RESUMO
The concept of a flow-through flap refers to a free flap in which both the proximal and distal ends of the vascular pedicle are anastomosed to provide blood flow to the distal tissues. The purpose of this paper is to highlight the use of this technique, which may be useful in selected cases of head and neck reconstruction. In certain situations, like bilateral resection of the base of the tongue involving both lingual arteries, the application of a flow-through forearm free flap can provide an anatomical and functional restoration of the defect while revascularizing the anterior two-thirds of the tongue. We review this technique, which was used in a case of adenoid cystic carcinoma of the base of the tongue with excellent results.
Assuntos
Carcinoma Adenoide Cístico , Retalhos de Tecido Biológico , Procedimentos de Cirurgia Plástica , Neoplasias da Língua , Carcinoma Adenoide Cístico/cirurgia , Antebraço/cirurgia , Humanos , Língua/cirurgia , Neoplasias da Língua/cirurgiaRESUMO
In order to improve both the density and particularly the temporal resolution beyond previous dispersion interferometers (DIs), a heterodyne technique based on an acousto-optic (AO) cell has been added to the DI. A 40 MHz drive frequency for the AO cell allows density fluctuation measurements into the MHz range. A CO2 laser-based heterodyne DI (HDI) installed on DIII-D has demonstrated that the HDI is capable of tracking the density evolution throughout DIII-D discharges, including disruption events and other rapid transient phenomena. The data also show good agreement with independent density measurements obtained with the existing DIII-D two-color interferometer. The HDI line-integrated density resolution sampled over a 1 s interval is â¼9 × 1017 m-2. Density fluctuations induced by MHD instabilities are also successfully measured by the HDI.
RESUMO
A full-scale ITER toroidal interferometer and polarimeter (TIP) prototype, including an active feedback alignment system, has been installed and tested on the DIII-D tokamak. In the TIP prototype, a two-color interferometry measurement of line-integrated density is carried out at 10.59 µm and 5.22 µm using a CO2 and quantum cascade laser, respectively, while a separate polarimetry measurement of the plasma-induced Faraday effect is made at 10.59 µm. The TIP prototype is equipped with a piezo tip/tilt stage active feedback alignment system that minimizes noise in the measurement and keeps the diagnostic aligned throughout DIII-D discharges. The measured phase resolution for the polarimeter and interferometer is 0.05° (100 Hz bandwidth) and 1.9° (1 kHz bandwidth), respectively. The corresponding line-integrated density resolution for the vibration-compensated interferometer is δnL = 1.5 × 1018 m-2, and the magnetic field-weighted line-integrated density from the polarimeter is δnBL = 1.5 × 1019 Tm-2. Both interferometer and polarimeter measurements during DIII-D discharges compare well with the expectations based on calculations using Thomson scattering measured density profiles and magnetic equilibrium reconstructions. Additionally, larger bandwidth interferometer measurements show that the diagnostic is a sensitive monitor of core density fluctuations with demonstrated measurements of Alfvén eigenmodes and tearing modes.
RESUMO
A heterodyne detection scheme is combined with a 10.59 µm CO2 laser dispersion interferometer for the first time to allow large bandwidth measurements in the 10-100 MHz range. The approach employed utilizes a 40 MHz acousto-optic cell operating on the frequency doubled CO2 beam which is obtained using a high 2nd harmonic conversion efficiency orientation patterned gallium arsenide crystal. The measured standard deviation of the line integrated electron density equivalent phase resolution obtained with digital phase demodulation technique, is 4 × 1017 m-2. Air flow was found to significantly affect the baseline of the phase signal, which an optical table cover was able to reduce considerably. The heterodyne dispersion interferometer (DI) approach is found to be robustly insensitive to motion, with measured phase shifts below baseline drifts even in the presence of several centimeters of retroreflector induced path length variations. Plasma induced dispersion was simulated with a wedged ZnSe plate and the measured DI phase shifts are consistent with expectations.