Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Metab Eng ; 79: 49-65, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37414134

RESUMO

To advance the sustainability of the biobased economy, our society needs to develop novel bioprocesses based on truly renewable resources. The C1-molecule formate is increasingly proposed as carbon and energy source for microbial fermentations, as it can be efficiently generated electrochemically from CO2 and renewable energy. Yet, its biotechnological conversion into value-added compounds has been limited to a handful of examples. In this work, we engineered the natural formatotrophic bacterium C. necator as cell factory to enable biological conversion of formate into crotonate, a platform short-chain unsaturated carboxylic acid of biotechnological relevance. First, we developed a small-scale (150-mL working volume) cultivation setup for growing C. necator in minimal medium using formate as only carbon and energy source. By using a fed-batch strategy with automatic feeding of formic acid, we could increase final biomass concentrations 15-fold compared to batch cultivations in flasks. Then, we engineered a heterologous crotonate pathway in the bacterium via a modular approach, where each pathway section was assessed using multiple candidates. The best performing modules included a malonyl-CoA bypass for increasing the thermodynamic drive towards the intermediate acetoacetyl-CoA and subsequent conversion to crotonyl-CoA through partial reverse ß-oxidation. This pathway architecture was then tested for formate-based biosynthesis in our fed-batch setup, resulting in a two-fold higher titer, three-fold higher productivity, and five-fold higher yield compared to the strain not harboring the bypass. Eventually, we reached a maximum product titer of 148.0 ± 6.8 mg/L. Altogether, this work consists in a proof-of-principle integrating bioprocess and metabolic engineering approaches for the biological upgrading of formate into a value-added platform chemical.


Assuntos
Cupriavidus necator , Cupriavidus necator/genética , Crotonatos/metabolismo , Engenharia Metabólica/métodos , Formiatos/metabolismo , Carbono/metabolismo
2.
Methods ; 172: 51-60, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31362039

RESUMO

Recent developments in CRISPR technologies have opened new possibilities for improving genome editing tools dedicated to the Clostridium genus. In this study we adapted a two-plasmid tool based on this technology to enable scarless modification of the genome of two reference strains of Clostridium beijerinckii producing an Acetone/Butanol/Ethanol (ABE) or an Isopropanol/Butanol/Ethanol (IBE) mix of solvents. In the NCIMB 8052 ABE-producing strain, inactivation of the SpoIIE sporulation factor encoding gene resulted in sporulation-deficient mutants, and this phenotype was reverted by complementing the mutant strain with a functional spoIIE gene. Furthermore, the fungal cellulase-encoding celA gene was inserted into the C. beijerinckii NCIMB 8052 chromosome, resulting in mutants with endoglucanase activity. A similar two-plasmid approach was next used to edit the genome of the natural IBE-producing strain C. beijerinckii DSM 6423, which has never been genetically engineered before. Firstly, the catB gene conferring thiamphenicol resistance was deleted to make this strain compatible with our dual-plasmid editing system. As a proof of concept, our dual-plasmid system was then used in C. beijerinckii DSM 6423 ΔcatB to remove the endogenous pNF2 plasmid, which led to a sharp increase of transformation efficiencies.


Assuntos
Sistemas CRISPR-Cas/genética , Clostridium beijerinckii/genética , Engenharia Metabólica/métodos , Plasmídeos/genética , 2-Propanol/metabolismo , Butanóis/metabolismo , Celulase/genética , Celulase/metabolismo , Celulose/metabolismo , Clostridium beijerinckii/metabolismo , Etanol/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Edição de Genes/métodos , Genoma Bacteriano/genética , Microbiologia Industrial/métodos , Mutação , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Transformação Bacteriana
3.
Appl Environ Microbiol ; 85(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578270

RESUMO

Macroalgae (or seaweeds) are considered potential biomass feedstocks for the production of renewable fuels and chemicals. Their sugar composition is different from that of lignocellulosic biomasses, and in green species, including Ulva lactuca, the major sugars are l-rhamnose and d-glucose. C. beijerinckii DSM 6423 utilized these sugars in a U. lactuca hydrolysate to produce acetic acid, butyric acid, isopropanol, butanol, and ethanol (IBE), and 1,2-propanediol. d-Glucose was almost completely consumed in diluted hydrolysates, while l-rhamnose or d-xylose was only partially utilized. In this study, the metabolism of l-rhamnose by C. beijerinckii DSM 6423 was investigated to improve its utilization from natural resources. Fermentations on d-glucose, l-rhamnose, and a mixture of d-glucose and l-rhamnose were performed. On l-rhamnose, the cultures showed low growth and sugar consumption and produced 1,2-propanediol, propionic acid, and n-propanol in addition to acetic and butyric acids, whereas on d-glucose, IBE was the major product. On a d-glucose-l-rhamnose mixture, both sugars were converted simultaneously and l-rhamnose consumption was higher, leading to high levels of 1,2-propanediol (78.4 mM), in addition to 59.4 mM butanol and 31.9 mM isopropanol. Genome and transcriptomics analysis of d-glucose- and l-rhamnose-grown cells revealed the presence and transcription of genes involved in l-rhamnose utilization and in bacterial microcompartment (BMC) formation. These data provide useful insights into the metabolic pathways involved in l-rhamnose utilization and the effects on the general metabolism (glycolysis, early sporulation, and stress response) induced by growth on l-rhamnose.IMPORTANCE A prerequisite for a successful biobased economy is the efficient conversion of biomass resources into useful products, such as biofuels and bulk and specialty chemicals. In contrast to other industrial microorganisms, natural solvent-producing clostridia utilize a wide range of sugars, including C5, C6, and deoxy-sugars, for production of long-chain alcohols (butanol and 2,3-butanediol), isopropanol, acetone, n-propanol, and organic acids. Butanol production by clostridia from first-generation sugars is already a commercial process, but for the expansion and diversification of the acetone, butanol, and ethanol (ABE)/IBE process to other substrates, more knowledge is needed on the regulation and physiology of fermentation of sugar mixtures. Green macroalgae, produced in aquaculture systems, harvested from the sea or from tides, can be processed into hydrolysates containing mixtures of d-glucose and l-rhamnose, which can be fermented. The knowledge generated in this study will contribute to the development of more efficient processes for macroalga fermentation and of mixed-sugar fermentation in general.


Assuntos
Metabolismo dos Carboidratos , Clostridium beijerinckii/metabolismo , Fermentação , Ramnose/metabolismo , Ácido Acético/metabolismo , Biocombustíveis , Butiratos/metabolismo , Metabolismo dos Carboidratos/genética , Clostridium beijerinckii/genética , Etanol/metabolismo , Glucose/metabolismo , Propionatos/metabolismo , Propilenoglicol , Alga Marinha/química , Ulva/química
4.
Front Bioeng Biotechnol ; 11: 1091899, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36726742

RESUMO

Microbial C1 fixation has a vast potential to support a sustainable circular economy. Hence, several biotechnologically important microorganisms have been recently engineered for fixing C1 substrates. However, reports about C1-based bioproduction with these organisms are scarce. Here, we describe the optimization of a previously engineered formatotrophic Escherichia coli strain. Short-term adaptive laboratory evolution enhanced biomass yield and accelerated growth of formatotrophic E. coli to 3.3 g-CDW/mol-formate and 6 h doubling time, respectively. Genome sequence analysis revealed that manipulation of acetate metabolism is the reason for better growth performance, verified by subsequent reverse engineering of the parental E. coli strain. Moreover, the improved strain is capable of growing to an OD600 of 22 in bioreactor fed-batch experiments, highlighting its potential use for industrial bioprocesses. Finally, demonstrating the strain's potential to support a sustainable, formate-based bioeconomy, lactate production from formate was engineered. The optimized strain generated 1.2 mM lactate -10% of the theoretical maximum- providing the first proof-of-concept application of the reductive glycine pathway for bioproduction.

5.
Front Microbiol ; 11: 556064, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042064

RESUMO

SpoIIE is a phosphatase involved in the activation of the first sigma factor of the forespore, σ F , during sporulation. A ΔspoIIE mutant of Clostridium beijerinckii NCIMB 8052, previously generated by CRISPR-Cas9, did not sporulate but still produced granulose and solvents. Microscopy analysis also showed that the cells of the ΔspoIIE mutant are elongated with the presence of multiple septa. This observation suggests that in C. beijerinckii, SpoIIE is necessary for the completion of the sporulation process, as seen in Bacillus and Clostridium acetobutylicum. Moreover, when grown in reactors, the spoIIE mutant produced higher levels of solvents than the wild type strain. The impact of the spoIIE inactivation on gene transcription was assessed by comparative transcriptome analysis at three time points (4 h, 11 h and 23 h). Approximately 5% of the genes were differentially expressed in the mutant compared to the wild type strain at all time points. Out of those only 12% were known sporulation genes. As expected, the genes belonging to the regulon of the sporulation specific transcription factors (σ F , σ E , σ G , σ K ) were strongly down-regulated in the mutant. Inactivation of spoIIE also caused differential expression of genes involved in various cell processes at each time point. Moreover, at 23 h, genes involved in butanol formation and tolerance, as well as in cell motility, were up-regulated in the mutant. In contrast, several genes involved in cell wall composition, oxidative stress and amino acid transport were down-regulated. These results indicate an intricate interdependence of sporulation and stationary phase cellular events in C. beijerinckii.

6.
J Microbiol Methods ; 140: 5-11, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28610973

RESUMO

CRISPR/Cas-based genetic engineering has revolutionised molecular biology in both eukaryotes and prokaryotes. Several tools dedicated to the genomic transformation of the Clostridium genus of Gram-positive bacteria have been described in the literature; however, the integration of large DNA fragments still remains relatively limited. In this study, a CRISPR/Cas9 genome editing tool using a two-plasmid strategy was developed for the solventogenic strain Clostridium acetobutylicum ATCC 824. Codon-optimised cas9 from Streptococcus pyogenes was placed under the control of an anhydrotetracycline-inducible promoter on one plasmid, while the gRNA expression cassettes and editing templates were located on a second plasmid. Through the sequential introduction of these vectors into the cell, we achieved highly accurate genome modifications, including nucleotide substitution, gene deletion and cassette insertion up to 3.6kb. To demonstrate its potential, this genome editing tool was used to generate a marker-free mutant of ATCC 824 that produced an isopropanol-butanol-ethanol mixture. Whole-genome sequencing confirmed that no off-target modifications were present in the mutants. Such a tool is a prerequisite for efficient metabolic engineering in this solventogenic strain and provides an alternative editing strategy that might be applicable to other Clostridium strains.


Assuntos
Sistemas CRISPR-Cas/genética , Clostridium acetobutylicum/genética , Edição de Genes/métodos , Engenharia Genética/métodos , Proteínas de Bactérias/genética , Clostridium acetobutylicum/metabolismo , Deleção de Genes , Engenharia Metabólica , Mutagênese Insercional , Plasmídeos
7.
AMB Express ; 2(1): 45, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22909015

RESUMO

Isopropanol represents a widely-used commercial alcohol which is currently produced from petroleum. In nature, isopropanol is excreted by some strains of Clostridium beijerinckii, simultaneously with butanol and ethanol during the isopropanol butanol ethanol (IBE) fermentation. In order to increase isopropanol production, the gene encoding the secondary-alcohol dehydrogenase enzyme from C. beijerinckii NRRL B593 (adh) which catalyzes the reduction of acetone to isopropanol, was cloned into the acetone, butanol and ethanol (ABE)-producing strain C. acetobutylicum ATCC 824. The transformants showed high capacity for conversion of acetone into isopropanol (> 95%). To increase isopropanol production levels in ATCC 824, polycistronic transcription units containing, in addition to the adh gene, homologous genes of the acetoacetate decarboxylase (adc), and/or the acetoacetyl-CoA:acetate/butyrate:CoA transferase subunits A and B (ctfA and ctfB) were constructed and introduced into the wild-type strain. Combined overexpression of the ctfA and ctfB genes resulted in enhanced solvent production. In non-pH-controlled batch cultures, the total solvents excreted by the transformant overexpressing the adh, ctfA, ctfB and adc genes were 24.4 g/L IBE (including 8.8 g/L isopropanol), while the control strain harbouring an empty plasmid produced only 20.2 g/L ABE (including 7.6 g/L acetone). The overexpression of the adc gene had limited effect on IBE production. Interestingly, all transformants with the adh gene converted acetoin (a minor fermentation product) into 2,3-butanediol, highlighting the wide metabolic versatility of solvent-producing Clostridia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA