Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 124(8): 4863-4934, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38606812

RESUMO

Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.


Assuntos
Bactérias , Glucanos , Glucanos/metabolismo , Glucanos/química , Bactérias/enzimologia , Bactérias/metabolismo , Evolução Molecular
2.
J Biol Chem ; 292(13): 5465-5475, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28193843

RESUMO

Branching enzyme (BE) catalyzes the formation of α-1,6-glucosidic linkages in amylopectin and glycogen. The reaction products are variable, depending on the organism sources, and the mechanistic basis for these different outcomes is unclear. Although most cyanobacteria have only one BE isoform belonging to glycoside hydrolase family 13, Cyanothece sp. ATCC 51142 has three isoforms (BE1, BE2, and BE3) with distinct enzymatic properties, suggesting that investigations of these enzymes might provide unique insights into this system. Here, we report the crystal structure of ligand-free wild-type BE1 (residues 5-759 of 1-773) at 1.85 Å resolution. The enzyme consists of four domains, including domain N, carbohydrate-binding module family 48 (CBM48), domain A containing the catalytic site, and domain C. The central domain A displays a (ß/α)8-barrel fold, whereas the other domains adopt ß-sandwich folds. Domain N was found in a new location at the back of the protein, forming hydrogen bonds and hydrophobic interactions with CBM48 and domain A. Site-directed mutational analysis identified a mutant (W610N) that bound maltoheptaose with sufficient affinity to enable structure determination at 2.30 Å resolution. In this structure, maltoheptaose was bound in the active site cleft, allowing us to assign subsites -7 to -1. Moreover, seven oligosaccharide-binding sites were identified on the protein surface, and we postulated that two of these in domain A served as the entrance and exit of the donor/acceptor glucan chains, respectively. Based on these structures, we propose a substrate binding model explaining the mechanism of glycosylation/deglycosylation reactions catalyzed by BE.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/química , Cyanothece/química , Modelos Moleculares , Domínios Proteicos , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Proteínas de Bactérias/química , Domínio Catalítico , Cristalização , Cianobactérias , Glucanos/metabolismo , Glicosilação , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
4.
Plant Physiol ; 171(3): 1879-92, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27208262

RESUMO

At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network.


Assuntos
Proteínas de Bactérias/metabolismo , Evolução Biológica , Cianobactérias/metabolismo , Glicogênio/metabolismo , Sintase do Amido/metabolismo , Proteínas de Bactérias/genética , Cianobactérias/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Glicogênio/química , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Mutação , Filogenia , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo , Amido/metabolismo , Sintase do Amido/genética , Synechocystis/genética , Synechocystis/metabolismo
5.
Biochim Biophys Acta ; 1847(6-7): 495-504, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25687892

RESUMO

Plastid endosymbiosis defines a process through which a fully evolved cyanobacterial ancestor has transmitted to a eukaryotic phagotroph the hundreds of genes required to perform oxygenic photosynthesis, together with the membrane structures, and cellular compartment associated with this process. In this review, we will summarize the evidence pointing to an active role of Chlamydiales in metabolic integration of free living cyanobacteria, within the cytosol of the last common plant ancestor.


Assuntos
Chlamydiales/fisiologia , Plantas/microbiologia , Plastídeos/microbiologia , Simbiose , Evolução Biológica , Interações Hospedeiro-Patógeno
6.
Plant Cell ; 25(1): 7-21, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23371946

RESUMO

Under the endosymbiont hypothesis, over a billion years ago a heterotrophic eukaryote entered into a symbiotic relationship with a cyanobacterium (the cyanobiont). This partnership culminated in the plastid that has spread to forms as diverse as plants and diatoms. However, why primary plastid acquisition has not been repeated multiple times remains unclear. Here, we report a possible answer to this question by showing that primary plastid endosymbiosis was likely to have been primed by the secretion in the host cytosol of effector proteins from intracellular Chlamydiales pathogens. We provide evidence suggesting that the cyanobiont might have rescued its afflicted host by feeding photosynthetic carbon into a chlamydia-controlled assimilation pathway.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydiales/fisiologia , Cianobactérias/fisiologia , Plantas/microbiologia , Plastídeos/genética , Simbiose , Proteínas de Bactérias/genética , Evolução Biológica , Carbono/metabolismo , Chlamydiales/enzimologia , Chlamydiales/genética , Biologia Computacional , Cianobactérias/genética , Genoma de Planta/genética , Glicogênio/metabolismo , Interações Hospedeiro-Patógeno , Isoamilase/genética , Isoamilase/metabolismo , Fotossíntese , Filogenia , Proteínas de Plantas/genética , Plantas/genética , Plastídeos/enzimologia
7.
Plant Cell ; 25(10): 3961-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24163312

RESUMO

Starch, unlike hydrosoluble glycogen particles, aggregates into insoluble, semicrystalline granules. In photosynthetic eukaryotes, the transition to starch accumulation occurred after plastid endosymbiosis from a preexisting cytosolic host glycogen metabolism network. This involved the recruitment of a debranching enzyme of chlamydial pathogen origin. The latter is thought to be responsible for removing misplaced branches that would otherwise yield a water-soluble polysaccharide. We now report the implication of starch debranching enzyme in the aggregation of semicrystalline granules of single-cell cyanobacteria that accumulate both glycogen and starch-like polymers. We show that an enzyme of analogous nature to the plant debranching enzyme but of a different bacterial origin was recruited for the same purpose in these organisms. Remarkably, both the plant and cyanobacterial enzymes have evolved through convergent evolution, showing novel yet identical substrate specificities from a preexisting enzyme that originally displayed the much narrower substrate preferences required for glycogen catabolism.


Assuntos
Evolução Biológica , Cianobactérias/enzimologia , Sistema da Enzima Desramificadora do Glicogênio/genética , Glicogênio/metabolismo , Oryza/enzimologia , Amido/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Cianobactérias/genética , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Mutagênese , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Proc Natl Acad Sci U S A ; 110(13): 5247-52, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23503846

RESUMO

Red seaweeds are key components of coastal ecosystems and are economically important as food and as a source of gelling agents, but their genes and genomes have received little attention. Here we report the sequencing of the 105-Mbp genome of the florideophyte Chondrus crispus (Irish moss) and the annotation of the 9,606 genes. The genome features an unusual structure characterized by gene-dense regions surrounded by repeat-rich regions dominated by transposable elements. Despite its fairly large size, this genome shows features typical of compact genomes, e.g., on average only 0.3 introns per gene, short introns, low median distance between genes, small gene families, and no indication of large-scale genome duplication. The genome also gives insights into the metabolism of marine red algae and adaptations to the marine environment, including genes related to halogen metabolism, oxylipins, and multicellularity (microRNA processing and transcription factors). Particularly interesting are features related to carbohydrate metabolism, which include a minimalistic gene set for starch biosynthesis, the presence of cellulose synthases acquired before the primary endosymbiosis showing the polyphyly of cellulose synthesis in Archaeplastida, and cellulases absent in terrestrial plants as well as the occurrence of a mannosylglycerate synthase potentially originating from a marine bacterium. To explain the observations on genome structure and gene content, we propose an evolutionary scenario involving an ancestral red alga that was driven by early ecological forces to lose genes, introns, and intergenetic DNA; this loss was followed by an expansion of genome size as a consequence of activity of transposable elements.


Assuntos
Chondrus/genética , Evolução Molecular , Genes de Plantas , Sequência de Bases , MicroRNAs/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , RNA de Plantas/genética
9.
Arch Biochem Biophys ; 562: 9-21, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25107532

RESUMO

To investigate the functional properties of 10 α-glucan branching enzymes (BEs) from various sources, we determined the chain-length distribution of BE enzymatic products and their phosphorylase-limit dextrins (Φ-LD). All BEs could be classified into either of the three rice BE isozymes: OsBEI, OsBEIIa, or OsBEIIb. Escherichia coli BE (EcoBE) had the same enzymatic properties as OsBEI, while Synechococcus elongatus BE (ScoBE) and Chlorella kessleri BE (ChlBE) had BEIIb-type properties. Human BE (HosBE), yeast BE (SacBE), and two Porphyridium purpureum BEs (PopBE1 and PopBE2) exhibited the OsBEIIa-type properties. Analysis of chain-length profile of Φ-LD of the BE reaction products revealed that EcoBE, ScoBE, PopBE1, and PopBE2 preferred A-chains as acceptors, while OsBEIIb used B-chains more frequently than A-chains. Both EcoBE and ScoBE specifically formed the branch linkages at the third glucose residue from the reducing end of the acceptor chain. The present results provide evidence for the first time that great variation exists as to the preference of BEs for their acceptor chain, either A-chain or B-chain. In addition, EcoBE and ScoBE recognize the location of branching points in their acceptor chain during their branching reaction. Nevertheless, no correlation exists between the primary structure of BE proteins and their enzymatic characteristics.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/química , Glucanos/química , Amilopectina/química , Chlorella/enzimologia , Dextrinas/química , Escherichia coli/enzimologia , Fungos/enzimologia , Glicogênio/química , Humanos , Isoenzimas/química , Oryza/enzimologia , Fosforilases/química , Filogenia , Porphyridium/enzimologia , Proteínas Recombinantes/química , Especificidade da Espécie , Amido/química , Synechococcus/enzimologia
10.
Plant Cell Physiol ; 54(4): 465-73, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23299410

RESUMO

Unicellular, diazotrophic species of cyanobacteria, Cyanobacterium sp. NBRC 102756, Cyanothece sp. ATCC 51142 and Cyanobacterium sp. CLg1, accumulate insoluble α-glucan inside the cells as the storage polysaccharide. The purified polysaccharides showed granular morphology, with a diameter of 0.2-0.7 µm. The three α-glucan preparations all showed A-type allomorph in X-ray diffraction analysis. Distinct thermal gelatinization temperatures were observed for these polysaccharides. The α-glucans from NBRC 102756 and ATCC 51142 strains consisted solely of branched α-glucans, or semi-amylopectin, while CLg1 contained semi-amylopectin as the primary component as well as linear or scarcely branched glucan (amylose). Separation of the debranched glucan chains by gel filtration chromatography explicitly showed the presence in the semi-amylopectin molecule of long chains corresponding to B2 chains, which connect clusters in amylopectin of plants. The relative proportions of short and long glucan chains in the branched polysaccharides differed depending on the species, and the variation was intimately correlated with the physical properties of the α-glucans. The results suggested that semi-amylopectin of the three cyanobacteria exhibit essentially similar organization with a tandem cluster structure. The polysaccharides of these strains are therefore referred to as 'cyanobacterial starch', distinct from glycogen.


Assuntos
Cianobactérias/metabolismo , Glucanos/química , Glucanos/metabolismo , Amido/química , Amido/metabolismo , Glucanos/ultraestrutura , Dados de Sequência Molecular , Amido/ultraestrutura , Difração de Raios X
11.
Front Bioeng Biotechnol ; 11: 1259587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790259

RESUMO

Haptophytes synthesize unique ß-glucans containing more ß-1,6-linkages than ß-1,3 linkages, as a storage polysaccharide. To understand the mechanism of the synthesis, we investigated the roles of Kre6 (yeast 1,6-ß-transglycosylase) homologs, PhTGS, in the haptophyte Pleurochrysis haptonemofera. RNAi of PhTGS repressed ß-glucan accumulation and simultaneously induced lipid production, suggesting that PhTGS is involved in ß-glucan synthesis and that the knockdown leads to the alteration of the carbon metabolic flow. PhTGS was expressed more in light, where ß-glucan was actively produced by photosynthesis, than in the dark. The crude extract of E. coli expressing PhKre6 demonstrated its activity to incorporate 14C-UDP-glucose into ß-glucan of P. haptonemofera. These findings suggest that PhTGS functions in storage ß-glucan synthesis specifically in light, probably by producing the ß-1,6-branch.

12.
J Vis Exp ; (181)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35435899

RESUMO

Glycogen particles are branched polysaccharides composed of linear chains of glucosyl units linked by α-1,4 glucoside bonds. The latter are attached to each other by α-1,6 glucoside linkages, referred to as branch points. Among the different forms of carbon storage (i.e., starch, ß-glucan), glycogen is probably one of the oldest and most successful storage polysaccharides found across the living world. Glucan chains are organized so that a large amount of glucose can quickly be stored or fueled in a cell when needed. Numerous complementary techniques have been developed over the last decades to solve the fine structure of glycogen particles. This article describes Fluorophore-Assisted Carbohydrate Electrophoresis (FACE). This method quantifies the population of glucan chains that compose a glycogen particle. Also known as chain length distribution (CLD), this parameter mirrors the particle size and the percentage of branching. It is also an essential requirement for the mathematical modeling of glycogen biosynthesis.


Assuntos
Glucanos , Glicogênio , Eletroforese , Glucanos/análise , Glucanos/química , Glucosídeos , Polissacarídeos
13.
Front Plant Sci ; 13: 967165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051298

RESUMO

Most rhodophytes synthesize semi-amylopectin as a storage polysaccharide, whereas some species in the most primitive class (Cyanidiophyceae) make glycogen. To know the roles of isoamylases in semi-amylopectin synthesis, we investigated the effects of isoamylase gene (CMI294C and CMS197C)-deficiencies on semi-amylopectin molecular structure and starch granule morphology in Cyanidioschyzon merolae (Cyanidiophyceae). Semi-amylopectin content in a CMS197C-disruption mutant (ΔCMS197C) was not significantly different from that in the control strain, while that in a CMI294C-disruption mutant (ΔCMI294C) was much lower than those in the control strain, suggesting that CMI294C is essential for semi-amylopectin synthesis. Scanning electron microscopy showed that the ΔCMI294C strain contained smaller starch granules, while the ΔCMS197C strain had normal size, but donut-shaped granules, unlike those of the control strain. Although the chain length distribution of starch from the control strain displayed a semi-amylopectin pattern with a peak around degree of polymerization (DP) 11-13, differences in chain length profiles revealed that the ΔCMS197C strain has more short chains (DP of 3 and 4) than the control strain, while the ΔCMI294C strain has more long chains (DP ≥12). These findings suggest that CMI294C-type isoamylase, which can debranch a wide range of chains, probably plays an important role in semi-amylopectin synthesis unique in the Rhodophyta.

14.
Mol Biol Evol ; 27(12): 2691-701, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20576760

RESUMO

The acquisition of photosynthesis by eukaryotic cells through enslavement of a cyanobacterium represents one of the most remarkable turning points in the history of life on Earth. In addition to endosymbiotic gene transfer, the acquisition of a protein import apparatus and the coordination of gene expression between host and endosymbiont genomes, the establishment of a metabolic connection was crucial for a functional endosymbiosis. It was previously hypothesized that the first metabolic connection between both partners of endosymbiosis was achieved through insertion of a host-derived metabolite transporter into the cyanobacterial plasma membrane. Reconstruction of starch metabolism in the common ancestor of photosynthetic eukaryotes suggested that adenosine diphosphoglucose (ADP-Glc), a bacterial-specific metabolite, was likely to be the photosynthate, which was exported from the early cyanobiont. However, extant plastid transporters that have evolved from host-derived endomembrane transporters do not transport ADP-Glc but simple phosphorylated sugars in exchange for orthophosphate. We now show that those eukaryotic nucleotide sugar transporters, which define the closest relatives to the common ancestor of extant plastid envelope carbon translocators, possess an innate ability for transporting ADP-Glc. Such an unexpected ability would have been required to establish plastid endosymbiosis.


Assuntos
Proteínas de Transporte de Nucleotídeos/genética , Fotossíntese/genética , Filogenia , Plastídeos/metabolismo , Simbiose , Adenosina Difosfato Glucose/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Plastídeos/genética , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Amido/metabolismo
15.
Plant Physiol ; 153(3): 956-69, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20448101

RESUMO

Functions of isoamylase-type starch-debranching enzyme (ISA) proteins and complexes in maize (Zea mays) endosperm were characterized. Wild-type endosperm contained three high molecular mass ISA complexes resolved by gel permeation chromatography and native-polyacrylamide gel electrophoresis. Two complexes of approximately 400 kD contained both ISA1 and ISA2, and an approximately 300-kD complex contained ISA1 but not ISA2. Novel mutations of sugary1 (su1) and isa2, coding for ISA1 and ISA2, respectively, were used to develop one maize line with ISA1 homomer but lacking heteromeric ISA and a second line with one form of ISA1/ISA2 heteromer but no homomeric enzyme. The mutations were su1-P, which caused an amino acid substitution in ISA1, and isa2-339, which was caused by transposon insertion and conditioned loss of ISA2. In agreement with the protein compositions, all three ISA complexes were missing in an ISA1-null line, whereas only the two higher molecular mass forms were absent in the ISA2-null line. Both su1-P and isa2-339 conditioned near-normal starch characteristics, in contrast to ISA-null lines, indicating that either homomeric or heteromeric ISA is competent for starch biosynthesis. The homomer-only line had smaller, more numerous granules. Thus, a function of heteromeric ISA not compensated for by homomeric enzyme affects granule initiation or growth, which may explain evolutionary selection for ISA2. ISA1 was required for the accumulation of ISA2, which is regulated posttranscriptionally. Quantitative polymerase chain reaction showed that the ISA1 transcript level was elevated in tissues where starch is synthesized and low during starch degradation, whereas ISA2 transcript was relatively abundant during periods of either starch biosynthesis or catabolism.


Assuntos
Endosperma/enzimologia , Endosperma/crescimento & desenvolvimento , Glicosídeo Hidrolases/metabolismo , Isoamilase/metabolismo , Proteínas de Plantas/metabolismo , Multimerização Proteica , Zea mays/enzimologia , Zea mays/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Cromatografia em Gel , Endosperma/genética , Endosperma/ultraestrutura , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Germinação/genética , Glicosídeo Hidrolases/genética , Isoamilase/genética , Dados de Sequência Molecular , Mutação/genética , Extratos Vegetais , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Amido/química , Amido/metabolismo , Amido/ultraestrutura , Zea mays/genética
16.
J Exp Bot ; 62(6): 1775-801, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21220783

RESUMO

Solid semi-crystalline starch and hydrosoluble glycogen define two distinct physical states of the same type of storage polysaccharide. Appearance of semi-crystalline storage polysaccharides appears linked to the requirement of unicellular diazotrophic cyanobacteria to fuel nitrogenase and protect it from oxygen through respiration of vast amounts of stored carbon. Starch metabolism itself resulted from the merging of the bacterial and eukaryote pathways of storage polysaccharide metabolism after endosymbiosis of the plastid. This generated the three Archaeplastida lineages: the green algae and land plants (Chloroplastida), the red algae (Rhodophyceae), and the glaucophytes (Glaucophyta). Reconstruction of starch metabolism in the common ancestor of Archaeplastida suggests that polysaccharide synthesis was ancestrally cytosolic. In addition, the synthesis of cytosolic starch from the ADP-glucose exported from the cyanobacterial symbiont possibly defined the original metabolic flux by which the cyanobiont provided photosynthate to its host. Additional evidence supporting this scenario include the monophyletic origin of the major carbon translocators of the inner membrane of eukaryote plastids which are sisters to nucleotide-sugar transporters of the eukaryote endomembrane system. It also includes the extent of enzyme subfunctionalization that came as a consequence of the rewiring of this pathway to the chloroplasts in the green algae. Recent evidence suggests that, at the time of endosymbiosis, obligate intracellular energy parasites related to extant Chlamydia have donated important genes to the ancestral starch metabolism network.


Assuntos
Evolução Molecular , Glicogênio/metabolismo , Plantas/metabolismo , Plastídeos/fisiologia , Amido/metabolismo , Simbiose , Carbono/metabolismo , Cloroplastos/metabolismo , Duplicação Gênica , Fotossíntese , Plantas/genética
17.
Front Plant Sci ; 12: 629045, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747010

RESUMO

Eukaryotes most often synthesize storage polysaccharides in the cytosol or vacuoles in the form of either alpha (glycogen/starch)- or beta-glucosidic (chrysolaminarins and paramylon) linked glucan polymers. In both cases, the glucose can be packed either in water-soluble (glycogen and chrysolaminarins) or solid crystalline (starch and paramylon) forms with different impacts, respectively, on the osmotic pressure, the glucose accessibility, and the amounts stored. Glycogen or starch accumulation appears universal in all free-living unikonts (metazoa, fungi, amoebozoa, etc.), as well as Archaeplastida and alveolata, while other lineages offer a more complex picture featuring both alpha- and beta-glucan accumulators. We now infer the distribution of these polymers in stramenopiles through the bioinformatic detection of their suspected metabolic pathways. Detailed phylogenetic analysis of key enzymes of these pathways correlated to the phylogeny of Stramenopila enables us to retrace the evolution of storage polysaccharide metabolism in this diverse group of organisms. The possible ancestral nature of glycogen metabolism in eukaryotes and the underlying source of its replacement by beta-glucans are discussed.

18.
Commun Biol ; 4(1): 296, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674787

RESUMO

The order Chlamydiales includes obligate intracellular pathogens capable of infecting mammals, fishes and amoeba. Unlike other intracellular bacteria for which intracellular adaptation led to the loss of glycogen metabolism pathway, all chlamydial families maintained the nucleotide-sugar dependent glycogen metabolism pathway i.e. the GlgC-pathway with the notable exception of both Criblamydiaceae and Waddliaceae families. Through detailed genome analysis and biochemical investigations, we have shown that genome rearrangement events have resulted in a defective GlgC-pathway and more importantly we have evidenced a distinct trehalose-dependent GlgE-pathway in both Criblamydiaceae and Waddliaceae families. Altogether, this study strongly indicates that the glycogen metabolism is retained in all Chlamydiales without exception, highlighting the pivotal function of storage polysaccharides, which has been underestimated to date. We propose that glycogen degradation is a mandatory process for fueling essential metabolic pathways that ensure the survival and virulence of extracellular forms i.e. elementary bodies of Chlamydiales.


Assuntos
Chlamydiales/metabolismo , Glicogênio/metabolismo , Glicogenólise , Polissacarídeos Bacterianos/metabolismo , Chlamydiales/genética , Chlamydiales/patogenicidade , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Cinética , Filogenia , Virulência
19.
Mol Biol Evol ; 25(3): 536-48, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18093994

RESUMO

Eukaryotic cells are composed of a variety of membrane-bound organelles that are thought to derive from symbiotic associations involving bacteria, archaea, or other eukaryotes. In addition to acquiring the plastid, all Archaeplastida and some of their endosymbiotic derivatives can be distinguished from other organisms by the fact that they accumulate starch, a semicrystalline-storage polysaccharide distantly related to glycogen and never found elsewhere. We now provide the first evidence for the existence of starch in a particular species of single-cell diazotrophic cyanobacterium. We provide evidence for the existence in the eukaryotic host cell at the time of primary endosymbiosis of an uridine diphosphoglucose (UDP-glucose)-based pathway similar to that characterized in amoebas. Because of the monophyletic origin of plants, we can define the genetic makeup of the Archaeplastida ancestor with respect to storage polysaccharide metabolism. The most likely enzyme-partitioning scenario between the plastid's ancestor and its eukaryotic host immediately suggests the precise nature of the ancient metabolic symbiotic relationship. The latter consisted in the export of adenosine diphosphoglucose (ADP-glucose) from the cyanobiont in exchange for the import of reduced nitrogen from the host. We further speculate that the monophyletic origin of plastids may lie in an organism with close relatedness to present-day group V cyanobacteria.


Assuntos
Cianobactérias/genética , Filogenia , Plantas/metabolismo , Amido/metabolismo , Simbiose/fisiologia , Adenosina Difosfato Glucose/metabolismo , Evolução Biológica , Compartimento Celular/genética , Compartimento Celular/fisiologia , Cianobactérias/metabolismo , Glucose/metabolismo , Nitrogênio/metabolismo , Plantas/genética , Simbiose/genética , Uridina Difosfato Glucose/metabolismo
20.
Eukaryot Cell ; 7(2): 247-57, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18055913

RESUMO

The nature of the cytoplasmic pathway of starch biosynthesis was investigated in the model glaucophyte Cyanophora paradoxa. The storage polysaccharide granules are shown to be composed of both amylose and amylopectin fractions, with a chain length distribution and crystalline organization similar to those of green algae and land plant starch. A preliminary characterization of the starch pathway demonstrates that Cyanophora paradoxa contains several UDP-glucose-utilizing soluble starch synthase activities related to those of the Rhodophyceae. In addition, Cyanophora paradoxa synthesizes amylose with a granule-bound starch synthase displaying a preference for UDP-glucose. A debranching enzyme of isoamylase specificity and multiple starch phosphorylases also are evidenced in the model glaucophyte. The picture emerging from our biochemical and molecular characterizations consists of the presence of a UDP-glucose-based pathway similar to that recently proposed for the red algae, the cryptophytes, and the alveolates. The correlative presence of isoamylase and starch among photosynthetic eukaryotes is discussed.


Assuntos
Cyanophora/metabolismo , Citosol/metabolismo , Modelos Biológicos , Amido Fosforilase/metabolismo , Sintase do Amido/metabolismo , Amido/metabolismo , Uridina Difosfato Glucose/metabolismo , Amilopectina/metabolismo , Clonagem Molecular , Cyanophora/ultraestrutura , DNA Complementar/genética , Isoamilase/metabolismo , Filogenia , Amido/química , Amido Fosforilase/química , Sintase do Amido/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA