Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 115(3): 1446-57, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26763775

RESUMO

Locomotor control requires functional flexibility to support an animal's full behavioral repertoire. This flexibility is partly endowed by neuromodulators, allowing neural networks to generate a range of motor output configurations. In hatchling Xenopus tadpoles, before the onset of free-swimming behavior, the gaseous modulator nitric oxide (NO) inhibits locomotor output, shortening swim episodes and decreasing swim cycle frequency. While populations of nitrergic neurons are already present in the tadpole's brain stem at hatching, neurons positive for the NO-synthetic enzyme, NO synthase, subsequently appear in the spinal cord, suggesting additional as yet unidentified roles for NO during larval development. Here, we first describe the expression of locomotor behavior during the animal's change from an early sessile to a later free-swimming lifestyle and then compare the effects of NO throughout tadpole development. We identify a discrete switch in nitrergic modulation from net inhibition to overall excitation, coincident with the transition to free-swimming locomotion. Additionally, we show in isolated brain stem-spinal cord preparations of older larvae that NO's excitatory effects are manifested as an increase in the probability of spontaneous swim episode occurrence, as found previously for the neurotransmitter dopamine, but that these effects are mediated within the brain stem. Moreover, while the effects of NO and dopamine are similar, the two modulators act in parallel rather than NO operating serially by modulating dopaminergic signaling. Finally, NO's activation of neurons in the brain stem also leads to the release of NO in the spinal cord that subsequently contributes to NO's facilitation of swimming.


Assuntos
Tronco Encefálico/crescimento & desenvolvimento , Óxido Nítrico/metabolismo , Natação , Animais , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiologia , Dopamina/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/fisiologia , Inibição Neural , Periodicidade , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo , Medula Espinal/fisiologia , Xenopus
2.
J Exp Biol ; 219(Pt 8): 1110-21, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27103674

RESUMO

During swimming in the amphibian ITALIC! Xenopus laevis, efference copies of rhythmic locomotor commands produced by the spinal central pattern generator (CPG) can drive extraocular motor output appropriate for producing image-stabilizing eye movements to offset the disruptive effects of self-motion. During metamorphosis, ITALIC! X. laevisremodels its locomotor strategy from larval tail-based undulatory movements to bilaterally synchronous hindlimb kicking in the adult. This change in propulsive mode results in head/body motion with entirely different dynamics, necessitating a concomitant switch in compensatory ocular movements from conjugate left-right rotations to non-conjugate convergence during the linear forward acceleration produced during each kick cycle. Here, using semi-intact or isolated brainstem/spinal cord preparations at intermediate metamorphic stages, we monitored bilateral eye motion along with extraocular, spinal axial and limb motor nerve activity during episodes of spontaneous fictive swimming. Our results show a progressive transition in spinal efference copy control of extraocular motor output that remains adapted to offsetting visual disturbances during the combinatorial expression of bimodal propulsion when functional larval and adult locomotor systems co-exist within the same animal. In stages at metamorphic climax, spino-extraocular motor coupling, which previously derived from axial locomotor circuitry alone, can originate from both axial and ITALIC! de novohindlimb CPGs, although the latter's influence becomes progressively more dominant and eventually exclusive as metamorphosis terminates with tail resorption. Thus, adaptive interactions between locomotor and extraocular motor circuitry allows CPG-driven efference copy signaling to continuously match the changing spatio-temporal requirements for visual image stabilization throughout the transitional period when one propulsive mechanism emerges and replaces another.


Assuntos
Adaptação Fisiológica , Movimentos Oculares/fisiologia , Locomoção/fisiologia , Metamorfose Biológica/fisiologia , Atividade Motora/fisiologia , Medula Espinal/fisiologia , Xenopus laevis/fisiologia , Animais , Modelos Biológicos , Natação/fisiologia
3.
J Neurosci ; 33(10): 4253-64, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23467343

RESUMO

In swimming Xenopus laevis tadpoles, gaze stabilization is achieved by efference copies of spinal locomotory CPG output that produce rhythmic extraocular motor activity appropriate for minimizing motion-derived visual disturbances. During metamorphosis, Xenopus switches its locomotory mechanism from larval tail-based undulatory movements to bilaterally synchronous hindlimb kick propulsion in the adult. The change in locomotory mode leads to body motion dynamics that no longer require conjugate left-right eye rotations for effective retinal image stabilization. Using in vivo kinematic analyses, in vitro electrophysiological recordings and specific CNS lesions, we have investigated spino-extraocular motor coupling in the juvenile frog and the underlying neural pathways to understand how gaze control processes are altered in accordance with the animal's change in body plan and locomotor strategy. Recordings of extraocular and limb motor nerves during spontaneous "fictive" swimming in isolated CNS preparations revealed that there is indeed a corresponding change in spinal efference copy control of extraocular motor output. In contrast to fictive larval swimming where alternating bursts occur in bilateral antagonistic horizontal extraocular nerves, during adult fictive limb-kicking, these motor nerves are synchronously active in accordance with the production of convergent eye movements during the linear head accelerations resulting from forward propulsion. Correspondingly, the neural pathways mediating spino-extraocular coupling have switched from contralateral to strictly ipsilateral ascending influences that ensure a coactivation of bilateral extraocular motoneurons with synchronous left-right limb extensions. Thus, adaptive developmental plasticity during metamorphosis enables spinal CPG-driven extraocular motor activity to match the changing requirements for eye movement control during self-motion.


Assuntos
Fixação Ocular/fisiologia , Medula Espinal/fisiologia , Natação/fisiologia , Xenopus laevis/fisiologia , Potenciais de Ação/fisiologia , Animais , Anuros , Fenômenos Biomecânicos , Tronco Encefálico/lesões , Tronco Encefálico/fisiologia , Extremidades/inervação , Feminino , Lateralidade Funcional , Técnicas In Vitro , Masculino , Metamorfose Biológica/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Traumatismos do Nervo Óptico/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Estatísticas não Paramétricas , Gravação em Vídeo
4.
Curr Opin Neurobiol ; 82: 102753, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37549591

RESUMO

The transition from larval to adult locomotion in the anuran, Xenopus laevis, involves a dramatic switch from axial to appendicular swimming including intermediate stages when the tail and hindlimbs co-exist and contribute to propulsion. Hatchling tadpole swimming is generated by an axial central pattern generator (CPG) which matures rapidly during early larval life. During metamorphosis, the developing limbs are controlled by a de novo appendicular CPG driven initially by the axial system before segregating to allow both systems to operate together or independently. Neuromodulation plays important roles throughout, but key modulators switch their effects from early inhibitory influences to facilitating locomotion. Temperature affects the construction and operation of locomotor networks and global changes in environmental temperature place aquatic poikilotherms, like amphibians, at risk. The locomotor control strategy of anurans differs from other amphibian groups such as salamanders, where evolution has acted upon the thyroid hormone pathway to sculpt different developmental outcomes.


Assuntos
Locomoção , Medula Espinal , Animais , Larva , Natação , Anuros , Metamorfose Biológica
5.
Nat Commun ; 13(1): 2957, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618719

RESUMO

Locomotion in vertebrates is accompanied by retinal image-stabilizing eye movements that derive from sensory-motor transformations and predictive locomotor efference copies. During development, concurrent maturation of locomotor and ocular motor proficiency depends on the structural and neuronal capacity of the motion detection systems, the propulsive elements and the computational capability for signal integration. In developing Xenopus larvae, we demonstrate an interactive plasticity of predictive locomotor efference copies and multi-sensory motion signals to constantly elicit dynamically adequate eye movements during swimming. During ontogeny, the neuronal integration of vestibulo- and spino-ocular reflex components progressively alters as locomotion parameters change. In young larvae, spino-ocular motor coupling attenuates concurrent angular vestibulo-ocular reflexes, while older larvae express eye movements that derive from a combination of the two components. This integrative switch depends on the locomotor pattern generator frequency, represents a stage-independent gating mechanism, and appears during ontogeny when the swim frequency naturally declines with larval age.


Assuntos
Locomoção , Reflexo Vestíbulo-Ocular , Animais , Movimentos Oculares , Larva , Locomoção/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia , Xenopus laevis/fisiologia
6.
Curr Biol ; 32(2): 453-461.e4, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34856124

RESUMO

Efference copies are neural replicas of motor outputs used to anticipate the sensory consequences of a self-generated motor action or to coordinate neural networks involved in distinct motor behaviors.1 An established example of this motor-to-motor coupling is the efference copy of the propulsive motor command, which supplements classical visuo-vestibular reflexes to ensure gaze stabilization during amphibian larval locomotion.2 Such feedforward replica of spinal pattern-generating circuits produces a spino-extraocular motor coupled activity that evokes eye movements, spatiotemporally coordinated to tail undulation independently of any sensory signal.3,4 Exploiting the developmental stages of the frog,1 studies in metamorphing Xenopus demonstrated the persistence of this spino-extraocular motor command in adults and its developmental adaptation to tetrapodal locomotion.5,6 Here, we demonstrate for the first time the existence of a comparable locomotor-to-ocular motor coupling in the mouse. In neonates, ex vivo nerve recordings of brainstem-spinal cord preparations reveal a spino-extraocular motor coupled activity similar to the one described in Xenopus. In adult mice, trans-synaptic rabies virus injections in lateral rectus eye muscle label cervical spinal cord neurons closely connected to abducens motor neurons. Finally, treadmill-elicited locomotion in decerebrated preparations7 evokes rhythmic eye movements in synchrony with the limb gait pattern. Overall, our data are evidence for the conservation of locomotor-induced eye movements in vertebrate lineages. Thus, in mammals as in amphibians, CPG-efference copy feedforward signals might interact with sensory feedback to ensure efficient gaze control during locomotion.


Assuntos
Movimentos Oculares , Locomoção , Animais , Locomoção/fisiologia , Mamíferos , Camundongos , Neurônios Motores/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia , Medula Espinal/fisiologia , Xenopus laevis/fisiologia
7.
J Neurosci ; 29(4): 1163-74, 2009 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-19176825

RESUMO

The biogenic amines serotonin (5-HT) and noradrenaline (NA) are well known modulators of central pattern-generating networks responsible for vertebrate locomotion. Here we have explored monoaminergic modulation of the spinal circuits that generate two distinct modes of locomotion in the metamorphosing frog Xenopus laevis. At metamorphic climax when propulsion is achieved by undulatory larval tail movements and/or by kicking of the newly developed adult hindlimbs, the underlying motor networks remain spontaneously active in vitro, producing either separate fast axial and slow appendicular rhythms or a single combined rhythm that drives coordinated tail-based and limb-based swimming in vivo. In isolated spinal cords already expressing distinct axial and limb rhythms, bath-applied 5-HT induced coupled network activity through an opposite slowing of axial rhythmicity (by increasing motoneuron burst and cycle durations) and an acceleration of limb rhythmicity (by decreasing burst and cycle durations). In contrast, in preparations spontaneously expressing coordinated fictive locomotion, exogenous NA caused a dissociation of spinal activity into separate faster axial and slower appendicular rhythms by decreasing and increasing burst and cycle durations, respectively. Moreover, in preparations from premetamorphic and postmetamorphic animals that express exclusively axial-based or limb-based locomotion, 5-HT and NA modified the developmentally independent rhythms in a similar manner to the amines' opposing effects on the coexisting circuits at metamorphic climax. Thus, by exerting differential modulatory actions on one network that are opposite to their influences on a second adjacent circuit, these two amines are able to precisely regulate the functional relationship between different rhythmogenic networks in a developing vertebrate's spinal cord.


Assuntos
Locomoção/efeitos dos fármacos , Metamorfose Biológica/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Norepinefrina/farmacologia , Serotonina/farmacologia , Medula Espinal/efeitos dos fármacos , Xenopus laevis/fisiologia , Animais , Comportamento Animal , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/crescimento & desenvolvimento , Técnicas In Vitro , Locomoção/fisiologia , Metamorfose Biológica/fisiologia , Rede Nervosa/fisiologia , Medula Espinal/crescimento & desenvolvimento , Xenopus laevis/anatomia & histologia
8.
J Neurosci ; 28(35): 8810-20, 2008 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-18753383

RESUMO

Movement-derived sensory feedback adapts centrally generated motor programs to changing behavioral demands. Motor circuit output may also be shaped by distinct proprioceptive systems with different central actions, although little is known about the integrative processes by which such convergent sensorimotor regulation occurs. Here, we explore the combined actions of two previously identified proprioceptors on the gastric mill motor network in the lobster stomatogastric nervous system. Both mechanoreceptors [anterior gastric receptor (AGR) and posterior stomach receptor (PSR)] access the gastric circuit via the same pair of identified projection interneurons that either excite [commissural gastric (CG)] or inhibit [gastric inhibitor (GI)] different subsets of gastric network neurons. Mechanosensory information from the two receptors is integrated upstream to the gastric circuit at two levels: (1) postsynaptically, where both receptors excite the GI neuron while exerting opposing effects on the CG neuron, and (2) presynaptically, where PSR reduces AGR's excitation of the CG projection neuron. Concomitantly PSR selectively enhances AGR's activation of the GI neuron, possibly also via a presynaptic action. PSR's influences also far outlast its transient synaptic effects, indicating the additional involvement of modulatory processes. Consequently, PSR activation causes parallel input from AGR to be conveyed preferentially via the GI interneuron, resulting in a prolonged switch in the pattern of gastric circuit output. Therefore, via a combination of short- and long-lasting, presynaptic and postsynaptic actions, one proprioceptive system is able to promote its impact on a target motor network by biasing the access of a different sensory system to the same circuit.


Assuntos
Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/fisiologia , Atividade Motora/fisiologia , Neurônios/fisiologia , Propriocepção/fisiologia , Células Receptoras Sensoriais/fisiologia , Vias Aferentes/fisiologia , Análise de Variância , Animais , Comportamento Animal , Linhagem Celular , Sistema Digestório/inervação , Estimulação Elétrica/métodos , Lateralidade Funcional , Técnicas In Vitro , Modelos Biológicos , Músculo Esquelético/inervação , Nephropidae , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Inibição Neural/efeitos da radiação , Neurônios/classificação , Periodicidade , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos da radiação , Fatores de Tempo
9.
Brain Res Rev ; 57(1): 94-102, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17900702

RESUMO

Metamorphosis in frogs has long fascinated laymen and scientists alike. This remarkable developmental transformation involves the simultaneous remodelling of almost every organ in the body, including the gut, associated with a switch in diet from filter feeder to predator, and the visual system, from laterally-directed monocular to forward-directed binocular vision. In the context of locomotion there is the complete loss of the tail, the main structure involved in generating thrust during swimming in larvae, and the gain of the limbs which produce rhythmic extension-flexion kicks during swimming and jumping. Here we review recent evidence from experiments utilizing novel in vitro isolated preparations of the Xenopus laevis spinal cord and brainstem which remain viable for several days and can generate motor rhythms similar to those that would normally drive locomotion in vivo. The results indicate that the developing limb circuitry is born from within the existing axial-based network, which acts like a functional scaffold. Initially the limb activity shares the same left-right alternation coordination and relatively high frequency as the tail swimming network. Only later, once the limbs are fully functional, does the limb network break free to produce left-right synchrony of limb motoneuron bursting and with a different, slower cadence than the tail-based system. During the initial formation of the limb networks nitric oxide-producing neurons appear in the spinal cord, but occupy regions other than those in which the new limb circuitry is developing. Now exogenous nitric oxide facilitates locomotor activity, in contrast to its inhibitory effects on swimming at earlier larval stages of development.


Assuntos
Anuros/fisiologia , Locomoção/fisiologia , Metamorfose Biológica/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Sistema Nervoso/crescimento & desenvolvimento , Plasticidade Neuronal/fisiologia , Animais , Comportamento/fisiologia , Hormônios/fisiologia , Instinto , Óxido Nítrico/biossíntese , Óxido Nítrico/fisiologia , Óxido Nítrico Sintase Tipo I/biossíntese , Óxido Nítrico Sintase Tipo I/fisiologia , Transdução de Sinais/fisiologia , Medula Espinal/fisiologia
10.
Curr Biol ; 29(12): R557-R561, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31211970

RESUMO

Many animals undergo a transition during their lifetime from a larval to an adult form, a major developmental change known as metamorphosis. This developmental process, which involves behavioural, morphological, physiological and biochemical changes, has a broad phylogenetic distribution, occurring in diverse branches of the animal kingdom, from invertebrates (molluscs, arthropods, tunicates) to certain classes of vertebrates, including amphibians (Figure 1). This phenomenon, which has fascinated biologists for centuries, remains an attractive experimental model for studying mechanisms of post-embryonic development as well as molecular mechanisms underlying hormonal regulation.


Assuntos
Anfíbios/crescimento & desenvolvimento , Locomoção , Metamorfose Biológica , Rede Nervosa/crescimento & desenvolvimento , Plasticidade Neuronal , Respiração , Anfíbios/fisiologia , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Rede Nervosa/fisiologia
11.
Front Neural Circuits ; 12: 95, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30420798

RESUMO

In larval xenopus, locomotor-induced oculomotor behavior produces gaze-stabilizing eye movements to counteract the disruptive effects of tail undulation during swimming. While neuronal circuitries responsible for feed-forward intrinsic spino-extraocular signaling have recently been described, the resulting oculomotor behavior remains poorly understood. Conveying locomotor CPG efference copy, the spino-extraocular motor command coordinates the multi-segmental rostrocaudal spinal rhythmic activity with the extraocular motor activity. By recording sequences of xenopus tadpole free swimming, we quantified the temporal calibration of conjugate eye movements originating from spino-extraocular motor coupled activity during pre-metamorphic tail-based undulatory swimming. Our results show that eye movements are produced only during robust propulsive forward swimming activity and increase with the amplitude of tail movements. The use of larval isolated in vitro and semi-intact fixed head preparations revealed that spinal locomotor networks driving the rostral portion of the tail set the precise timing of the spino-extraocular motor coupling by adjusting the phase relationship between spinal segment and extraocular rhythmic activity with the swimming frequency. The resulting spinal-evoked oculomotor behavior produced conjugated eye movements that were in phase opposition with the mid-caudal part of the tail. This time adjustment is independent of locomotor activity in the more caudal spinal parts of the tail. Altogether our findings demonstrate that locomotor feed-forward spino-extraocular signaling produce conjugate eye movements that compensate specifically the undulation of the mid-caudal tail during active swimming. Finally, this study constitutes the first extensive behavioral quantification of spino-extraocular motor coupling, which sets the basis for understanding the mechanisms of locomotor-induced oculomotor behavior in larval frog.


Assuntos
Fixação Ocular/fisiologia , Larva/fisiologia , Locomoção/fisiologia , Músculos Oculomotores/fisiologia , Natação/fisiologia , Cauda/fisiologia , Animais , Movimentos Oculares/fisiologia , Fatores de Tempo , Xenopus laevis
13.
J Physiol Paris ; 100(5-6): 317-27, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17629683

RESUMO

Metamorphosis in the anuran frog, Xenopus laevis, involves profound structural and functional transformations in most of the organism's physiological systems as it encounters a complete alteration in body plan, habitat, mode of respiration and diet. The metamorphic process also involves a transition in locomotory strategy from axial-based undulatory swimming using alternating contractions of left and right trunk muscles, to bilaterally-synchronous kicking of the newly developed hindlimbs in the young adult. At critical stages during this behavioural switch, functional larval and adult locomotor systems co-exist in the same animal, implying a progressive and dynamic reconfiguration of underlying spinal circuitry and neuronal properties as limbs are added and the tail regresses. To elucidate the neurobiological basis of this developmental process, we use electrophysiological, pharmacological and neuroanatomical approaches to study isolated in vitro brain stem/spinal cord preparations at different metamorphic stages. Our data show that the emergence of secondary limb motor circuitry, as it supersedes the primary larval network, spans a developmental period when limb circuitry is present but not functional, functional but co-opted into the axial network, functionally separable from the axial network, and ultimately alone after axial circuitry disappears with tail resorption. Furthermore, recent experiments on spontaneously active in vitro preparations from intermediate metamorphic stage animals have revealed that the biogenic amines serotonin (5-HT) and noradrenaline (NA) exert short-term adaptive control over circuit activity and inter-network coordination: whereas bath-applied 5-HT couples axial and appendicular rhythms into a single unified pattern, NA has an opposite decoupling effect. Moreover, the progressive and region-specific appearance of spinal cord neurons that contain another neuromodulator, nitric oxide (NO), suggests it plays a role in the maturation of limb locomotor circuitry. In summary, during Xenopus metamorphosis the network responsible for limb movements is progressively segregated from an axial precursor, and supra- and intra-spinal modulatory inputs are likely to play crucial roles in both its functional flexibility and maturation.


Assuntos
Anuros/fisiologia , Locomoção/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Desempenho Psicomotor/fisiologia , Medula Espinal/crescimento & desenvolvimento , Animais , Período Crítico Psicológico , Extremidades/fisiologia , Metamorfose Biológica , Xenopus laevis
14.
PLoS One ; 10(2): e0117370, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25658845

RESUMO

Xenopus is an excellent tetrapod model for studying normal and pathological motoneuron ontogeny due to its developmental morpho-physiological advantages. In mammals, the urotensin II-related peptide (UTS2B) gene is primarily expressed in motoneurons of the brainstem and the spinal cord. Here, we show that this expression pattern was conserved in Xenopus and established during the early embryonic development, starting at the early tailbud stage. In late tadpole stage, uts2b mRNA was detected both in the hindbrain and in the spinal cord. Spinal uts2b+ cells were identified as axial motoneurons. In adult, however, the uts2b expression was only detected in the hindbrain. We assessed the ability of the uts2b promoter to drive the expression of a fluorescent reporter in motoneurons by recombineering a green fluorescent protein (GFP) into a bacterial artificial chromosome (BAC) clone containing the entire X. tropicalis uts2b locus. After injection of this construction in one-cell stage embryos, a transient GFP expression was observed in the spinal cord of about a quarter of the resulting animals from the early tailbud stage and up to juveniles. The GFP expression pattern was globally consistent with that of the endogenous uts2b in the spinal cord but no fluorescence was observed in the brainstem. A combination of histological and electrophysiological approaches was employed to further characterize the GFP+ cells in the larvae. More than 98% of the GFP+ cells expressed choline acetyltransferase, while their projections were co-localized with α-bungarotoxin labeling. When tail myotomes were injected with rhodamine dextran amine crystals, numerous double-stained GFP+ cells were observed. In addition, intracellular electrophysiological recordings of GFP+ neurons revealed locomotion-related rhythmic discharge patterns during fictive swimming. Taken together our results provide evidence that uts2b is an appropriate driver to express reporter genes in larval motoneurons of the Xenopus spinal cord.


Assuntos
Cromossomos Artificiais Bacterianos/metabolismo , Neurônios Motores/metabolismo , Peptídeos/metabolismo , Urotensinas/metabolismo , Xenopus/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Cromossomos Artificiais Bacterianos/genética , Fenômenos Eletrofisiológicos , Embrião não Mamífero/metabolismo , Genes Reporter , Hibridização In Situ , Microscopia de Fluorescência , Peptídeos/genética , Medula Espinal/metabolismo , Urotensinas/genética , Xenopus/crescimento & desenvolvimento
15.
Curr Opin Neurobiol ; 29: 73-81, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24967995

RESUMO

Neuromodulation confers operational flexibility on motor network output and resulting behaviour. Furthermore, neuromodulators play crucial long-term roles in the assembly and maturational shaping of the same networks as they develop. Although previous studies have identified such modulator-dependent contributions to microcircuit ontogeny, some of the underlying mechanisms are only now being elucidated. Deciphering the role of neuromodulatory systems in motor network development has potentially important implications for post-lesional regenerative strategies in adults.


Assuntos
Evolução Biológica , Vias Eferentes/fisiologia , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Neurotransmissores/fisiologia , Animais , Humanos
16.
Front Biosci (Schol Ed) ; 4(4): 1364-74, 2012 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-22652878

RESUMO

In the South African clawed frog, Xenopus laevis, a complete functional switch in the mode of locomotion occurs during development from axial, undulatory, tail-based swimming in post-hatching tadpoles to limb-based kick propulsion in the adult froglet. At key stages during the metamorphosis from tadpole to frog both locomotor systems are present, co-functional and subject to modulation by the two ubiquitous biogenic amines, serotonin (5-HT) and noradrenaline (NA), arising from the brainstem. Here we review evidence on the roles of 5-HT and NA in the early maturation and dynamic modulation of spinal locomotor circuitry in the postembryonic tadpole and describe the way in which the modulatory effects of the two amines, which are always in opposition, subsequently switch during the metamorphic period of development. We speculate on the underlying cellular, synaptic and network mechanisms that might be responsible for this change in role.


Assuntos
Metamorfose Biológica/fisiologia , Norepinefrina/fisiologia , Serotonina/fisiologia , Medula Espinal/fisiologia , Xenopus laevis/fisiologia , Animais , Tronco Encefálico/fisiologia , Larva/efeitos dos fármacos , Locomoção/fisiologia , Natação
17.
Curr Biol ; 22(18): 1649-58, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22840517

RESUMO

BACKGROUND: Self-generated body movements require compensatory eye and head adjustments in order to avoid perturbation of visual information processing. Retinal image stabilization is traditionally ascribed to the transformation of visuovestibular signals into appropriate extraocular motor commands for compensatory ocular movements. During locomotion, however, intrinsic "efference copies" of the motor commands deriving from spinal central pattern generator (CPG) activity potentially offer a reliable and rapid mechanism for image stabilization, in addition to the slower contribution of movement-encoding sensory inputs. RESULTS: Using a variety of in vitro and in vivo preparations of Xenopus tadpoles, we demonstrate that spinal locomotor CPG-derived efference copies do indeed produce effective conjugate eye movements that counteract oppositely directed horizontal head displacements during undulatory tail-based locomotion. The efference copy transmission, by which the extraocular motor system becomes functionally appropriated to the spinal cord, is mediated by direct ascending pathways. Although the impact of the CPG feedforward commands matches the spatiotemporal specificity of classical vestibulo-ocular responses, the two fundamentally different signals do not contribute collectively to image stabilization during swimming. Instead, when the CPG is active, horizontal vestibulo-ocular reflexes resulting from head movements are selectively suppressed. CONCLUSIONS: These results therefore challenge our traditional understanding of how animals offset the disruptive effects of propulsive body movements on visual processing. Specifically, our finding that predictive efference copies of intrinsic, rhythmic neural signals produced by the locomotory CPG supersede, rather than supplement, reactive vestibulo-ocular reflexes in order to drive image-stabilizing eye adjustments during larval frog swimming, represents a hitherto unreported mechanism for vertebrate ocular motor control.


Assuntos
Movimentos Oculares , Fixação Ocular , Reflexo Vestíbulo-Ocular/fisiologia , Natação/fisiologia , Animais , Retroalimentação Sensorial , Movimentos da Cabeça , Movimentos Sacádicos , Transdução de Sinais , Xenopus laevis
18.
J Neurophysiol ; 100(3): 1372-83, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18596184

RESUMO

Anuran metamorphosis includes a complete remodeling of the animal's biomechanical apparatus, requiring a corresponding functional reorganization of underlying central neural circuitry. This involves changes that must occur in the coordination between the motor outputs of different spinal segments to harmonize locomotor and postural functions as the limbs grow and the tail regresses. In premetamorphic Xenopus laevis tadpoles, axial motor output drives rostrocaudally propagating segmental myotomal contractions that generate propulsive body undulations. During metamorphosis, the anterior axial musculature of the tadpole progressively evolves into dorsal muscles in the postmetamorphic froglet in which some of these back muscles lose their implicit locomotor function to serve exclusively in postural control in the adult. To understand how locomotor and postural systems interact during locomotion in juvenile Xenopus, we have investigated the coordination between postural back and hindlimb muscle activity during free forward swimming. Axial/dorsal muscles, which contract in bilateral alternation during undulatory swimming in premetamorphic tadpoles, change their left-right coordination to become activated in phase with bilaterally synchronous hindlimb extensions in locomoting juveniles. Based on in vitro electrophysiological experiments as well as specific spinal lesions in vivo, a spinal cord region was delimited in which propriospinal interactions are directly responsible for the coordination between leg and back muscle contractions. Our findings therefore indicate that dynamic postural adjustments during adult Xenopus locomotion are mediated by local intraspinal pathways through which the lumbar generator for hindlimb propulsive kicking provides caudorostral commands to thoracic spinal circuitry controlling the dorsal trunk musculature.


Assuntos
Metamorfose Biológica/fisiologia , Medula Espinal/fisiologia , Natação/fisiologia , Xenopus laevis/fisiologia , Fatores Etários , Animais , Fenômenos Biomecânicos , Eletromiografia , Lateralidade Funcional/fisiologia , Membro Posterior/crescimento & desenvolvimento , Técnicas In Vitro , Larva/fisiologia , Região Lombossacral , Destreza Motora/fisiologia , Músculo Esquelético/fisiologia , Rede Nervosa/fisiologia
19.
Eur J Neurosci ; 24(7): 1907-22, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17067294

RESUMO

Metamorphosis in anuran amphibians requires a complete transformation in locomotor strategy from undulatory tadpole swimming to adult quadrupedal propulsion. The underlying reconfiguration of spinal networks may be influenced by various neuromodulators including nitric oxide, which is known to play an important role in CNS development and plasticity in diverse species, including metamorphosis of amphibians. Using NADPH-diaphorase (NADPH-d) staining and neuronal nitric oxide synthase (nNOS) immunofluorescence labelling, the expression and developmental distribution of NOS-containing neurons in the spinal cord and brainstem were analysed in all metamorphic stages of Xenopus laevis. Wholemount preparations of the spinal cord from early stages of metamorphosis (coincident with emergence of the fore- and hindlimb buds) revealed two clusters of NOS-positive neurons interspersed with areas devoid of stained somata. These cells were distributed in three topographic subgroups, the most ventral of which had axonal projections that crossed the ventral commissure. Motoneurons innervating the fore- and hindlimb buds were retrogradely labelled with horseradish peroxidase (HRP) to determine their position in relation to the two NOS-expressing cord regions. Limb motoneurons and NOS-positive cells did not overlap, indicating that during early stages of metamorphosis nitrergic neurons are excluded from regions where spinal limb circuits are forming. As metamorphosis progresses, NOS expression became distributed along the length of the spinal cord together with an increase in the number and intensity of labelled cells and fibers. NOS expression reached a peak as the forelimbs emerge then declined. These findings are consistent with a role for nitric oxide (NO) in the developmental transition from undulatory swimming to quadrupedal locomotion.


Assuntos
Extremidades/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Metamorfose Biológica/fisiologia , NADPH Desidrogenase/metabolismo , Neurônios/enzimologia , Óxido Nítrico Sintase/metabolismo , Medula Espinal/citologia , Animais , Padronização Corporal/fisiologia , Embrião não Mamífero , Imuno-Histoquímica/métodos , Medula Espinal/embriologia , Xenopus laevis
20.
Eur J Neurosci ; 22(10): 2489-502, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16307592

RESUMO

The pyloric and gastric motor pattern-generating networks in the stomatogastric ganglion of the lobster Homarus gammarus are reconfigured into a new functional circuit by burst discharge in an identified pair of modulatory projection interneurons, originally named the pyloric suppressor (PS) neurons because of their inhibitory effects on pyloric network activity. Here we elucidate the actions of the PS neurons on individual members of the neighbouring gastric circuit, as well as describing their ability to alter synaptic coupling between the two networks. PS neuron firing has two distinct effects on gastric network activity: an initial short-lasting action mediated by transient inhibition of most gastric motoneurons, followed by a long-lasting circuit activation associated with a prolonged PS-evoked depolarization of the medial gastric (MG) motoneuron and the single network interneuron, Int1. These long-lasting effects are voltage-dependent, and experiments with hyperpolarizing current injection and photoablation suggest that excitation of both the MG neuron and Int1 is critical for PS-elicited gastric network rhythmicity. In parallel, PS neuron discharge persistently (lasting several minutes) enhances the strength of an inhibitory synaptic influence of the MG neuron on the pyloric dilator (PD)-anterior burster (AB) pacemaker neurons, thereby facilitating operational fusion of the two networks. Therefore, a single modulatory neuron may influence disparate populations of neurons via a range of very different and highly target-specific mechanisms: conventional transient synaptic drive and up- or down-modulation of membrane properties and synaptic efficacy. Moreover, distinctly different time courses of these actions allow different circuit configurations to be specified sequentially by a given modulatory input.


Assuntos
Vias Eferentes/fisiologia , Neurônios Motores/fisiologia , Nephropidae/fisiologia , Rede Nervosa/fisiologia , Animais , Transporte Axonal/fisiologia , Estimulação Elétrica , Eletrofisiologia , Gânglios dos Invertebrados/fisiologia , Interneurônios/fisiologia , Estômago/inervação , Estômago/fisiologia , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA