Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Hum Reprod ; 19(7): 444-50, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23468533

RESUMO

Mitochondria are responsible for the production of ATP, which drives cellular metabolic and biosynthetic processes. This is the first study to quantify the mtDNA copy number across all stages of oogenesis in a large monovulatory species, it includes assessment of the activity of mitochondria in germinal vesicle (GV) and metaphase II (MII) oocytes through JC1 staining. Primordial to early antral follicles (n = 249) were isolated from the sheep ovarian cortex following digestion at 37°C for 1 h and all oocytes were disaggregated from their somatic cells. Germinal vesicle oocytes (n = 133) were aspirated from 3- to 5-mm diameter antral follicles, and mature MII oocytes (n = 71) were generated following in vitro maturation (IVM). The mtDNA copy number in each oocyte was quantified using real-time PCR and showed a progressive, but variable increase in the amount of mtDNA in oocytes from primordial follicles (605 ± 205, n = 8) to mature MII oocytes (744 633 ± 115 799, n = 13; P < 0.05). Mitochondrial activity (P > 0.05) was not altered during meiotic progression from GV to MII during IVM. The observed increase in the mtDNA copy number across oogenesis reflects the changing ATP demands needed to orchestrate cytoskeletal and cytoplasmic reorganization during oocyte growth and maturation and the need to fuel the resumption of meiosis in mature oocytes following the pre-ovulatory gonadotrophin surge.


Assuntos
DNA Mitocondrial/genética , Oócitos/metabolismo , Oogênese/fisiologia , Animais , Feminino , Fluorometria , Meiose/genética , Meiose/fisiologia , Oogênese/genética , Reação em Cadeia da Polimerase em Tempo Real , Ovinos
2.
Int J Dev Biol ; 56(10-12): 799-808, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23417402

RESUMO

Metabolic studies of mammalian embryos started with the development of in vitro culture systems more than 40 years ago. More recently, metabolic studies have begun to shed light on the requirements of growing oocytes/follicles from the earliest stages of folliculogenesis. While growing oocytes preferentially metabolise pyruvate over glucose, the somatic compartment of ovarian follicles is more glycolytic. The metabolic preferences of the oocyte are reflected in the early zygote, which becomes increasingly dependent on glycolytic energy production as development progresses to the blastocyst stage. Furthermore, the intricate metabolic relationship between each oocyte and its somatic surroundings is critical for oocyte growth and developmental competence. Measurements of amino acid turnover in bovine oocytes indicate that glutamine, arginine and leucine are consistently depleted, while alanine is produced, showing similarities with amino acid turnover in preimplantation embryos. Amino acid profiling is a good predictor of embryo quality and might also turn out to be a predictor of oocyte developmental competence. Finally, recent studies have uncovered lipid metabolism in oocytes and early embryos, suggesting that endogenous fatty acids might be used for energy production. Together, metabolic studies have revealed the multiplicity of energetic substrates used by oocytes and early embryos, and suggest that the versatility of the metabolic pathways available for energy production is key for high developmental potential. Metabolic studies of early embryos are now being applied to follicle culture, and the goal of describing the metabolome of the growing oocyte in its follicle is now very attainable.


Assuntos
Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Ácidos Graxos/metabolismo , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Animais , Blastocisto/metabolismo , Feminino , Humanos , Oócitos/crescimento & desenvolvimento , Folículo Ovariano/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA