atomic force microscope, we measure the repulsive force profile and the microscopic friction coefficient µ between two particles immersed into the solvent, as a function of normal load. Coupling measurements from those three techniques, we propose that (1) the first shear-thinning regime at low shear rates occurs for a lubricated rheology and can be interpreted as a decrease of the effective volume fraction under increasing particle pressures, due to short-ranged repulsive forces and (2) the second shear thinning regime after the shear-thickening transition occurs for a frictional rheology and can be interpreted as stemming from a decrease of the microscopic friction coefficient at large normal load.

10.
Langmuir ; 33(10): 2531-2540, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28219239

RESUMO

In this paper, we present a dynamic microfluidic tensiometer able to perform measurements over more than four decades and which is suitable for high throughput experimentations. This tensiometer is able to withstand hard conditions such as high pressure, high temperature, high salinity, and crude oil. It is made of two coaxial capillaries in which two immiscible fluids are injected. Depending on the flow rate of each phase, either droplets or jetting will be obtained. The transition between these two regimes relies on the Rayleigh-Plateau instability. This transition can be theoretically computed thanks to a linear analysis based on the convective and absolute instabilities theory. From this model, the interfacial tension between the two phases can be calculated.

11.
Langmuir ; 33(18): 4528-4536, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28425722

RESUMO

Using an emulsion road and optimizing the dispersion process, we prepare polymer carbone nanotubes (CNT) and polymer reduced graphene oxide (rGO) composites. The introduction of conductive nanoparticles into polymer matrices modifies the electronic properties of the material. We show that these materials exhibit giant electrostriction coefficients in the intermediate filler concentration (below 1 wt %). This makes them very promising for applications such as capacitive sensors and actuators. In addition, the values of the piezoresistivity measured in the high filler concentration situation are at least an order of magnitude greater than the one reported in the literature. This opens the way to use these materials for stress or strain sensor applications considering their giant responses to mechanical deformations.

12.
Phys Rev Lett ; 114(2): 028302, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25635567

RESUMO

We explore the flow of highly shear thinning polymer solutions in straight geometry. The strong variations of the normal forces close to the wall give rise to an elastic instability. We evidence a periodic motion close the onset of the instability, which then evolves towards a turbulentlike flow at higher flow rates. Strikingly, we point out that this instability induces genuine drag reduction due to the homogenization of the viscosity profile by the turbulent flow.

13.
Langmuir ; 31(44): 12231-9, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26478955

RESUMO

Near-percolated CNT-polymer composites are promising high-permittivity materials. The main challenge in the field consists of finding compromises that allow high permittivity and low losses in frequency ranges of interest. Using an emulsion approach and optimizing the size of the droplets and the curing procedure, we obtain unprecedented performances and measure giant permittivity larger than 20,000 at 100 Hz along with a conductivity below 10(-4) S/m.

14.
Soft Matter ; 11(1): 169-78, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25376855

RESUMO

We report the development and analysis of a velocimetry technique based on the short time displacement of molecular tracers, tagged thanks to photobleaching. We use confocal microscopy to achieve a good resolution transverse to the observation field in the direction of the velocity gradient. The intensity profiles are fitted by an approximate analytical model which accounts for hydrodynamic dispersion, and allow access to the local velocity. The method is validated using pressure driven flow in microfluidic slits having a thickness of a few tens of micrometers. We discuss the main drawbacks of this technique which is an overestimation of the velocity close to the walls due to the combination of molecular diffusion and shear. We demonstrate that this error, limited to a near wall region of a few micrometers thick, could be controlled by limiting the diffusion of fluorophore molecules or minimizing the bleaching time. The presented technique could be combined with standard particle imaging velocimetry to access velocity differences and allow particle trajectory analysis in microflows of suspensions.

15.
Soft Matter ; 10(36): 6984-9, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-24854663

RESUMO

We explore the question of surface boundary conditions for the flow of a dense emulsion. We make use of microlithographic tools to create surfaces with well controlled roughness patterns and measure using dynamic confocal microscopy both the slip velocity and the shear rate close to the wall, which we relate to the notion of surface fluidization. Both slippage and wall fluidization depend non-monotonously on the roughness. We interpret this behavior within a simple model in terms of the building of a stratified layer and the activation of plastic events by the surface roughness.

16.
Adv Colloid Interface Sci ; 331: 103239, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38936181

RESUMO

Surfactant mass transport towards an interface plays a critical role during formation of emulsions, foams and in industrial processes where two immiscible phases coexist. The understanding of these mechanisms as experimentally observed by dynamic interfacial tension measurements, is crucial. In this review, theoretical models describing both equilibrated systems and surfactant kinetics are covered. Experimental results from the literature are analysed based on the nature of surfactants and the tensiometry methods used. The innovative microfluidic techniques that have become available to study both diffusion and adsorption mechanisms during surfactant mass transport are discussed and compared with classical methods. This review focuses on surfactant transport during formation of droplets or bubbles; stabilisation of dispersed systems is not discussed here.

17.
J Colloid Interface Sci ; 650(Pt B): 1105-1112, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37467639

RESUMO

HYPOTHESIS: A number of dense particle suspensions experience a dramatic increase in viscosity with the shear stress, up to a solid-like response. This shear-thickening process is understood as a transition under flow of the nature of the contacts - from lubricated to frictional - between initially repellent particles. Most systems are now assumed to fit in with this scenario, which is questionable. EXPERIMENT: Using an in-house pressure sensor array, we provide a spatio-temporal map of the normal stresses in the flows of two shear-thickening fluids: a stabilized calcium carbonate suspension, known to fit in with the standard scenario, and a cornstarch suspension, which spectacular thickening behavior remains poorly understood. FINDINGS: We evidence in cornstarch a unique, stable heterogeneous structure, which moves in the velocity direction and does not appear in calcium carbonate. Its nature changes from a stress wave to a rolling solid jammed aggregate at high solid fraction and small gap width. The modeling of these heterogenities points to an adhesive force between cornstarch particles at high stress, also evidenced in microscopic measurements. Cornstarch being also attractive at low stress, it stands out of the classical shear-thickening frame, and might be part of a larger family of adhesive and attractive shear-thickening fluids.

18.
Lab Chip ; 23(5): 1034-1065, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36625144

RESUMO

A large amount of untapped energy sources surrounds us. In this review, we summarize recent works of water-based energy harvesting systems with operation scales ranging from miniature systems to large scale attempts. We focus particularly on the triboelectric energy, which is produced when a liquid and a solid come into contact, and on the osmotic energy, which is released when salt water and fresh water are mixed. For both techniques we display the state of the art understanding (including electrical charge separation, electro-osmotic currents and induced currents) and the developed devices. A critical discussion of present works confirms the significant progress of these water-based energy harvesting systems in all scales. However, further efforts in efficiency and performance amelioration are expected for these technologies to accelerate the industrialization and commercialization procedure.

19.
Sci Rep ; 13(1): 1722, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720980

RESUMO

Electrochemical systems using a gas evolving electrode, such as metal-air batteries or electrolyzers, are confronted with recurrent problems related to gas production. Indeed, the production of gas at the surface of the electrodes causes a masking of the active surface which induces overvoltages and unstable electrical signals in time. We propose here numerical computations that take into account the spatial heterogeneity of the electrode and allow to account for the size distribution of the produced bubbles. We compare these computations to experiments on a Platinum-Carbon plate cell in the presence or absence of electrolyte flow. They reproduce the observed behavior and allow us to predict the stability of the signals. They are also a guide for the synthesis of efficient electrodes.

20.
J Colloid Interface Sci ; 629(Pt B): 438-450, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36174289

RESUMO

Despite their apparent simplicity, suspensions of hard spheres in a Newtonian fluid show complex non-Newtonian behaviors and remain poorly understood. Recent works have pointed out the crucial role of interparticle contact forces in these behaviors. Here, we show that the same (polystyrene) particles, when immersed in different Newtonian solvents, show different behaviors at both the microscopic and macroscopic scales. Thanks to interparticle force measurements in each solvent together with rheological measurements, we show how the fine details of the pairwise particle interactions impact the macroscopic behavior. The rheological properties (shear thinning, shear thickening, jamming solid fraction value) of the suspensions, made up of same particles, are shown to depend on the nature of the solvent. Here, we highlight several mechanisms at the particle scale: the swelling of polymeric particles in an organic solvent, the role of colloidal repulsive forces and inertia for particles in a water solution, and the variation of the friction coefficient as a function of the load for particles immersed in silicone oils. Our study provides new quantitative data to test micromechanical models and simulations. It questions the interpretation of previous experimental works. Finally, it shows the need to systematically characterize the interparticle normal and tangential forces when studying a given suspension of hard spheres in a Newtonian fluid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA