RESUMO
A new calcium-based Room temperature Stable Electride (RoSE), K[{Ca[N(Mes)(SiMe3)]3(e-)}2K3] (2), is successfully synthesized from the reaction of a calcium tris-amide, [Ca{N(Mes)(SiMe3)}3K] (1) (Mes = 2,4,6-trimethylphenyl), with potassium under mechanochemical treatment. The dimeric structure of K[{Ca[N(Mes)(SiMe3)]3(e-)}2K3] is calculated using ab initio random structure searching (AIRSS) methods. This shows the existence of highly localized anionic electrons (e-) and suggests poor electrical conductance, as confirmed via electroconductivity measurements. The two anionic electrons in 2 are strongly antiferromagnetically coupled, thus in agreement with the largely diamagnetic response from magnetometry. Reaction of 2 with pyridine affords 4,4'-bipyridine, while reaction with benzene gives C-H activation and formation of a calcium hydride complex, [K(η6-C6H6)4][{Ca[N(Mes)(SiMe3)](H)}2K3] (3). Computational DFT analysis reveals the crucial role played by the ligand framework in the stabilization of this new Ca-hydride complex.
RESUMO
During the last decade, there has been an increasing interest in the rationalisation of how structural changes stabilise (or destabilise) diradical systems. Demonstrated herein is that indolocarbazole (ICz) diradicals, substituted with dicyanomethylene (DCM) groups, are useful motifs for dynamic covalent chemistry by self-assembling from isolated monomers to cyclophane structures. The comparison of ICz-based systems substituted with DCM groups in para- or meta-positions (p-ICz-CN and m-ICz-CN) and their short-chain carbazole analogues (p-Cz-CN and m-Cz-CN) may identify new potential design strategies for stimuli-responsive materials. The principal objectives of this investigation are the elucidation of (i) the connection between diradical character and the cyclophane stability, (ii) the spatial disposition of the cyclophane structures, (iii) the monomer/cyclophane interconversion both in solution and solid state in response to external stimuli and (iv) the impact that the different π-conjugation and electronic communication between the DCM terminals exerts on the electronic adsorption of the diradicals and their redox behavior. The spontaneous nature of the cyclophane structure is supported by the negative relative Gibbs free energies calculated at 298 K and experimentally by UV-Vis and Raman spectroscopy of the initial yellow solid powder. The conversion to monomeric species having diradical character was demonstrated by variable-temperature (VT) EPR, UV-Vis, Raman and IR measurements, resulting in appreciable chromic changes. In addition, electrochemical oxidation and reduction convert the cyclophane dimer (m-ICz-CN)2 to the monomer monocations and dianions, respectively. This research demonstrates how the chemical reactivity and physical properties of π-conjugated diradicals can be effectively tuned by subtle changes in their chemical structures.
RESUMO
'Bacterial-type' ferredoxins host a cubane [4Fe4S]2+/+ cluster that enables these proteins to mediate electron transfer and facilitate a broad range of biological processes. Peptide maquettes based on the conserved cluster-forming motif have previously been reported and used to model the ferredoxins. Herein we explore the integration of a [4Fe4S]-peptide maquette into a H2 -powered electron transport chain. While routinely formed under anaerobic conditions, we illustrate by electron paramagnetic resonance (EPR) analysis that these maquettes can be reconstituted under aerobic conditions by using photoactivated NADH to reduce the cluster at 240â K. Attempts to tune the redox properties of the iron-sulfur cluster by introducing an Fe-coordinating selenocysteine residue were also explored. To demonstrate the integration of these artificial metalloproteins into a semi-synthetic electron transport chain, we utilize a ferredoxin-inspired [4Fe4S]-peptide maquette as the redox partner in the hydrogenase-mediated oxidation of H2 .
Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Ferredoxinas/metabolismo , Proteínas Ferro-Enxofre/química , Hidrogenase/metabolismo , Oxirredução , Peptídeos/metabolismo , Espectroscopia de Ressonância de Spin EletrônicaRESUMO
Dipolar coupled multi-spin systems have the potential to be used as molecular qubits. Herein we report the synthesis of a molecular multi-qubit model system with three individually addressable, weakly interacting, spin 1 / 2 ${{ 1/2 }}$ centres of differing g-values. We use pulsed Electron Paramagnetic Resonance (EPR) techniques to characterise and separately address the individual electron spin qubits; CuII , Cr7 Ni ring and a nitroxide, to determine the strength of the inter-qubit dipolar interaction. Orientation selective Relaxation-Induced Dipolar Modulation Enhancement (os-RIDME) detecting across the CuII spectrum revealed a strongly correlated CuII -Cr7 Ni ring relationship; detecting on the nitroxide resonance measured both the nitroxide and CuII or nitroxide and Cr7 Ni ring correlations, with switchability of the interaction based on differing relaxation dynamics, indicating a handle for implementing EPR-based quantum information processing (QIP) algorithms.
Assuntos
Elétrons , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Modelos Moleculares , Conformação MolecularRESUMO
We report the development of in situ (online) EPR and coupled EPR/NMR methods to study redox flow batteries, which are applied here to investigate the redox-active electrolyte, 2,6-dihydroxyanthraquinone (DHAQ). The radical anion, DHAQ3-â¢, formed as a reaction intermediate during the reduction of DHAQ2-, was detected and its concentration quantified during electrochemical cycling. The fraction of the radical anions was found to be concentration-dependent, the fraction decreasing as the total concentration of DHAQ increases, which we interpret in terms of a competing dimer formation mechanism. Coupling the two techniques-EPR and NMR-enables the rate constant for the electron transfer between DHAQ3-⢠and DHAQ4- anions to be determined. We quantify the concentration changes of DHAQ during the "high-voltage" hold by NMR spectroscopy and correlate it quantitatively to the capacity fade of the battery. The decomposition products, 2,6-dihydroxyanthrone and 2,6-dihydroxyanthranol, were identified during this hold; they were shown to undergo subsequent irreversible electrochemical oxidation reaction at 0.7 V, so that they no longer participate in the subsequent electrochemistry of the battery when operated in the standard voltage window of the cell. The decomposition reaction rate was found to be concentration-dependent, with a faster rate being observed at higher concentrations. Taking advantage of the inherent flow properties of the system, this work demonstrates the possibility of multi-modal in situ (online) characterizations of redox flow batteries, the characterization techniques being applicable to a range of electrochemical flow systems.
Assuntos
Fontes de Energia Elétrica , Eletrólitos/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Espectroscopia de Ressonância Magnética/métodos , Transporte de Elétrons , Cinética , OxirreduçãoRESUMO
Electroactive metal-organic frameworks (MOFs) are an attractive class of materials owing to their multifunctional 3-dimensional structures, the properties of which can be modulated by changing the redox states of the components. In order to realise both fundamental and applied goals for these materials, a deeper understanding of the structure-function relationships that govern the charge transfer mechanisms is required. Chemical or electrochemical reduction of the framework [Zn(BPPFTzTz)(tdc)]·2DMF, hereafter denoted ZnFTzTz (where BPPFTzTz = 2,5-bis(3-fluoro-4-(pyridin-4-yl)phenyl)thiazolo[5,4-d]thiazole), generates mixed-valence states with optical signatures indicative of through-space intervalence charge transfer (IVCT) between the cofacially stacked ligands. Fluorination of the TzTz ligands influences the IVCT band parameters relative to the unsubstituted parent system, as revealed through Marcus-Hush theory analysis and single crystal UV-Vis spectroscopy. Using a combined experimental, theoretical and density functional theory (DFT) analysis, important insights into the effects of structural modifications, such as ligand substitution, on the degree of electronic coupling and rate of electron transfer have been obtained.
RESUMO
This work investigates tuning of the molecular structure of a series of O-alkylxanthato zinc and cadmium precursor complexes to enhance production of ZnS and CdS materials. The structures of several bis(O-alkylxanthato) cadmium(II) complexes (8-13) and bis(O-alkyl xanthato)zinc(II) complexes (18 and 19) are reported based on single crystal X-ray diffraction data. CdS and ZnS films were produced by the spin-coating of these metal complexes followed by their thermal decomposition to the corresponding metal sulfides. Thin films of CdS were deposited by spin-coating the bis(O-alkylxanthato) cadmium(II) precursors (7-13) on glass substrates, followed by annealing at 300 °C for 60 min. Thin films of ZnS were deposited by spin-coating bis(O-alkylxanthato) zinc(II) (14-20), followed by annealing at 200 °C for 60 min. The molecular complexes and solid state materials are characterized using a range of techniques including single-crystal X-ray diffraction, pXRD, EDS and XPS, DSC and TGA, UV-vis and PL spectroscopies, and electron microscopy. These techniques provided information on the influence of alkyl chain length on the thermal conditions required to fabricate metal sulfide films as well as film properties such as film quality, and morphology. For example, the obtained crystallite size of metal sulfide films formed is correlated to the hydrocarbon chain length of xanthate ligands in the precursor. The behavior of the complexes under thermal stress was therefore studied in detail. DTA and TGA profiles explain the relationship between hydrocarbon chain length, decomposition temperatures, and the energies required for decomposition. A higher decomposition temperature for complexes with longer hydrocarbon chains is observed compared to complexes with shorter hydrocarbon chains. Band-gap energies calculated from the optical absorption spectra alongside steady state and time-resolved photoluminescence studies are reported for CdS films.
RESUMO
A family of heterometallic rings [Me4N]2[CrIII6MII2F8(O2CtBu)16] is reported using tetramethylammonium hydroxide pentahydrate as the source of a template, where M = Zn, Mn, Ni, and Co. The metal cores are octagons with metal-metal edges bridged by one fluoride and two carboxylate ligands. The divalent metal ions are found ordered at positions 1 and 5 in the octagon. The tetramethylammonium cations are above and below the metal plane of the ring in the crystal structure. Magnetic studies show antiferromagnetic coupling between the paramagnetic metal ions present, leading to paramagnetic ground states in each case. 1H NMR spectroscopy confirms that the structure of the {CrIII6CoII2} ring exists in solution, and electron paramagnetic resonance spectroscopy confirms the magnetic structure of the other three rings.
RESUMO
A finite chain of thirty-one paramagnetic centers is reported, synthesized by reaction of hydrated chromium fluoride, copper carbonate and pivalic acid in the presence of 1,4,7,10-tetrazacyclododecane (cyclen). Magnetic studies show predominantly anti-ferromagnetic exchange leading to a high density of low-lying spin states and large saturation field.
RESUMO
Four 3d-4f hetero-polymetallic complexes [Fe2Ln2((OCH2)3CR)2(O2CtBu)6(H2O)4] (where Ln = La (1 and 2) and Gd (3 and 4); and R = Me (1 and 3) and Et (2 and 4)) are synthesized and analyzed using elemental analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, and SQUID magnetometry. Crystal structures are obtained for both methyl derivatives and show that the complexes are isostructural and adopt a defective dicubane topology. The four heavy metals are connected with two alkoxide bridges. These four precursors are used as single-source precursors to prepare rare-earth orthoferrite pervoskites of the form LnFeO3. Thermal decomposition in a ceramic boat in a tube furnace gives orthorhombic LnFeO3 powders using optimized temperatures and decomposition times: LaFeO3 formed at 650 °C over 30 min, whereas GdFeO3 formed at 750 °C over 18 h. These materials are structurally characterized using powder X-ray diffraction, Raman spectroscopy, scanning electron microscopy, energy-dispersive X-ray map spectroscopy, and SQUID magnetometry. EDX spectroscopy mapping reveals a homogeneous spatial distribution of elements for all four materials consistent with LnFeO3. Magnetic measurements on complexes 1-4 confirm the presence of weak antiferromagnetic coupling between the central Fe(III) ions of the clusters and negligible ferromagnetic interaction with peripheral Gd(III) ions in 3 and 4. Zero-field-cooled and field-cooled measurements of magnetization of LaFeO3 and GdFeO3 in the solid-state suggest that both materials are ferromagnetic, and both materials show open magnetic hysteresis loops at 5 and 300 K, with Msat higher than previously reported for these nanomaterials. We conclude that this is a new and facile low temperature route to these important magnetic materials that is potentially universal, limited only by what metals can be programmed into the precursor complexes.
RESUMO
Magnetic exchange interactions within the asymmetric dimetallic compounds [hqH2][Ln2(hq)4(NO3)3]·MeOH, (Ln = Er(III) and Yb(III), hqH = 8-hydroxyquinoline) have been directly probed with EPR spectroscopy and accurately modeled by spin Hamiltonian techniques. Exploitation of site selectivity via doping experiments in Y(III) and Lu(III) matrices yields simple EPR spectra corresponding to isolated Kramers doublets, allowing determination of the local magnetic properties of the individual sites within the dimetallic compounds. CASSCF-SO calculations and INS and far-IR measurements are all employed to further support the identification and modeling of the local electronic structure for each site. EPR spectra of the pure dimetallic compounds are highly featured and correspond to transitions within the lowest-lying exchange-coupled manifold, permitting determination of the highly anisotropic magnetic exchange between the lanthanide ions. We find a unique orientation for the exchange interaction, corresponding to a common elongated oxygen bridge for both isostructural analogs. This suggests a microscopic physical connection to the magnetic superexchange. These results are of fundamental importance for building and validating model microscopic Hamiltonians to understand the origins of magnetic interactions between lanthanides and how they may be controlled with chemistry.
RESUMO
The spin dynamics of Cr8 Mn, a nine-membered antiferromagnetic (AF) molecular nanomagnet, are investigated. Cr8 Mn is a rare example of a large odd-membered AF ring, and has an odd-number of 3d-electrons present. Odd-membered AF rings are unusual and of interest due to the presence of competing exchange interactions that result in frustrated-spin ground states. The chemical synthesis and structures of two Cr8 Mn variants that differ only in their crystal packing are reported. Evidence of spin frustration is investigated by inelastic neutron scattering (INS) and muon spin relaxation spectroscopy (µSR). From INS studies we accurately determine an appropriate microscopic spin Hamiltonian and we show that µSR is sensitive to the ground-spin-state crossing from S=1/2 to S=3/2 in Cr8 Mn. The estimated width of the muon asymmetry resonance is consistent with the presence of an avoided crossing. The investigation of the internal spin structure of the ground state, through the analysis of spin-pair correlations and scalar-spin chirality, shows a non-collinear spin structure that fluctuates between non-planar states of opposite chiralities.
RESUMO
An investigation of the redox-active tris[4-(pyridin-4-yl)phenyl]amine (NPy3) ligand in the solution state and upon its incorporation into the solid-state metal-organic framework (MOF) [Zn(NPy3)(NO2)2·xMeOH·xDMF]n (MeOH = methanol and DMF = N,N-dimethylformamide) was conducted using in situ UV/vis/near-IR, electron paramagentic resonance (EPR), and fluorescence spectroelectrochemical experiments. Through this multifaceted approach, the properties of the ligand and framework were elucidated and quantified as a function of the redox state of the triarylamine core, which can undergo a one-electron oxidation to its radical cation. The use of pulsed EPR experiments revealed that the radical generated was highly delocalized throughout the entire ligand backbone. This combination of techniques provides comprehensive insight into electronic delocalization in a framework system and demonstrates the utility of in situ spectroelectrochemical methods in assessing electroactive MOFs.
RESUMO
The synthesis of a π-extended bridging ligand with both redox-active tetrathiafulvalene (TTF) and 1,10-phenanthroline (phen) units, namely, bis(1,10-phenanthro[5,6-b])tetrathiafulvalene (BPTTF), was realized via a self-coupling reaction. Using this ligand and Ru(tbbpy)2Cl2 (tbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine), the dinuclear ruthenium(II) compound [{Ru(tbbpy)2}2(BPTTF)](PF6)4 (1) has been obtained by microwave-assisted synthesis. Structural characterization of 1 revealed a crossed arrangement of the TTF moieties on adjacent dimers within the crystal structure. The optical and redox properties of 1 were investigated using electrochemical, spectroelectrochemical, electron paramagnetic resonance (EPR), and absorption spectroscopic studies combined with theoretical calculations. One exhibits a rich electrochemical behavior owing to the multiple redox-active centers. Interestingly, both the ligand BPTTF and the ruthenium compound 1 are EPR-active in the solid state owing to intramolecular charge-transfer processes. The results demonstrate that the TTF-annulated bis(phen) ligand is a promising bridging ligand to construct oligomeric or polymeric metal complexes with multiple redox-active centers.
RESUMO
A novel fluoride-centered triangular-bridged carboxylate complex, [Ni2Cr(µ3-F)(O2C(t)Bu)6(HO2C(t)Bu)3] (1), is reported. Simple postsynthetic substitution of the terminal pivalic acids in 1 with pyridine and 4-methylpyridine led to the isolation of [Ni2Cr(µ3-F)(O2C(t)Bu)6(C5H5N)3] (2) and [Ni2Cr(µ3-F)(O2C(t)Bu)6((4-CH3)C5H4N)3] (3). Structural and magnetic characterizations carried out on the series reveal a dominating antiferromagnetic interaction between the nickel and chromium centers leading to an S = (1)/2 ground state with a very unusual value of geff = 2.48.
RESUMO
The term "frustration" in the context of magnetism was originally used by P. W. Anderson and quickly adopted for application to the description of spin glasses and later to very special lattice types, such as the kagomé. The original use of the term was to describe systems with competing antiferromagnetic interactions and is important in current condensed matter physics in areas such as the description of emergent magnetic monopoles in spin ice. Within molecular magnetism, at least two very different definitions of frustration are used. Here we report the synthesis and characterization of unusual nine-metal rings, using magnetic measurements and inelastic neutron scattering, supported by density functional theory calculations. These compounds show different electronic/magnetic structures caused by frustration, and the findings lead us to propose a classification for frustration within molecular magnets that encompasses and clarifies all previous definitions.
RESUMO
Compounds of general formula [Cr7MF3(Etglu)(O2C(t)Bu)15(Phpy)] [H5Etglu = N-ethyl-d-glucamine; Phpy = 4-phenylpyridine; M = Zn (1), Mn (2), Ni (3)] have been prepared. The structures contain an irregular octagon of metal sites formed around the penta-deprotonated Etglu(5-) ligand; the chirality of N-ethyl-d-glucamine is retained in the final product. The seven Cr(III) sites have a range of coordination environments, and the divalent metal site is crystallographically identified and has a Phpy ligand attached to it. By using complementary experimental techniques, including magnetization and specific heat measurements, inelastic neutron scattering, and electron paramagnetic resonance spectroscopy, we have investigated the magnetic features of this family of {Cr7M} rings. Microscopic parameters of the spin Hamiltonian have been determined as a result of best fits of the different experimental data, allowing a direct comparison with corresponding parameters found in the parent compounds. We examine whether these parameters can be transferred between compounds and compare them with those of an earlier family of heterometallic rings.
RESUMO
Triethanolamine, teaH3, and diethanolamine, RdeaH2, 3d-4f and 4f compounds demonstrate an enormous variety in their structure and bonding. This review examines the synthetic strategies to these molecules and their magnetic properties, whilst trying to assess these ligands' suitability towards new SMMs and magnetic refrigerants.
RESUMO
A series of water-bridged dinickel complexes of the general formula [Ni2(µ2-OH2)(µ2-O2C(t)Bu)2(O2C(t)Bu)2(L)(L')] (L = HO2C(t)Bu, L' = HO2C(t)Bu (1), pyridine (2), 3-methylpyridine (4); L = L' = pyridine (3), 3-methylpyridine (5)) has been synthesized and structurally characterized by X-ray crystallography. The magnetic properties have been probed by magnetometry and EPR spectroscopy, and detailed measurements show that the axial zero-field splitting, D, of the nickel(II) ions is on the same order as the isotropic exchange interaction, J, between the nickel sites. The isotropic exchange interaction can be related to the angle between the nickel centers and the bridging water molecule, while the magnitude of D can be related to the coordination sphere at the nickel sites.
RESUMO
[Ru2Mn(O)(O2CtBu)6(py)3] has an S=5/2 ground state with a very large zero-field splitting (ZFS) of D=2.9â cm(-1), as characterized by EPR spectroscopy at 4-330â GHz. This is far too large to be due to the Mn(II) ion (D <0.2â cm(-1)), as shown from the {Fe2Mn} analogue, but can be modeled by antisymmetric exchange effects.