Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Proteome Res ; 22(4): 1148-1158, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36445260

RESUMO

The Chromosome-centric Human Proteome Project (C-HPP) aims at identifying the proteins as gene products encoded by the human genome, characterizing their isoforms and functions. The existence of products has now been confirmed for 93.2% of the genes at the protein level. The remaining mostly correspond to proteins of low abundance or difficult to access. Over the past years, we have significantly contributed to the identification of missing proteins in the human spermatozoa. We pursue our search in the reproductive sphere with a focus on early human embryonic development. Pluripotent cells, developing into the fetus, and trophoblast cells, giving rise to the placenta, emerge during the first weeks. This emergence is a focus of scientists working in the field of reproduction, placentation and regenerative medicine. Most knowledge has been harnessed by transcriptomic analysis. Interestingly, some genes are uniquely expressed in those cells, giving the opportunity to uncover new proteins that might play a crucial role in setting up the molecular events underlying early embryonic development. Here, we analyzed naive pluripotent and trophoblastic stem cells and discovered 4 new missing proteins, thus contributing to the C-HPP. The mass spectrometry proteomics data was deposited on ProteomeXchange under the data set identifier PXD035768.


Assuntos
Proteoma , Trofoblastos , Masculino , Humanos , Proteoma/genética , Proteoma/análise , Espectrometria de Massas , Cromossomos/química , Linhagem Celular
2.
Protein Expr Purif ; 210: 106325, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37354924

RESUMO

The family of ATP-binding cassette F proteins (ABC-F) is mainly made up of cytosolic proteins involved in regulating protein synthesis, and they are often part of a mechanism that confers resistance to ribosome-targeting antibiotics. The existing literature has emphasized the difficulty of purifying these recombinant proteins because of their very low solubility and stability. Here, we describe a rapid and efficient three-step purification procedure that allows for the production of untagged ABC-F proteins from Enterococcus faecium in the heterologous host Escherichia coli. After four purified ABC-F proteins were produced using this protocol, their biological activities were validated by in vitro experiment. In conclusion, our study provides an invaluable tool for obtaining large amounts of untagged and soluble ABC-F proteins that can then be used for in vitro experiments.


Assuntos
Enterococcus faecium , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Biossíntese de Proteínas , Antibacterianos/metabolismo , Ribossomos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
3.
BMC Genomics ; 23(1): 839, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536309

RESUMO

BACKGROUND: Despite many improvements with in vitro culture systems, the quality and developmental ability of mammalian embryos produced in vitro are still lower than their in vivo counterparts. Though previous studies have evidenced differences in gene expression between in vivo- and in vitro-derived bovine embryos, there is no comparison at the protein expression level. RESULTS: A total of 38 pools of grade-1 quality bovine embryos at the 4-6 cell, 8-12 cell, morula, compact morula, and blastocyst stages developed either in vivo or in vitro were analyzed by nano-liquid chromatography coupled with label-free quantitative mass spectrometry, allowing for the identification of 3,028 proteins. Multivariate analysis of quantified proteins showed a clear separation of embryo pools according to their in vivo or in vitro origin at all stages. Three clusters of differentially abundant proteins (DAPs) were evidenced according to embryo origin, including 463 proteins more abundant in vivo than in vitro across development and 314 and 222 proteins more abundant in vitro than in vivo before and after the morula stage, respectively. The functional analysis of proteins found more abundant in vivo showed an enrichment in carbohydrate metabolism and cytoplasmic cellular components. Proteins found more abundant in vitro before the morula stage were mostly localized in mitochondrial matrix and involved in ATP-dependent activity, while those overabundant after the morula stage were mostly localized in the ribonucleoprotein complex and involved in protein synthesis. Oviductin and other oviductal proteins, previously shown to interact with early embryos, were among the most overabundant proteins after in vivo development. CONCLUSIONS: The maternal environment led to higher degradation of mitochondrial proteins at early developmental stages, lower abundance of proteins involved in protein synthesis at the time of embryonic genome activation, and a global upregulation of carbohydrate metabolic pathways compared to in vitro production. Furthermore, embryos developed in vivo internalized large amounts of oviductin and other proteins probably originated in the oviduct as soon as the 4-6 cell stage. These data provide new insight into the molecular contribution of the mother to the developmental ability of early embryos and will help design better in vitro culture systems.


Assuntos
Embrião de Mamíferos , Proteômica , Bovinos , Animais , Embrião de Mamíferos/metabolismo , Blastocisto , Proteínas/metabolismo , Mórula/metabolismo , Desenvolvimento Embrionário , Mamíferos
4.
BMC Genomics ; 22(1): 308, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910518

RESUMO

BACKGROUND: We previously reported the results of CRISPR/Cas9 knock-out (KO) of type-I and type-III vitellogenins (Vtgs) in zebrafish, which provided the first experimental evidence on essentiality and disparate functioning of Vtgs at different stages during early development. However, the specific contributions of different types of Vtg to major cellular processes remained to be investigated. The present study employed liquid chromatography and tandem mass spectrometry (LC-MS/MS) to meet this deficit. Proteomic profiles of zebrafish eggs lacking three type-I Vtgs simultaneously (vtg1-KO), or lacking only type III Vtg (vtg3-KO) were compared to those of wild type (Wt) eggs. Obtained spectra were searched against a zebrafish proteome database and identified proteins were quantified based on normalized spectral counts. RESULTS: The vtg-KO caused severe changes in the proteome of 1-cell stage zebrafish eggs. These changes were disclosed by molecular signatures that highly resembled the proteomic phenotype of poor quality zebrafish eggs reported in our prior studies. Proteomic profiles of vtg-KO eggs and perturbations in abundances of hundreds of proteins revealed unique, noncompensable contributions of multiple Vtgs to protein and in energy homeostasis. The lack of this contribution appears to have a significant impact on endoplasmic reticulum and mitochondrial functions, and thus embryonic development, even after zygotic genome activation. Increased endoplasmic reticulum stress, Redox/Detox activities, glycolysis/gluconeogenesis, enrichment in cellular proliferation and in human neurodegenerative disease related activities in both vtg1- and vtg3-KO eggs were found to be indicators of the aforementioned conditions. Distinctive increase in apoptosis and Parkinson disease pathways, as well as the decrease in lipid metabolism related activities in vtg3-KO eggs implies compelling roles of Vtg3, the least abundant form of Vtgs in vertebrate eggs, in mitochondrial activities. Several differentially abundant proteins representing the altered molecular mechanisms have been identified as strong candidate markers for studying the details of these mechanisms during early embryonic development in zebrafish and possibly other vertebrates. CONCLUSIONS: These findings indicate that the global egg proteome is subject to extensive modification depending on the presence or absence of specific Vtgs and that these modifications can have a major impact on developmental competence.


Assuntos
Doenças Neurodegenerativas , Peixe-Zebra , Animais , Cromatografia Líquida , Humanos , Fenótipo , Proteômica , Espectrometria de Massas em Tandem , Vitelogeninas/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
5.
Int J Mol Sci ; 21(2)2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31940782

RESUMO

The bovine embryo develops in contact with the oviductal fluid (OF) during the first 4-5 days of pregnancy. The aim of this study was to decipher the protein interactions occurring between the developing embryo and surrounding OF. In-vitro produced 4-6 cell and morula embryos were incubated or not (controls) in post-ovulatory OF (OF-treated embryos) and proteins were then analyzed and quantified by high resolution mass spectrometry (MS) in both embryo groups and in OF. A comparative analysis of MS data allowed the identification and quantification of 56 embryo-interacting proteins originated from the OF, including oviductin (OVGP1) and several annexins (ANXA1, ANXA2, ANXA4) as the most abundant ones. Some embryo-interacting proteins were developmental stage-specific, showing a modulating role of the embryo in protein interactions. Three interacting proteins (OVGP1, ANXA1 and PYGL) were immunolocalized in the perivitelline space and in blastomeres, showing that OF proteins were able to cross the zona pellucida and be taken up by the embryo. Interacting proteins were involved in a wide range of functions, among which metabolism and cellular processes were predominant. This study identified for the first time a high number of oviductal embryo-interacting proteins, paving the way for further targeted studies of proteins potentially involved in the establishment of pregnancy in cattle.


Assuntos
Blastômeros/metabolismo , Mórula/metabolismo , Oviductos/metabolismo , Proteoma/metabolismo , Animais , Anexinas/genética , Anexinas/metabolismo , Bovinos , Feminino , Proteoma/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Membrana Vitelina/metabolismo
6.
BMC Genomics ; 20(1): 56, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30654742

RESUMO

BACKGROUND: Accurate structural annotation of genomes is still a challenge, despite the progress made over the past decade. The prediction of gene structure remains difficult, especially for eukaryotic species, and is often erroneous and incomplete. We used a proteogenomics strategy, taking advantage of the combination of proteomics datasets and bioinformatics tools, to identify novel protein coding-genes and splice isoforms, assign correct start sites, and validate predicted exons and genes. RESULTS: Our proteogenomics workflow, Peptimapper, was applied to the genome annotation of Ectocarpus sp., a key reference genome for both the brown algal lineage and stramenopiles. We generated proteomics data from various life cycle stages of Ectocarpus sp. strains and sub-cellular fractions using a shotgun approach. First, we directly generated peptide sequence tags (PSTs) from the proteomics data. Second, we mapped PSTs onto the translated genomic sequence. Closely located hits (i.e., PSTs locations on the genome) were then clustered to detect potential coding regions based on parameters optimized for the organism. Third, we evaluated each cluster and compared it to gene predictions from existing conventional genome annotation approaches. Finally, we integrated cluster locations into GFF files to use a genome viewer. We identified two potential novel genes, a ribosomal protein L22 and an aryl sulfotransferase and corrected the gene structure of a dihydrolipoamide acetyltransferase. We experimentally validated the results by RT-PCR and using transcriptomics data. CONCLUSIONS: Peptimapper is a complementary tool for the expert annotation of genomes. It is suitable for any organism and is distributed through a Docker image available on two public bioinformatics docker repositories: Docker Hub and BioShaDock. This workflow is also accessible through the Galaxy framework and for use by non-computer scientists at https://galaxy.protim.eu . Data are available via ProteomeXchange under identifier PXD010618.


Assuntos
Eucariotos/genética , Genoma , Anotação de Sequência Molecular , Proteogenômica/métodos , Software , Fluxo de Trabalho , Sequência de Aminoácidos , Códon/genética , Espectrometria de Massas , Peptídeos/química , Peptídeos/metabolismo , Reprodutibilidade dos Testes
7.
Mol Reprod Dev ; 86(9): 1168-1188, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31380595

RESUMO

Oviparous vertebrates produce multiple forms of vitellogenin (Vtg), the major source of yolk nutrients, but little is known about their individual contributions to reproduction and development. This study utilized clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) genome editing to assess essentiality and functionality of zebrafish (Danio rerio) type-I and type-III Vtgs. A multiple CRISPR approach was employed to knockout (KO) all genes encoding type-I vtgs (vtg1, 4, 5, 6, and 7) simultaneously (vtg1-KO), and the type-III vtg (vtg3) individually (vtg3-KO). Results of polymerase chain reaction (PCR) genotyping and sequencing, quantitative PCR, liquid chromatography-tandem mass spectrometry, and Western blot analysis showed that only vtg6 and vtg7 escaped Cas9 editing. In fish whose remaining type-I vtgs were incapacitated (vtg1-KO), and in vtg3-KO fish, significant increases in Vtg7 transcript and protein levels occurred in liver and eggs, revealing a heretofore-unknown mechanism of genetic compensation regulating Vtg homeostasis. Egg numbers per spawn were elevated more than 2-fold in vtg1-KO females, and egg fertility was approximately halved in vtg3-KO females. Substantial mortality was evident in vtg3-KO eggs/embryos after only 8 hr of incubation and in vtg1-KO embryos after 5 days. Hatching rate and timing were markedly impaired in embryos from vtg mutant mothers and pericardial and yolk sac/abdominal edema and spinal lordosis were evident in the larvae, with feeding and motor activities also being absent in vtg1-KO larvae. By late larval stages, vtg mutations were either completely lethal (vtg1-KO) or nearly so (vtg3-KO). These novel findings offer the first experimental evidence that different types of vertebrate Vtg are essential and have disparate requisite functions at different times during both reproduction and development.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Técnicas de Silenciamento de Genes , Vitelogeninas , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Vitelogeninas/genética , Vitelogeninas/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
J Proteome Res ; 17(12): 4197-4210, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30130116

RESUMO

For the C-HPP consortium, dark proteins include not only uPE1, but also missing proteins (MPs, PE2-4), smORFs, proteins from lncRNAs, and products from uncharacterized transcripts. Here, we investigated the expression of dark proteins in the human testis by combining public mRNA and protein expression data for several tissues and performing LC-MS/MS analysis of testis protein extracts. Most uncharacterized proteins are highly expressed in the testis. Thirty could be identified in our data set, of which two were selected for further analyses: (1) A0AOU1RQG5, a putative cancer/testis antigen specifically expressed in the testis, where it accumulates in the cytoplasm of elongated spermatids; and (2) PNMA6E, which is enriched in the testis, where it is found in the germ cell nuclei during most stages of spermatogenesis. Both proteins are coded on Chromosome X. Finally, we studied the expression of other dark proteins, uPE1 and MPs, in a series of human tissues. Most were highly expressed in the testis at both the mRNA and protein levels. The testis appears to be a relevant organ to study the dark proteome, which may have a function related to spermatogenesis and germ cell differentiation. The mass spectrometry proteomics data have been deposited with the ProteomeXchange Consortium under the data set identifier PXD009598.


Assuntos
Proteoma/química , Testículo/química , Cromatografia Líquida , Mineração de Dados , Humanos , Imuno-Histoquímica , Masculino , Proteínas/análise , Proteômica/métodos , RNA Mensageiro/análise , Espectrometria de Massas em Tandem
9.
BMC Mol Biol ; 19(1): 13, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463513

RESUMO

BACKGROUND: Glioblastoma (GB) is the most common and aggressive tumor of the brain. Genotype-based approaches and independent analyses of the transcriptome or the proteome have led to progress in understanding the underlying biology of GB. Joint transcriptome and proteome profiling may reveal new biological insights, and identify pathogenic mechanisms or therapeutic targets for GB therapy. We present a comparison of transcriptome and proteome data from five GB biopsies (TZ) vs their corresponding peritumoral brain zone (PBZ). Omic analyses were performed using RNA microarray chips and the isotope-coded protein label method (ICPL). RESULTS: As described in other cancers, we found a poor correlation between transcriptome and proteome data in GB. We observed only two commonly deregulated mRNAs/proteins (neurofilament light polypeptide and synapsin 1) and 12 altered biological processes; they are related to cell communication, synaptic transmission and nervous system processes. This poor correlation may be a consequence of the techniques used to produce the omic profiles, the intrinsic properties of mRNA and proteins and/or of cancer- or GB-specific phenomena. Of interest, the analysis of the transcription factor binding sites present upstream from the open reading frames of all altered proteins identified by ICPL method shows a common binding site for the topoisomerase I and p53-binding protein TOPORS. Its expression was observed in 7/11 TZ samples and not in PBZ. Some findings suggest that TOPORS may function as a tumor suppressor; its implication in gliomagenesis should be examined in future studies. CONCLUSIONS: In this study, we showed a low correlation between transcriptome and proteome data for GB samples as described in other cancer tissues. We observed that NEFL, SYN1 and 12 biological processes were deregulated in both the transcriptome and proteome data. It will be important to analyze more specifically these processes and these two proteins to allow the identification of new theranostic markers or potential therapeutic targets for GB.


Assuntos
Glioblastoma/genética , Glioblastoma/metabolismo , Proteoma , Transcriptoma , Idoso , Estudos de Casos e Controles , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Anotação de Sequência Molecular , Especificidade de Órgãos , Proteômica
10.
J Proteome Res ; 15(11): 3998-4019, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27444420

RESUMO

The Chromosome-Centric Human Proteome Project (C-HPP) aims to identify "missing" proteins in the neXtProt knowledgebase. We present an in-depth proteomics analysis of the human sperm proteome to identify testis-enriched missing proteins. Using protein extraction procedures and LC-MS/MS analysis, we detected 235 proteins (PE2-PE4) for which no previous evidence of protein expression was annotated. Through LC-MS/MS and LC-PRM analysis, data mining, and immunohistochemistry, we confirmed the expression of 206 missing proteins (PE2-PE4) in line with current HPP guidelines (version 2.0). Parallel reaction monitoring acquisition and sythetic heavy labeled peptides targeted 36 ≪one-hit wonder≫ candidates selected based on prior peptide spectrum match assessment. 24 were validated with additional predicted and specifically targeted peptides. Evidence was found for 16 more missing proteins using immunohistochemistry on human testis sections. The expression pattern for some of these proteins was specific to the testis, and they could possibly be valuable markers with fertility assessment applications. Strong evidence was also found of four "uncertain" proteins (PE5); their status should be re-examined. We show how using a range of sample preparation techniques combined with MS-based analysis, expert knowledge, and complementary antibody-based techniques can produce data of interest to the community. All MS/MS data are available via ProteomeXchange under identifier PXD003947. In addition to contributing to the C-HPP, we hope these data will stimulate continued exploration of the sperm proteome.


Assuntos
Proteoma/análise , Espermatozoides/química , Cromatografia Líquida , Mineração de Dados , Bases de Dados de Proteínas , Humanos , Imuno-Histoquímica , Masculino , Proteômica/métodos , Espectrometria de Massas em Tandem , Testículo/química
11.
J Proteome Res ; 14(9): 3606-20, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26168773

RESUMO

The Chromosome-Centric Human Proteome Project (C-HPP) aims at cataloguing the proteins as gene products encoded by the human genome in a chromosome-centric manner. The existence of products of about 82% of the genes has been confirmed at the protein level. However, the number of so-called "missing proteins" remains significant. It was recently suggested that the expression of proteins that have been systematically missed might be restricted to particular organs or cell types, for example, the testis. Testicular function, and spermatogenesis in particular, is conditioned by the successive activation or repression of thousands of genes and proteins including numerous germ cell- and testis-specific products. Both the testis and postmeiotic germ cells are thus promising sites at which to search for missing proteins, and ejaculated spermatozoa are a potential source of proteins whose expression is restricted to the germ cell lineage. A trans-chromosome-based data analysis was performed to catalog missing proteins in total protein extracts from isolated human spermatozoa. We have identified and manually validated peptide matches to 89 missing proteins in human spermatozoa. In addition, we carefully validated three proteins that were scored as uncertain in the latest neXtProt release (09.19.2014). A focus was then given to the 12 missing proteins encoded on chromosomes 2 and 14, some of which may putatively play roles in ciliation and flagellum mechanistics. The expression pattern of C2orf57 and TEX37 was confirmed in the adult testis by immunohistochemistry. On the basis of transcript expression during human spermatogenesis, we further consider the potential for discovering additional missing proteins in the testicular postmeiotic germ cell lineage and in ejaculated spermatozoa. This project was conducted as part of the C-HPP initiatives on chromosomes 14 (France) and 2 (Switzerland). The mass spectrometry proteomics data have been deposited with the ProteomeXchange Consortium under the data set identifier PXD002367.


Assuntos
Mapeamento Cromossômico , Modelos Biológicos , Proteínas/genética , Proteoma , Espermatozoides/química , Cromatografia Líquida , Humanos , Masculino , Proteínas/química , Espectrometria de Massas em Tandem
12.
J Neurooncol ; 122(1): 53-61, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25559687

RESUMO

Glioblastoma (GB) is the most frequent and aggressive type of primary brain tumor. Recurrences are mostly located at the margin of the resection cavity in the peritumoral brain zone (PBZ). Although it is widely believed that infiltrative tumor cells in this zone are responsible for GB recurrence, few studies have examined this zone. In this study, we analyzed PBZ left after surgery with a variety of techniques including radiology, histopathology, flow cytometry, genomic, transcriptomic, proteomic, and primary cell cultures. The resulting PBZ profiles were compared with those of the GB tumor zone and normal brain samples to identify characteristics specific to the PBZ. We found that tumor cell infiltration detected by standard histological analysis was present in almost one third of PBZ taken from an area that was considered normal both on standard MRI and by the neurosurgeon under an operating microscope. The panel of techniques used in this study show that the PBZ, similar to the tumor zone itself, is characterized by substantial inter-patient heterogeneity, which makes it difficult to identify representative markers. Nevertheless, we identified specific alterations in the PBZ such as the presence of selected tumor clones and stromal cells with tumorigenic and angiogenic properties. The study of GB-PBZ is a growing field of interest and this region needs to be characterized further. This will facilitate the development of new, targeted therapies for patients with GB and the development of approaches to refine the per-operative evaluation of the PBZ to optimize the surgical resection of the tumor.


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Hibridização Genômica Comparativa/métodos , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica , Glioblastoma/patologia , Imageamento por Ressonância Magnética/métodos , Proteômica/métodos , Biomarcadores Tumorais/análise , Encéfalo/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Estudos de Casos e Controles , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos
13.
Sci Rep ; 14(1): 9651, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671194

RESUMO

In contrast to most fishes, salmonids exhibit the unique ability to hold their eggs for several days after ovulation without significant loss of viability. During this period, eggs are held in the body cavity in a biological fluid, the coelomic fluid (CF) that is responsible for preserving egg viability. To identify CF proteins responsible for preserving egg viability, a proteomic comparison was performed using 3 salmonid species and 3 non-salmonid species to identify salmonid-specific highly abundant proteins. In parallel, rainbow trout CF fractions were purified and used in a biological test to estimate their egg viability preservation potential. The most biologically active CF fractions were then subjected to mass spectrometry analysis. We identified 50 proteins overabundant in salmonids and present in analytical fractions with high egg viability preservation potential. The identity of these proteins illuminates the biological processes participating in egg viability preservation. Among identified proteins of interest, the ovarian-specific expression and abundance in CF at ovulation of N-acetylneuraminic acid synthase a (Nansa) suggest a previously unsuspected role. We show that salmonid CF is a complex biological fluid containing a diversity of proteins related to immunity, calcium binding, lipid metabolism, proteolysis, extracellular matrix and sialic acid metabolic pathway that are collectively responsible for preserving egg viability.


Assuntos
Ovário , Salmonidae , Animais , Feminino , Ovário/metabolismo , Salmonidae/metabolismo , Óvulo/metabolismo , Proteínas de Peixes/metabolismo , Proteômica/métodos , Líquidos Corporais/metabolismo , Oncorhynchus mykiss/metabolismo
14.
Sci Rep ; 13(1): 18795, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914813

RESUMO

The specific functions and essentiality of type II vitellogenin (Vtg2) in early zebrafish development were investigated in this study. A vtg2-mutant zebrafish line was produced and effects of genomic disturbance were observed in F2 females and F3 offspring. No change in vtg2 transcript has been detected, however, Vtg2 abundance in F2 female liver was 5×, and in 1 hpf F3 vtg2-mutant embryos was 3.8× less than Wt (p < 0.05). Fecundity was unaffected while fertilization rate was more than halved in F2 vtg2-mutant females (p < 0.05). Hatching rate was significantly higher in F3 vtg2-mutant embryos in comparison to Wt embryos. Survival rate declined drastically to 29% and 18% at 24 hpf and 20 dpf, respectively, in F3 vtg2-mutant embryos. The introduced mutation caused vitelline membrane deficiencies, significant mortalities at early embryonic stages, and morphological abnormalities in the surviving F3 vtg2-mutant larvae. Overrepresentation of histones, zona pellucida proteins, lectins, and protein degradation related proteins in F3 vtg2-mutant embryos provide evidence to impaired mechanisms involved in vitellin membrane formation. Overall findings imply a potential function of Vtg2 in acquisition of vitellin membrane integrity, among other reproductive functions, and therefore, its essentiality in early zebrafish embryo development.


Assuntos
Vitelogeninas , Peixe-Zebra , Animais , Feminino , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Genômica , Larva/metabolismo , Vitelinas/metabolismo , Vitelinas/farmacologia , Vitelogeninas/genética , Vitelogeninas/metabolismo , Peixe-Zebra/metabolismo
15.
J Anim Sci Biotechnol ; 14(1): 30, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36797800

RESUMO

BACKGROUND: Spermatozoa interact with oviduct secretions before fertilization in vivo but the molecular players of this dialog and underlying dynamics remain largely unknown. Our objectives were to identify an exhaustive list of sperm-interacting proteins (SIPs) in the bovine oviduct fluid and to evaluate the impact of the oviduct anatomical region (isthmus vs. ampulla) and time relative to ovulation (pre-ovulatory vs. post-ovulatory) on SIPs number and abundance. METHODS: Pools of oviduct fluid (OF) from the pre-ovulatory ampulla, pre-ovulatory isthmus, post-ovulatory ampulla, and post-ovulatory isthmus in the side of ovulation were collected from the slaughterhouse. Frozen-thawed bull sperm were incubated with OF or phosphate-buffered saline (control) for 60 min at 38.5 °C. After protein extraction and digestion, sperm and OF samples were analyzed by nanoLC-MS/MS and label-free protein quantification. RESULTS: A quantitative comparison between proteins identified in sperm and OF samples (2333 and 2471 proteins, respectively) allowed for the identification of 245 SIPs. The highest number (187) were found in the pre-ovulatory isthmus, i.e., time and place of the sperm reservoir. In total, 41 SIPs (17%) were differentially abundant between stages in a given region or between regions at a given stage and 76 SIPs (31%) were identified in only one region × stage condition. Functional analysis of SIPs predicted roles in cell response to stress, regulation of cell motility, fertilization, and early embryo development. CONCLUSION: This study provides a comprehensive list of SIPs in the bovine oviduct and evidences dynamic spatio-temporal changes in sperm-oviduct interactions around ovulation time. Moreover, these data provide protein candidates to improve sperm conservation and in vitro fertilization media.

16.
Int J Biol Sci ; 19(4): 1080-1093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923944

RESUMO

EXOSC10 is a catalytic subunit of the nuclear RNA exosome, and possesses a 3'-5' exoribonuclease activity. The enzyme processes and degrades different classes of RNAs. To delineate the role of EXOSC10 during oocyte growth, specific Exosc10 inactivation was performed in oocytes from the primordial follicle stage onward using the Gdf9-iCre; Exosc10 f/- mouse model (Exosc10 cKO(Gdf9)). Exosc10 cKO(Gdf9) female mice are infertile. The onset of puberty and the estrus cycle in mutants are initially normal and ovaries contain all follicle classes. By the age of eight weeks, vaginal smears reveal irregular estrus cycles and mutant ovaries are completely depleted of follicles. Mutant oocytes retrieved from the oviduct are degenerated, and occasionally show an enlarged polar body, which may reflect a defective first meiotic division. Under fertilization conditions, the mutant oocytes do not enter into an embryonic development process. Furthermore, we conducted a comparative proteome analysis of wild type and Exosc10 knockout mouse ovaries, and identified EXOSC10-dependent proteins involved in many biological processes, such as meiotic cell cycle progression and oocyte maturation. Our results unambiguously demonstrate an essential role for EXOSC10 in oogenesis and may serve as a model for primary ovarian insufficiency in humans. Data are available via ProteomeXchange with identifier PXD039417.


Assuntos
Fenômenos Biológicos , Reserva Ovariana , Animais , Feminino , Humanos , Lactente , Camundongos , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Oócitos/metabolismo , Oogênese/genética
17.
FEBS J ; 290(12): 3145-3164, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36694998

RESUMO

CD95 is a member of the TNF receptor superfamily that is ubiquitously expressed in healthy and pathological tissues. Stimulation of CD95 by its physiological ligand CD95L induces its oligomerization leading in turn to the transduction of either apoptotic or nonapoptotic signals. CD95L can exist as both membrane-anchored and soluble forms (sCD95L), the latter resulting from the proteolytic cleavage of the former. Candidate proteases able to achieve CD95L cleavage were identified as matrix metalloproteases (MMP) due to their demonstrated ability to cleave other TNF superfamily ligands. The main goal of this study was to systematically identify the MMP family members capable of cleaving CD95L and subsequently determine the corresponding cleavage sites. By using different orthogonal biochemical approaches and combining them with molecular modelling, we confirmed data from the literature regarding CD95L cleavage by MMP-3 and MMP-7. Moreover, we found that MMP-2 and MMP-12 can cleave CD95L and characterized their resulting cleavage sites. This study provides a systematic approach to analyse the cleavage of CD95L, which until now had only been poorly described.


Assuntos
Metaloproteases , Receptor fas , Proteína Ligante Fas/química , Receptor fas/fisiologia , Apoptose/fisiologia
18.
Mar Environ Res ; 191: 106149, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37611374

RESUMO

In intertidal zones, species such as sessile shellfish exhibit extended phenotypic plasticity to face rapid environmental changes, but whether frequent exposure to intertidal limits of the distribution range impose physiological costs for the animal remains elusive. Here, we explored how phenotypic plasticity varied along foreshore range at multiple organization levels, from molecular to cellular and whole organism acclimatization, in the Pacific oyster (Crassostrea gigas). We exposed 7-month-old individuals for up to 16 months to three foreshore levels covering the vertical range for this species, representing 20, 50 and 80% of the time spent submerged monthly. Individuals at the upper range limit produced energy more efficiently, as seen by steeper metabolic reactive norms and unaltered ATP levels despite reduced mitochondrial density. By spending most of their time emerged, oysters mounted an antioxidant shielding concomitant with lower levels of pro-oxidant proteins and postponed age-related telomere attrition. Instead, individuals exposed at the lower limit range near subtidal conditions showed lower energy efficiencies, greater oxidative stress and shorter telomere length. These results unraveled the extended acclimatization strategies and the physiological costs of living too fast in subtidal conditions for an intertidal species.

19.
Proteomics ; 12(21): 3180-92, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22965736

RESUMO

Bacterial biofilm development is conditioned by complex processes involving bacterial attachment to surfaces, growth, mobility, and exoproduct production. The marine bacterium Pseudoalteromonas sp. strain D41 is able to attach strongly onto a wide variety of substrates, which promotes subsequent biofilm development. Study of the outer-membrane and total soluble proteomes showed ten spots with significant intensity variations when this bacterium was grown in biofilm compared to planktonic cultures. MS/MS de novo sequencing analysis allowed the identification of four outer-membrane proteins of particular interest since they were strongly induced in biofilms. These proteins are homologous to a TonB-dependent receptor (TBDR), to the OmpW and OmpA porins, and to a type IV pilus biogenesis protein (PilF). Gene expression assays by quantitative RT-PCR showed that the four corresponding genes were upregulated during biofilm development on hydrophobic and hydrophilic surfaces. The Pseudomonas aeruginosa mutants unable to produce any of the OmpW, OmpA, and PilF homologues yielded biofilms with lower biovolumes and altered architectures, confirming the involvement of these proteins in the biofilm formation process. Our results indicate that Pseudoalteromonas sp. D41 shares biofilm formation mechanisms with human pathogenic bacteria, but also relies on TBDR, which might be more specific to the marine environment.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Biofilmes , Proteoma/química , Pseudoalteromonas/fisiologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Eletroforese em Gel Bidimensional , Fenótipo , Proteoma/genética , Proteoma/metabolismo , Proteômica , Pseudoalteromonas/química , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Solubilidade
20.
Biol Reprod ; 86(3): 74, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22156474

RESUMO

Matrix-assisted laser desorption/ionization (MALDI) tissue imaging mass spectrometry is particularly promising among the numerous applications of mass spectrometry. It is used for probing and analyzing the spatial arrangement of a wide range of molecules, including proteins, peptides, lipids, drugs, and metabolites, directly in thin slices of tissue. In the field of proteomics, the technology avoids tedious and time-consuming extraction and fractionation steps classically required for sample analysis. MALDI imaging mass spectrometry is increasingly recognized as a powerful method for clinical proteomics, particularly in cancer research. The technology has particular potential for the discovery of new tissue biomarker candidates, classification of tumors, early diagnosis or prognosis, elucidating pathogenesis pathways, and therapy monitoring. Over recent years, MALDI imaging mass spectrometry has been used for molecular profiling and imaging directly in male and female reproductive tissues. This review will consider some of the recent publications in the field, addressing a range of issues covering embryo development, gene expression product profiling during gametogenesis, and seeking and identifying biomarkers of reproductive cancers. The wealth of advances in mass spectrometry imaging will inevitably attract biologists and clinicians as the advantages and power of this technology become more widely known. This review will also discuss bottlenecks and the many technical issues that remain to be resolved before laboratories in the field can adopt the technology. We foresee that MALDI imaging mass spectrometry will have a major impact in reproductive research by opening new avenues to the understanding of various molecular mechanisms and the diagnosis of reproductive pathologies.


Assuntos
Pesquisa Biomédica/tendências , Reprodução/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/tendências , Animais , Biomarcadores Tumorais/metabolismo , Pesquisa Biomédica/métodos , Desenvolvimento Embrionário/fisiologia , Perfilação da Expressão Gênica , Humanos , Neoplasias/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA