Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.384
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 20(10): 1299-1310, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31534238

RESUMO

Resisting and tolerating microbes are alternative strategies to survive infection, but little is known about the evolutionary mechanisms controlling this balance. Here genomic analyses of anatomically modern humans, extinct Denisovan hominins and mice revealed a TNFAIP3 allelic series with alterations in the encoded immune response inhibitor A20. Each TNFAIP3 allele encoded substitutions at non-catalytic residues of the ubiquitin protease OTU domain that diminished IκB kinase-dependent phosphorylation and activation of A20. Two TNFAIP3 alleles encoding A20 proteins with partial phosphorylation deficits seemed to be beneficial by increasing immunity without causing spontaneous inflammatory disease: A20 T108A;I207L, originating in Denisovans and introgressed in modern humans throughout Oceania, and A20 I325N, from an N-ethyl-N-nitrosourea (ENU)-mutagenized mouse strain. By contrast, a rare human TNFAIP3 allele encoding an A20 protein with 95% loss of phosphorylation, C243Y, caused spontaneous inflammatory disease in humans and mice. Analysis of the partial-phosphorylation A20 I325N allele in mice revealed diminished tolerance of bacterial lipopolysaccharide and poxvirus inoculation as tradeoffs for enhanced immunity.


Assuntos
Infecções por Poxviridae/imunologia , Poxviridae/fisiologia , Domínios Proteicos/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Alelos , Animais , Extinção Biológica , Humanos , Imunidade , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto/genética , Fosforilação
2.
Nature ; 610(7933): 699-703, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36261526

RESUMO

Gas exchange and ion regulation at gills have key roles in the evolution of vertebrates1-4. Gills are hypothesized to have first acquired these important homeostatic functions from the skin in stem vertebrates, facilitating the evolution of larger, more-active modes of life2,3,5. However, this hypothesis lacks functional support in relevant taxa. Here we characterize the function of gills and skin in a vertebrate (lamprey ammocoete; Entosphenus tridentatus), a cephalochordate (amphioxus; Branchiostoma floridae) and a hemichordate (acorn worm; Saccoglossus kowalevskii) with the presumed burrowing, filter-feeding traits of vertebrate ancestors6-9. We provide functional support for a vertebrate origin of gas exchange at the gills with increasing body size and activity, as direct measurements in vivo reveal that gills are the dominant site of gas exchange only in ammocoetes, and only with increasing body size or challenges to oxygen supply and demand. Conversely, gills of all three taxa are implicated in ion regulation. Ammocoete gills are responsible for all ion flux at all body sizes, whereas molecular markers for ion regulation are higher in the gills than in the skin of amphioxus and acorn worms. This suggests that ion regulation at gills has an earlier origin than gas exchange that is unrelated to vertebrate size and activity-perhaps at the very inception of pharyngeal pores in stem deuterostomes.


Assuntos
Brânquias , Íons , Oxigênio , Filogenia , Vertebrados , Animais , Brânquias/metabolismo , Anfioxos/metabolismo , Oxigênio/metabolismo , Vertebrados/classificação , Vertebrados/metabolismo , Íons/metabolismo , Tamanho Corporal , Lampreias/metabolismo , Pele/metabolismo
3.
Nature ; 602(7897): 420-424, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35173346

RESUMO

Einstein's theory of general relativity states that clocks at different gravitational potentials tick at different rates relative to lab coordinates-an effect known as the gravitational redshift1. As fundamental probes of space and time, atomic clocks have long served to test this prediction at distance scales from 30 centimetres to thousands of kilometres2-4. Ultimately, clocks will enable the study of the union of general relativity and quantum mechanics once they become sensitive to the finite wavefunction of quantum objects oscillating in curved space-time. Towards this regime, we measure a linear frequency gradient consistent with the gravitational redshift within a single millimetre-scale sample of ultracold strontium. Our result is enabled by improving the fractional frequency measurement uncertainty by more than a factor of 10, now reaching 7.6 × 10-21. This heralds a new regime of clock operation necessitating intra-sample corrections for gravitational perturbations.

4.
Nature ; 607(7919): 555-562, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35483403

RESUMO

At least 10,000 virus species have the ability to infect humans but, at present, the vast majority are circulating silently in wild mammals1,2. However, changes in climate and land use will lead to opportunities for viral sharing among previously geographically isolated species of wildlife3,4. In some cases, this will facilitate zoonotic spillover-a mechanistic link between global environmental change and disease emergence. Here we simulate potential hotspots of future viral sharing, using a phylogeographical model of the mammal-virus network, and projections of geographical range shifts for 3,139 mammal species under climate-change and land-use scenarios for the year 2070. We predict that species will aggregate in new combinations at high elevations, in biodiversity hotspots, and in areas of high human population density in Asia and Africa, causing the cross-species transmission of their associated viruses an estimated 4,000 times. Owing to their unique dispersal ability, bats account for the majority of novel viral sharing and are likely to share viruses along evolutionary pathways that will facilitate future emergence in humans. Notably, we find that this ecological transition may already be underway, and holding warming under 2 °C within the twenty-first century will not reduce future viral sharing. Our findings highlight an urgent need to pair viral surveillance and discovery efforts with biodiversity surveys tracking the range shifts of species, especially in tropical regions that contain the most zoonoses and are experiencing rapid warming.


Assuntos
Mudança Climática , Mamíferos , Zoonoses Virais , Vírus , Migração Animal , Animais , Biodiversidade , Quirópteros/virologia , Mudança Climática/estatística & dados numéricos , Monitoramento Ambiental , Humanos , Mamíferos/classificação , Mamíferos/virologia , Filogeografia , Medição de Risco , Clima Tropical , Zoonoses Virais/epidemiologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Vírus/isolamento & purificação
5.
Mol Cell ; 80(4): 699-711.e7, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33091336

RESUMO

CCCTC-binding factor (CTCF) and cohesin play critical roles in organizing mammalian genomes into topologically associating domains (TADs). Here, by combining genetic engineering with quantitative super-resolution stimulated emission depletion (STED) microscopy, we demonstrate that in living cells, CTCF forms clusters typically containing 2-8 molecules. A fraction of CTCF clusters, enriched for those with ≥3 molecules, are coupled with cohesin complexes with a characteristic physical distance suggestive of a defined molecular interaction. Acute degradation of the cohesin unloader WAPL or transcriptional inhibition (TI) result in increased CTCF clustering. Furthermore, the effect of TI on CTCF clusters is alleviated by the acute loss of the cohesin subunit SMC3. Our study provides quantitative characterization of CTCF clusters in living cells, uncovers the opposing effects of cohesin and transcription on CTCF clustering, and highlights the power of quantitative super-resolution microscopy as a tool to bridge the gap between biochemical and genomic methodologies in chromatin research.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Embrionárias/citologia , Microscopia de Fluorescência/métodos , Proteínas/metabolismo , Transcrição Gênica , Animais , Fator de Ligação a CCCTC/genética , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos de Mamíferos , Células-Tronco Embrionárias/metabolismo , Loci Gênicos , Genoma , Processamento de Imagem Assistida por Computador , Camundongos , Proteínas/genética , Coesinas
6.
Genes Dev ; 34(19-20): 1256-1286, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004485

RESUMO

The mouse is one of the most widely used model organisms for genetic study. The tools available to alter the mouse genome have developed over the preceding decades from forward screens to gene targeting in stem cells to the recent influx of CRISPR approaches. In this review, we first consider the history of mice in genetic study, the development of classic approaches to genome modification, and how such approaches have been used and improved in recent years. We then turn to the recent surge of nuclease-mediated techniques and how they are changing the field of mouse genetics. Finally, we survey common classes of alleles used in mice and discuss how they might be engineered using different methods.


Assuntos
Técnicas Genéticas/tendências , Camundongos/genética , Modelos Animais , Animais
7.
Genes Dev ; 34(23-24): 1735-1752, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184218

RESUMO

FGFs are key developmental regulators that engage a signal transduction cascade through receptor tyrosine kinases, prominently engaging ERK1/2 but also other pathways. However, it remains unknown whether all FGF activities depend on this canonical signal transduction cascade. To address this question, we generated allelic series of knock-in Fgfr1 and Fgfr2 mouse strains, carrying point mutations that disrupt binding of signaling effectors, and a kinase dead allele of Fgfr2 that broadly phenocopies the null mutant. When interrogated in cranial neural crest cells, we identified discrete functions for signaling pathways in specific craniofacial contexts, but point mutations, even when combined, failed to recapitulate the single or double null mutant phenotypes. Furthermore, the signaling mutations abrogated established FGF-induced signal transduction pathways, yet FGF functions such as cell-matrix and cell-cell adhesion remained unaffected, though these activities did require FGFR kinase activity. Our studies establish combinatorial roles of Fgfr1 and Fgfr2 in development and uncouple novel FGFR kinase-dependent cell adhesion properties from canonical intracellular signaling.


Assuntos
Fatores de Crescimento de Fibroblastos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Transdução de Sinais/genética , Animais , Adesão Celular/genética , Morte Celular/genética , Células Cultivadas , Camundongos , Mutação , Crista Neural/citologia , Proteínas Quinases/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo
8.
Cell ; 151(2): 304-19, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23063122

RESUMO

Evolution of minimal DNA tumor virus' genomes has selected for small viral oncoproteins that hijack critical cellular protein interaction networks. The structural basis for the multiple and dominant functions of adenovirus oncoproteins has remained elusive. E4-ORF3 forms a nuclear polymer and simultaneously inactivates p53, PML, TRIM24, and MRE11/RAD50/NBS1 (MRN) tumor suppressors. We identify oligomerization mutants and solve the crystal structure of E4-ORF3. E4-ORF3 forms a dimer with a central ß core, and its structure is unrelated to known polymers or oncogenes. E4-ORF3 dimer units coassemble through reciprocal and nonreciprocal exchanges of their C-terminal tails. This results in linear and branched oligomer chains that further assemble in variable arrangements to form a polymer network that partitions the nuclear volume. E4-ORF3 assembly creates avidity-driven interactions with PML and an emergent MRN binding interface. This reveals an elegant structural solution whereby a small protein forms a multivalent matrix that traps disparate tumor suppressors.


Assuntos
Proteínas E4 de Adenovirus/química , Proteínas E4 de Adenovirus/metabolismo , Adenovírus Humanos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Infecções por Adenovirus Humanos/virologia , Linhagem Celular , Células Cultivadas , Cristalografia por Raios X , Humanos , Células Vegetais/virologia , Dobramento de Proteína , Nicotiana/virologia
9.
Nature ; 592(7856): 799-803, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854232

RESUMO

Mammalian development, adult tissue homeostasis and the avoidance of severe diseases including cancer require a properly orchestrated cell cycle, as well as error-free genome maintenance. The key cell-fate decision to replicate the genome is controlled by two major signalling pathways that act in parallel-the MYC pathway and the cyclin D-cyclin-dependent kinase (CDK)-retinoblastoma protein (RB) pathway1,2. Both MYC and the cyclin D-CDK-RB axis are commonly deregulated in cancer, and this is associated with increased genomic instability. The autophagic tumour-suppressor protein AMBRA1 has been linked to the control of cell proliferation, but the underlying molecular mechanisms remain poorly understood. Here we show that AMBRA1 is an upstream master regulator of the transition from G1 to S phase and thereby prevents replication stress. Using a combination of cell and molecular approaches and in vivo models, we reveal that AMBRA1 regulates the abundance of D-type cyclins by mediating their degradation. Furthermore, by controlling the transition from G1 to S phase, AMBRA1 helps to maintain genomic integrity during DNA replication, which counteracts developmental abnormalities and tumour growth. Finally, we identify the CHK1 kinase as a potential therapeutic target in AMBRA1-deficient tumours. These results advance our understanding of the control of replication-phase entry and genomic integrity, and identify the AMBRA1-cyclin D pathway as a crucial cell-cycle-regulatory mechanism that is deeply interconnected with genomic stability in embryonic development and tumorigenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ciclina D/metabolismo , Instabilidade Genômica , Fase S , Animais , Linhagem Celular , Proliferação de Células , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Replicação do DNA , Regulação da Expressão Gênica no Desenvolvimento , Genes Supressores de Tumor , Humanos , Camundongos , Camundongos Knockout , Mutações Sintéticas Letais
10.
Proc Natl Acad Sci U S A ; 121(29): e2309757121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38990940

RESUMO

Structural color is an optical phenomenon resulting from light interacting with nanostructured materials. Although structural color (SC) is widespread in the tree of life, the underlying genetics and genomics are not well understood. Here, we collected and sequenced a set of 87 structurally colored bacterial isolates and 30 related strains lacking SC. Optical analysis of colonies indicated that diverse bacteria from at least two different phyla (Bacteroidetes and Proteobacteria) can create two-dimensional packing of cells capable of producing SC. A pan-genome-wide association approach was used to identify genes associated with SC. The biosynthesis of uroporphyrin and pterins, as well as carbohydrate utilization and metabolism, was found to be involved. Using this information, we constructed a classifier to predict SC directly from bacterial genome sequences and validated it by cultivating and scoring 100 strains that were not part of the training set. We predicted that SCr is widely distributed within gram-negative bacteria. Analysis of over 13,000 assembled metagenomes suggested that SC is nearly absent from most habitats associated with multicellular organisms except macroalgae and is abundant in marine waters and surface/air interfaces. This work provides a large-scale ecogenomics view of SC in bacteria and identifies microbial pathways and evolutionary relationships that underlie this optical phenomenon.


Assuntos
Genoma Bacteriano , Fenótipo , Cor , Bactérias/genética , Bactérias/metabolismo , Proteobactérias/genética , Proteobactérias/metabolismo , Filogenia , Metagenoma , Estudo de Associação Genômica Ampla , Bacteroidetes/genética , Bacteroidetes/metabolismo
11.
Proc Natl Acad Sci U S A ; 121(7): e2315069121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315851

RESUMO

A key step in drug discovery, common to many disease areas, is preclinical demonstration of efficacy in a mouse model of disease. However, this demonstration and its translation to the clinic can be impeded by mouse-specific pathways of drug metabolism. Here, we show that a mouse line extensively humanized for the cytochrome P450 gene superfamily ("8HUM") can circumvent these problems. The pharmacokinetics, metabolite profiles, and magnitude of drug-drug interactions of a test set of approved medicines were in much closer alignment with clinical observations than in wild-type mice. Infection with Mycobacterium tuberculosis, Leishmania donovani, and Trypanosoma cruzi was well tolerated in 8HUM, permitting efficacy assessment. During such assessments, mouse-specific metabolic liabilities were bypassed while the impact of clinically relevant active metabolites and DDI on efficacy were well captured. Removal of species differences in metabolism by replacement of wild-type mice with 8HUM therefore reduces compound attrition while improving clinical translation, accelerating drug discovery.


Assuntos
Doenças Transmissíveis , Descoberta de Drogas , Camundongos , Animais , Interações Medicamentosas , Modelos Animais de Doenças , Sistema Enzimático do Citocromo P-450/metabolismo , Aceleração
12.
N Engl J Med ; 389(2): 127-136, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37314244

RESUMO

BACKGROUND: Whether prehospital administration of tranexamic acid increases the likelihood of survival with a favorable functional outcome among patients with major trauma and suspected trauma-induced coagulopathy who are being treated in advanced trauma systems is uncertain. METHODS: We randomly assigned adults with major trauma who were at risk for trauma-induced coagulopathy to receive tranexamic acid (administered intravenously as a bolus dose of 1 g before hospital admission, followed by a 1-g infusion over a period of 8 hours after arrival at the hospital) or matched placebo. The primary outcome was survival with a favorable functional outcome at 6 months after injury, as assessed with the use of the Glasgow Outcome Scale-Extended (GOS-E). Levels on the GOS-E range from 1 (death) to 8 ("upper good recovery" [no injury-related problems]). We defined survival with a favorable functional outcome as a GOS-E level of 5 ("lower moderate disability") or higher. Secondary outcomes included death from any cause within 28 days and within 6 months after injury. RESULTS: A total of 1310 patients were recruited by 15 emergency medical services in Australia, New Zealand, and Germany. Of these patients, 661 were assigned to receive tranexamic acid, and 646 were assigned to receive placebo; the trial-group assignment was unknown for 3 patients. Survival with a favorable functional outcome at 6 months occurred in 307 of 572 patients (53.7%) in the tranexamic acid group and in 299 of 559 (53.5%) in the placebo group (risk ratio, 1.00; 95% confidence interval [CI], 0.90 to 1.12; P = 0.95). At 28 days after injury, 113 of 653 patients (17.3%) in the tranexamic acid group and 139 of 637 (21.8%) in the placebo group had died (risk ratio, 0.79; 95% CI, 0.63 to 0.99). By 6 months, 123 of 648 patients (19.0%) in the tranexamic acid group and 144 of 629 (22.9%) in the placebo group had died (risk ratio, 0.83; 95% CI, 0.67 to 1.03). The number of serious adverse events, including vascular occlusive events, did not differ meaningfully between the groups. CONCLUSIONS: Among adults with major trauma and suspected trauma-induced coagulopathy who were being treated in advanced trauma systems, prehospital administration of tranexamic acid followed by an infusion over 8 hours did not result in a greater number of patients surviving with a favorable functional outcome at 6 months than placebo. (Funded by the Australian National Health and Medical Research Council and others; PATCH-Trauma ClinicalTrials.gov number, NCT02187120.).


Assuntos
Antifibrinolíticos , Transtornos da Coagulação Sanguínea , Serviços Médicos de Emergência , Ácido Tranexâmico , Ferimentos e Lesões , Adulto , Humanos , Antifibrinolíticos/efeitos adversos , Antifibrinolíticos/uso terapêutico , Austrália , Ácido Tranexâmico/efeitos adversos , Ácido Tranexâmico/uso terapêutico , Doenças Vasculares/etiologia , Ferimentos e Lesões/complicações , Transtornos da Coagulação Sanguínea/etiologia
13.
Proc Natl Acad Sci U S A ; 120(48): e2310522120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983497

RESUMO

With the significant increase in the availability of microbial genome sequences in recent years, resistance gene-guided genome mining has emerged as a powerful approach for identifying natural products with specific bioactivities. Here, we present the use of this approach to reveal the roseopurpurins as potent inhibitors of cyclin-dependent kinases (CDKs), a class of cell cycle regulators implicated in multiple cancers. We identified a biosynthetic gene cluster (BGC) with a putative resistance gene with homology to human CDK2. Using targeted gene disruption and transcription factor overexpression in Aspergillus uvarum, and heterologous expression of the BGC in Aspergillus nidulans, we demonstrated that roseopurpurin C (1) is produced by this cluster and characterized its biosynthesis. We determined the potency, specificity, and mechanism of action of 1 as well as multiple intermediates and shunt products produced from the BGC. We show that 1 inhibits human CDK2 with a Kiapp of 44 nM, demonstrates selectivity for clinically relevant members of the CDK family, and induces G1 cell cycle arrest in HCT116 cells. Structural analysis of 1 complexed with CDK2 revealed the molecular basis of ATP-competitive inhibition.


Assuntos
Quinases Ciclina-Dependentes , Neoplasias , Humanos , Quinases Ciclina-Dependentes/metabolismo , Quinase 2 Dependente de Ciclina/genética , Ciclinas/metabolismo , Ciclo Celular/genética , Inibidores Enzimáticos
14.
Proc Natl Acad Sci U S A ; 120(45): e2301534120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903257

RESUMO

L-type voltage-gated calcium (Ca2+) channels (L-VGCC) dysfunction is implicated in several neurological and psychiatric diseases. While a popular therapeutic target, it is unknown whether molecular mechanisms leading to disrupted L-VGCC across neurodegenerative disorders are conserved. Importantly, L-VGCC integrate synaptic signals to facilitate a plethora of cellular mechanisms; however, mechanisms that regulate L-VGCC channel density and subcellular compartmentalization are understudied. Herein, we report that in disease models with overactive mammalian target of rapamycin complex 1 (mTORC1) signaling (or mTORopathies), deficits in dendritic L-VGCC activity are associated with increased expression of the RNA-binding protein (RBP) Parkinsonism-associated deglycase (DJ-1). DJ-1 binds the mRNA coding for the alpha and auxiliary Ca2+ channel subunits CaV1.2 and α2δ2, and represses their mRNA translation, only in the disease states, specifically preclinical models of tuberous sclerosis complex (TSC) and Alzheimer's disease (AD). In agreement, DJ-1-mediated repression of CaV1.2/α2δ2 protein synthesis in dendrites is exaggerated in mouse models of AD and TSC, resulting in deficits in dendritic L-VGCC calcium activity. Finding of DJ-1-regulated L-VGCC activity in dendrites in TSC and AD provides a unique signaling pathway that can be targeted in clinical mTORopathies.


Assuntos
Doença de Alzheimer , Esclerose Tuberosa , Animais , Camundongos , Doença de Alzheimer/genética , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Dendritos/metabolismo , Mamíferos/metabolismo , Esclerose Tuberosa/genética
15.
Proc Natl Acad Sci U S A ; 120(26): e2303292120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339194

RESUMO

The ongoing COVID-19 pandemic has had great societal and health consequences. Despite the availability of vaccines, infection rates remain high due to immune evasive Omicron sublineages. Broad-spectrum antivirals are needed to safeguard against emerging variants and future pandemics. We used messenger RNA (mRNA) display under a reprogrammed genetic code to find a spike-targeting macrocyclic peptide that inhibits SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) Wuhan strain infection and pseudoviruses containing spike proteins of SARS-CoV-2 variants or related sarbecoviruses. Structural and bioinformatic analyses reveal a conserved binding pocket between the receptor-binding domain, N-terminal domain, and S2 region, distal to the angiotensin-converting enzyme 2 receptor-interaction site. Our data reveal a hitherto unexplored site of vulnerability in sarbecoviruses that peptides and potentially other drug-like molecules can target.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Pandemias/prevenção & controle , Peptídeos/farmacologia
16.
Genes Dev ; 32(21-22): 1398-1419, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366908

RESUMO

The transcription factor MYC (also c-Myc) induces histone modification, chromatin remodeling, and the release of paused RNA polymerase to broadly regulate transcription. MYC is subject to a series of post-translational modifications that affect its stability and oncogenic activity, but how these control MYC's function on the genome is largely unknown. Recent work demonstrates an intimate connection between nuclear compartmentalization and gene regulation. Here, we report that Ser62 phosphorylation and PIN1-mediated isomerization of MYC dynamically regulate the spatial distribution of MYC in the nucleus, promoting its association with the inner basket of the nuclear pore in response to proliferative signals, where it recruits the histone acetyltransferase GCN5 to bind and regulate local gene acetylation and expression. We demonstrate that PIN1-mediated localization of MYC to the nuclear pore regulates MYC target genes responsive to mitogen stimulation that are involved in proliferation and migration pathways. These changes are also present at the chromatin level, with an increase in open regulatory elements in response to stimulation that is PIN1-dependent and associated with MYC chromatin binding. Taken together, our study indicates that post-translational modification of MYC controls its spatial activity to optimally regulate gene expression in response to extrinsic signals in normal and diseased states.


Assuntos
Poro Nuclear/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ativação Transcricional , Animais , Linhagem Celular , Células Cultivadas , Cromatina/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mitógenos/farmacologia , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-myc/química , Serina/metabolismo , Cicatrização , Fatores de Transcrição de p300-CBP/metabolismo
17.
Immunol Rev ; 306(1): 8-24, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34918351

RESUMO

A central question in immunology is what features allow the immune system to respond in a timely manner to a variety of pathogens encountered at unanticipated times and diverse body sites. Two decades of advanced and static dynamic imaging methods have now revealed several major principles facilitating host defense. Suborgan spatial prepositioning of distinct cells promotes time-efficient interactions upon pathogen sensing. Such pre-organization also provides an effective barrier to movement of pathogens from parenchymal tissues into the blood circulation. Various molecular mechanisms maintain effective intercellular communication among otherwise rapidly moving cells. These and related discoveries have benefited from recent increases in the number of parameters that can be measured simultaneously in a single tissue section and the extension of such multiplex analyses to 3D tissue volumes. The application of new computational methods to such imaging data has provided a quantitative, in vivo context for cell trafficking and signaling pathways traditionally explored in vitro or with dissociated cell preparations. Here, we summarize our efforts to devise and employ diverse imaging tools to probe immune system organization and function, concluding with a commentary on future developments, which we believe will reveal even more about how the immune system operates in health and disease.


Assuntos
Sistema Imunitário , Transdução de Sinais , Diagnóstico por Imagem , Humanos , Matemática
18.
J Neurosci ; 44(20)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604778

RESUMO

The reversal potential refers to the membrane potential at which the net current flow through a channel reverses direction. The reversal potential is determined by transmembrane ion gradients and, in turn, determines how the channel's activity will affect the membrane potential. Traditional investigation into the reversal potential of inhibitory ligand-gated ion channels (EInh) has relied upon the activation of endogenous receptors, such as the GABA-A receptor (GABAAR). There are, however, challenges associated with activating endogenous receptors, including agonist delivery, isolating channel responses, and the effects of receptor saturation and desensitization. Here, we demonstrate the utility of using a light-gated anion channel, stGtACR2, to probe EInh in the rodent brain. Using mice of both sexes, we demonstrate that the properties of this optically activated channel make it a suitable proxy for studying GABAAR receptor-mediated inhibition. We validate this agonist-independent optogenetic strategy in vitro and in vivo and further show how it can accurately capture differences in EInh dynamics following manipulations of endogenous ion fluxes. This allows us to explore distinct resting EInh differences across genetically defined neuronal subpopulations. Using this approach to challenge ion homeostasis mechanisms in neurons, we uncover cell-specific EInh dynamics that are supported by the differential expression of endogenous ion handling mechanisms. Our findings therefore establish an effective optical strategy for revealing novel aspects of inhibitory reversal potentials and thereby expand the repertoire of optogenetics.


Assuntos
Potenciais da Membrana , Optogenética , Animais , Optogenética/métodos , Camundongos , Masculino , Feminino , Potenciais da Membrana/fisiologia , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Neurônios/fisiologia , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Inibição Neural/fisiologia , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/genética , Camundongos Transgênicos
19.
Mol Microbiol ; 121(4): 798-813, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38284496

RESUMO

Small multidrug resistance transporters efflux toxic compounds from bacteria and are a minimal system to understand multidrug transport. Most previous studies have focused on EmrE, the model SMR from Escherichia coli, finding that EmrE has a broader substrate profile than previously thought and that EmrE may perform multiple types of transport, resulting in substrate-dependent resistance or susceptibility. Here, we performed a broad screen to identify potential substrates of three other SMRs: PAsmr from Pseudomonas aeruginosa; FTsmr from Francisella tularensis; and SAsmr from Staphylococcus aureus. This screen tested metabolic differences in E. coli expressing each transporter versus an inactive mutant, for a clean comparison of sequence and substrate-specific differences in transporter function, and identified many substrates for each transporter. In general, resistance compounds were charged, and susceptibility substrates were uncharged, but hydrophobicity was not correlated with phenotype. Two resistance hits and two susceptibility hits were validated via growth assays and IC50 calculations. Susceptibility is proposed to occur via substrate-gated proton leak, and the addition of bicarbonate antagonizes the susceptibility phenotype, consistent with this hypothesis.


Assuntos
Proteínas de Escherichia coli , Francisella tularensis , Escherichia coli/genética , Francisella tularensis/metabolismo , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Escherichia coli/metabolismo , Antiporters/genética , Proteínas de Membrana Transportadoras/metabolismo , Resistência a Múltiplos Medicamentos
20.
Development ; 149(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35708608

RESUMO

Motile cilia generate cell propulsion and extracellular fluid flows that are crucial for airway clearance, fertility and left-right patterning. Motility is powered by dynein arm complexes that are assembled in the cytoplasm then imported into the cilium. Studies in Chlamydomonas reinhardtii showed that ODA16 is a cofactor which promotes dynein arm import. Here, we demonstrate that the zebrafish homolog of ODA16, Daw1, facilitates the onset of robust cilia motility during development. Without Daw1, cilia showed markedly reduced motility during early development; however, motility subsequently increased to attain close to wild-type levels. Delayed motility onset led to differential effects on early and late cilia-dependent processes. Remarkably, abnormal body axis curves, which formed during the first day of development due to reduced cilia motility, self-corrected when motility later reached wild-type levels. Zebrafish larva therefore possess the ability to survey and correct body shape abnormalities. This work defines Daw1 as a factor which promotes the onset of timely cilia motility and can explain why human patients harboring DAW1 mutations exhibit significant laterality perturbations but mild airway and fertility complications.


Assuntos
Cílios , Dineínas , Animais , Movimento Celular , Cílios/metabolismo , Dineínas/metabolismo , Humanos , Mutação/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA