Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Glia ; 70(11): 2032-2044, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35770802

RESUMO

Leigh syndrome is a mitochondrial disease characterized by neurodegeneration, neuroinflammation, and early death. Mice lacking NDUFS4, a mitochondrial complex I subunit (Ndufs4 KO mice), have been established as a good animal model for studying human pathology associated with Leigh syndrome. As the disease progresses, there is an increase in neurodegeneration and neuroinflammation, thereby leading to deteriorating neurological symptoms, including motor deficits, breathing alterations, and eventually, death of the animal. However, despite the magnitude of neuroinflammation associated with brain lesions, the role of neuroinflammatory pathways and their main cellular components have not been addressed directly as relevant players in the disease pathology. Here, we investigate the role of microglial cells, the main immune cells of the CNS, in Leigh-like syndrome pathology, by pharmacologically depleting them using the colony-stimulating factor 1 receptor antagonist PLX3397. Microglial depletion extended lifespan and delayed motor symptoms in Ndufs4 KO mice, likely by preventing neuronal loss. Next, we investigated the role of the major cytokine interleukin-6 (IL-6) in the disease progression. IL-6 deficiency partially rescued breathing abnormalities and modulated gliosis but did not extend the lifespan or rescue motor decline in Ndufs4 KO mice. The present results show that microglial accumulation is pathogenic, in a process independent of IL-6, and hints toward a contributing role of neuroinflammation in the disease of Ndufs4 KO mice and potentially in patients with Leigh syndrome.


Assuntos
Doença de Leigh , Animais , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Interleucina-6/metabolismo , Doença de Leigh/genética , Doença de Leigh/metabolismo , Doença de Leigh/patologia , Camundongos , Camundongos Knockout , Microglia/metabolismo
2.
Glia ; 68(5): 999-1016, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31799746

RESUMO

Traumatic brain injury (TBI) is a major health problem with high rates of mortality and morbidity worldwide. The response of the brain to TBI is orchestrated by a number of cytokines, including interleukin-6 (IL-6). IL-6 is a major cytokine in the central nervous system and it is produced by different cells, such as neurons, glial cells, and endothelial cells. Since glial cells are one of the most important sources and targets of IL-6, we have examined the role of microglia-derived IL-6 in normal conditions and following a model of TBI, cryolesion of the somatosensorial cortex. To this end, tamoxifen-inducible microglial IL-6-deficient (Il6ΔMic , using Cx3cr1 CreER model) mice and control (Il6lox/lox ) mice were used. In normal conditions, microglial IL-6 deficiency reduced deambulation and exploratory behavior and decreased anxiety in a sex-dependent manner. The transcriptome profile following cryolesion was dramatically altered 1 day post-lesion in Il6ΔMic compared with Il6lox/lox mice. However, the phenotype of Il6ΔMic mice was less compromised in the following days, suggesting that compensatory mechanisms are at play.


Assuntos
Comportamento Animal/fisiologia , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Microglia/metabolismo , Animais , Lesões Encefálicas Traumáticas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Comportamento Exploratório/fisiologia , Inflamação/genética , Interleucina-6/genética , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Neurônios/metabolismo , Transcriptoma
3.
J Neuroinflammation ; 17(1): 304, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059703

RESUMO

BACKGROUND: Interleukin-6 (IL-6) is a pleiotropic cytokine that controls numerous physiological processes both in basal and neuroinflammatory conditions, including the inflammatory response to experimental autoimmune encephalomyelitis (EAE). IL-6 is produced by multiple peripheral and central cells, and until now, the putative roles of IL-6 from different cell types have been evaluated through conditional cell-specific IL-6 knockout mice. Nevertheless, these mice probably undergo compensatory responses of IL-6 from other cells, which makes it difficult to assess the role of each source of IL-6. METHODS: To give some insight into this problem, we have produced a novel mouse model: a conditional reversible IL-6 KO mouse (IL6-DIO-KO). By using double-inverted, open-reading-frame (DIO) technology, we created a mouse line with the loss of Il6 expression in all cells that can be restored by the action of Cre recombinase. Since microglia are one of the most important sources and targets of IL-6 into the central nervous system, we have recovered microglial Il6 expression in IL6-DIO-KO mice through breeding to Cx3cr1-CreER mice and subsequent injection of tamoxifen (TAM) when mice were 10-16 weeks old. Then, they were immunized with myelin oligodendrocyte glycoprotein 35-55 peptide (MOG35-55) 7 weeks after TAM treatment to induce EAE. Clinical symptoms and demyelination, CD3 infiltration, and gliosis in the spinal cord were evaluated. RESULTS: IL6-DIO-KO mice were resistant to EAE, validating the new model. Restoration of microglial Il6 was sufficient to develop a mild version of EAE-related clinical symptoms and neuropathology. CONCLUSIONS: IL6-DIO-KO mouse is an excellent model to understand in detail the role of specific cellular sources of IL-6 within a recovery-of-function paradigm in EAE.


Assuntos
Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/metabolismo , Integrases/biossíntese , Interleucina-6/biossíntese , Microglia/metabolismo , Sequência de Aminoácidos , Animais , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/patologia , Expressão Gênica , Integrases/genética , Interleucina-6/deficiência , Interleucina-6/genética , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia
4.
Brain Behav Immun ; 82: 145-159, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31401302

RESUMO

Alzheimer's disease (AD) is the most commonly diagnosed dementia but its underlying pathological mechanisms still unclear. Neuroinflammation and secretion of cytokines such as interleukin-6 (IL-6) accompany the main hallmarks of the disease: amyloid plaques and neurofibrillary tangles. In this study, we analyzed the role of IL-6 trans-signaling in two mouse models of AD, Tg2576 and 3xTg-AD mice. The inhibition of IL-6 trans-signaling partially rescued the AD-induced mortality in females of both models. Before amyloid plaques deposition, it reversed AD-induced changes in exploration and anxiety (but did not affect locomotion) in Tg2576 female mice. However, after plaque deposition the only behavioral trait affected by the inhibition of IL-6 trans-signaling was locomotion. Results in the Morris water maze suggest that cognitive flexibility was reduced by the blocking of the IL-6 trans-signaling in young and old Tg2576 female mice. The inhibition of IL-6 trans-signaling also decreased amyloid plaque burden in cortex and hippocampus, and Aß40 and Aß42 levels in the cortex, of Tg2576 female mice. The aforementioned changes might be correlated with changes in blood vessels and matrix structure and organization rather than changes in neuroinflammation. 3xTgAD mice showed a very mild phenotype regarding amyloid cascade, but results were in accordance with those of Tg2576 mice. These results strongly suggest that the inhibition of the IL-6 trans-signaling could represent a powerful therapeutic target in AD.


Assuntos
Doença de Alzheimer/imunologia , Doença de Alzheimer/fisiopatologia , Interleucina-6/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Amiloidose/patologia , Animais , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Emaranhados Neurofibrilares/metabolismo , Fragmentos de Peptídeos , Placa Amiloide/patologia , Transdução de Sinais
5.
Neuroendocrinology ; 109(2): 113-130, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30636247

RESUMO

BACKGROUND/AIMS: Interleukin-6 (IL-6) is a major cytokine controlling body weight and metabolism, at least in part through actions in the central nervous system (CNS) from local sources. METHODS: We herewith report results obtained in conditional IL-6 KO mice for brain cells (Il6ΔGfap and Il6ΔSyn). RESULTS: The reporter RiboTag mouse line demonstrated specific astrocytic expression of GFAP-dependent Cre in the hypothalamus but not in other brain areas, whereas that of synapsin 1-dependent Cre was specific for neurons. Feeding a high-fat diet (HFD) or a control diet showed that Il6ΔGfap and Il6ΔSyn mice were more prone and resistant, respectively, to HFD-induced obesity. Energy intake was not altered in HFD experiments, but it was reduced in Il6ΔSyn male mice following a 24-h fast. HFD increased circulating insulin, leptin, and cholesterol levels, decreased triglycerides, and caused impaired responses to the insulin and glucose tolerance tests. In Il6ΔGfap mice, the only significant difference observed was an increase in insulin levels of females, whereas in Il6ΔSyn mice the effects of HFD were decreased. Hypothalamic Agrp expression was significantly decreased by HFD, further decreased in Il6ΔGfap, and increased in Il6ΔSyn female mice. Hypothalamic Il-6 mRNA levels were not decreased in Il6ΔSyn mice and even increased in Il6ΔGfapmale mice. Microarray analysis of hypothalamic RNA showed that female Il6ΔGfap mice had increased interferon-related pathways and affected processes in behavior, modulation of chemical synaptic transmission, learning, and memory. CONCLUSION: The present results demonstrate that brain production of IL-6 regulates body weight in the context of caloric excess and that the cellular source is critical.


Assuntos
Peso Corporal/genética , Dieta Hiperlipídica , Metabolismo Energético/genética , Proteína Glial Fibrilar Ácida/genética , Integrases/genética , Interleucina-6/genética , Sinapsinas/genética , Animais , Regulação do Apetite/fisiologia , Encéfalo/fisiologia , Ingestão de Energia/genética , Interleucina-6/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Obesidade/genética , Obesidade/patologia , Transgenes/genética
6.
Int J Mol Sci ; 18(2)2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-28134760

RESUMO

The mouse model of Alzheimer's disease (AD), Tg2576 mice (APP), has provided valuable information, such as the role of the metallothionein (MT) family in their behavioral and amyloidosis phenotypes. In this study, we further characterize the role of MT-1 by crossing Mt1-overexpressing mice with Tg2576 mice (APPTgMT). In 14-month-old mice, MT-1(/2) protein levels were dramatically increased by Mt1 overexpression throughout the cortex (Cx), which showed a prominent caudal-rostral gradient, and the hippocampus (HC). There was a trend for MT-1(/2) immunostaining to be increased in the areas surrounding the amyloid plaques in control male mice but not in Mt1-overexpressing mice. Gliosis was elicited by the amyloid plaques, but the effects of Mt1 overexpression were modest. However, in hippocampal western blots the microglial marker Iba-1 was increased in old male APPTgMT mice compared to APP-wild type (APPWT) mice, and the opposite was observed in young mice. Hippocampal CA1 neuronal loss was observed in Tg2576 mice, but was unaffected by Mt1 overexpression. Aging increased Zn and Cu levels differently depending on brain area, sex, and genotype. Thus, the effects of Mt1 overexpression on the phenotype of Tg2576 mice here studied are modest.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Região CA1 Hipocampal/patologia , Gliose/metabolismo , Metalotioneína/metabolismo , Metais/metabolismo , Neurônios/patologia , Animais , Cobre/metabolismo , Modelos Animais de Doenças , Gliose/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Zinco/metabolismo
7.
Cytokine ; 74(1): 145-51, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25982555

RESUMO

Interleukin-6 (IL-6) is now known to be not only a major cytokine controlling the immune system but also basic physiological variables such as body weight and metabolism. We recently reported that muscle-specific interleukin-6 deletion influences body weight and body fat in a sex-dependent manner in mice. When compared with littermate floxed controls, males gained less weight whereas females gained more weight after a 12-week high-fat diet treatment (HFD). We herewith report gender-differences of HFD treatment on fast and slow skeletal muscle in muscle-specific IL-6 deficient mice. While gross muscle architecture was normal, in males, HFD resulted in an increased proportion of medium-large size myofibers which was prevented by muscle IL-6 deletion. No modifications of fiber size were observed in females. HFD induced a fiber-type switching in tibialis muscle, increasing the proportion of fast-oxidative fibers and decreasing the fast-glycolytic fibers in female mice which were dependent on muscle IL-6. No changes of fiber types were detected in males. Finally, HFD was associated with increased collagen deposition in both sexes and muscle types. However, this effect was only associated to the presence of muscular IL-6 only on the slow soleus muscle in males. The results demonstrate sex-dependent effects of both HFD and muscle IL-6 deficiency in skeletal muscle.


Assuntos
Dieta Hiperlipídica , Interleucina-6/deficiência , Interleucina-6/fisiologia , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/fisiologia , Caracteres Sexuais , Adaptação Fisiológica , Tecido Adiposo , Animais , Peso Corporal , Colágeno/metabolismo , Feminino , Interleucina-6/biossíntese , Interleucina-6/genética , Masculino , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/imunologia , Obesidade
8.
Brain Behav Immun ; 40: 121-30, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24632224

RESUMO

Interleukin-6 (IL-6) is a major cytokine controlling not only the immune system but also basic physiological variables such as body weight and metabolism. While central IL-6 is clearly implicated in the latter, the putative role of peripheral IL-6 controlling body weight remains unclear. We herewith report results obtained in muscle-specific IL-6 KO (mIL-6 KO) mice. mIL-6 KO male mice fed a high-fat diet (HFD, 58.4% kcal from fat) or a control diet (18%) gained less weight and body fat than littermate floxed male mice, while the opposite pattern was observed in female mice. Food intake was not affected by muscle IL-6 deficiency, but male and female mIL-6 KO mice were more and less active, respectively, in the hole-board test. Moreover, female mIL-6 KO mice did not control adequately their body temperature upon exposure to 4°C, suggesting a role of muscle IL-6 in energy expenditure. At least part of this regulatory role of muscle IL-6 may be mediated by the hypothalamus, as IL-6 deficiency regulated the expression of critical hypothalamic neuropeptides (NPY, AgRP, POMC, CRH and preproOX). Leptin and insulin changes cannot explain the phenotype of these mice. In summary, the present results demonstrate that muscle IL-6 controls body weight and body fat in a sex-specific fashion, influencing the expression of the main neuropeptides involved in energy homeostasis.


Assuntos
Tecido Adiposo/metabolismo , Peso Corporal/genética , Interleucina-6/genética , Obesidade/genética , Animais , Glicemia/metabolismo , Regulação da Temperatura Corporal , Metabolismo Energético , Feminino , Hipotálamo/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Neuropeptídeos/metabolismo , Obesidade/metabolismo , Fatores Sexuais
9.
J Inflamm (Lond) ; 21(1): 1, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212783

RESUMO

BACKGROUND: Mitochondrial diseases (MDs) are genetic disorders characterized by dysfunctions in mitochondria. Clinical data suggest that additional factors, beyond genetics, contribute to the onset and progression of this group of diseases, but these influencing factors remain largely unknown. Mounting evidence indicates that immune dysregulation or distress could play a role. Clinical observations have described the co-incidence of infection and the onset of the disease as well as the worsening of symptoms following infection. These findings highlight the complex interactions between MDs and immunity and underscore the need to better understand their underlying relationships. RESULTS: We used Ndufs4 KO mice, a well-established mouse model of Leigh syndrome (one of the most relevant MDs), to test whether chronic induction of a neuroinflammatory state in the central nervous system before the development of neurological symptoms would affect both the onset and progression of the disease in Ndufs4 KO mice. To this aim, we took advantage of the GFAP-IL6 mouse, which overexpresses interleukin-6 (IL-6) in astrocytes and produces chronic glial reactivity, by generating a mouse line with IL-6 overexpression and NDUFS4 deficiency. IL-6 overexpression aggravated the mortality of female Ndufs4 KO mice but did not alter the main motor and respiratory phenotypes measured in any sex. Interestingly, an abnormal region-dependent microglial response to IL-6 overexpression was observed in Ndufs4 KO mice compared to controls. CONCLUSION: Overall, our data indicate that chronic neuroinflammation may worsen the disease in Ndufs4 KO female mice, but not in males, and uncovers an abnormal microglial response due to OXPHOS dysfunction, which may have implications for our understanding of the effect of OXPHOS dysfunction in microglia.

10.
Glia ; 61(4): 587-600, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23322593

RESUMO

Interleukin (IL)-6 is crucial for the induction of many murine models of autoimmunity including experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. While IL-6-deficient mice (IL-6 KO) are resistant to EAE, we showed previously that in transgenic mice with astrocyte-targeted production of IL-6-restricted to the cerebellum (GFAP-IL6), EAE induced with MOG(35-55) was redirected away from the spinal cord to the cerebellum. To further establish the importance of IL-6 produced in the central nervous system, we have generated mice producing IL-6 essentially only in the brain by crossing the GFAP-IL6 mice with IL-6 KO mice. Interestingly, GFAP-IL6-IL-6 KO mice showed a milder but almost identical phenotype as the GFAP-IL6 mice, which correlated with a lower load of inflammatory cells and decreased microglial reactivity. These results indicate that not only is cerebellar IL-6 production and eventual leakage into the peripheral compartment the dominating factor controlling this type of EAE but that it can also facilitate induction of autoimmunity in the absence of normal systemic IL-6 production.


Assuntos
Astrócitos/patologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Interleucina-6/biossíntese , Animais , Astrócitos/metabolismo , Células Cultivadas , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Interleucina-6/deficiência , Interleucina-6/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
11.
Brain Behav Immun ; 27(1): 162-73, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23085146

RESUMO

Interleukin-6 (IL-6) is a major cytokine which controls not only the immune system but also exhibits many other functions including effects in the central nervous system (CNS). IL-6 is known to be produced by different cells in the CNS, and all the major CNS do respond to IL-6, which makes it difficult to dissect the specific roles of each cell type when assessing the role of IL-6 in the brain. We have produced for the first time floxed mice for IL-6 and have crossed them with GFAP-Cre mice to delete IL-6 in astrocytes (Ast-IL-6 KO mice), and have compared their phenotype with that of mice with deletion of IL-6 receptor in astrocytes (Ast-IL6R KO mice). Our results indicate a major prosurvival role of the astrocyte IL-6 system at early ages (intrauterine life), which was also involved to various degrees in the control of adult body weight, locomotor activity, anxiety and exploratory behaviors. In some occasions deleting IL-6R in astrocytes mimicked the phenotype of Ast-IL-6 KO mice (i.e. activity), while in others the opposite was observed (i.e. exploration), suggesting autocrine and paracrine (presumably on neurons) roles of astrocyte IL-6. Our results suggest important roles of the astrocyte IL-6 system on normal brain physiology, in some cases totally unexpected from previous results with total IL-6 KO mice.


Assuntos
Astrócitos/metabolismo , Comportamento Animal/fisiologia , Peso Corporal/fisiologia , Interleucina-6/fisiologia , Receptores de Interleucina-6/metabolismo , Animais , Ansiedade/genética , Ansiedade/metabolismo , Astrócitos/citologia , Peso Corporal/genética , Comportamento Exploratório/fisiologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/genética , Atividade Motora/fisiologia , Reação em Cadeia da Polimerase , RNA/análise , Receptores de Interleucina-6/genética , Fatores Sexuais
12.
Cell Mol Life Sci ; 69(21): 3665-81, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22766972

RESUMO

Alzheimer's disease (AD) is by far the most commonly diagnosed dementia, and despite multiple efforts, there are still no effective drugs available for its treatment. One strategy that deserves to be pursued is to alter the expression and/or physiological action of endogenous proteins instead of administering exogenous factors. In this study, we intend to characterize the roles of the antioxidant, anti-inflammatory, and heavy-metal binding proteins, metallothionein-1 + 2 (MT1 + 2), in a mouse model of Alzheimer's disease, Tg2576 mice. Contrary to expectations, MT1 + 2-deficiency rescued partially the human amyloid precursor protein-induced changes in mortality and body weight in a gender-dependent manner. On the other hand, amyloid plaque burden was decreased in the cortex and hippocampus in both sexes, while the amyloid cascade, neuroinflammation, and behavior were affected in the absence of MT1 + 2 in a complex manner. These results highlight that the control of the endogenous production and/or action of MT1 + 2 could represent a powerful therapeutic target in AD.


Assuntos
Doença de Alzheimer/metabolismo , Metalotioneína/metabolismo , Doença de Alzheimer/mortalidade , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Comportamento Animal , Peso Corporal , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Metalotioneína/deficiência , Metalotioneína/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fragmentos de Peptídeos/metabolismo
13.
Cell Mol Life Sci ; 69(21): 3683-700, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22722772

RESUMO

Among the dementias, Alzheimer's disease (AD) is the most commonly diagnosed, but there are still no effective drugs available for its treatment. It has been suggested that metallothionein-3 (MT-3) could be somehow involved in the etiology of AD, and in fact very promising results have been found in in vitro studies, but the role of MT-3 in vivo needs further analysis. In this study, we analyzed the role of MT-3 in a mouse model of AD, Tg2576 mice, which overexpress human Amyloid Precursor Protein (hAPP) with the Swedish mutation. MT-3 deficiency partially rescued the APP-induced mortality of females, and mildly affected APP-induced changes in behavior assessed in the hole-board and plus-maze tests in a gender-dependent manner. Amyloid plaque burden and/or hAPP expression were decreased in the cortex and hippocampus of MT-3-deficient females. Interestingly, exogenously administered Zn(7)MT-3 increased soluble Aß40 and Aß42 and amyloid plaques and gliosis, particularly in the cortex, and changed several behavioral traits (increased deambulation and exploration and decreased anxiety). These results highlight that the control of the endogenous production and/or action of MT-3 could represent a powerful therapeutic target in AD.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doença de Alzheimer/mortalidade , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Comportamento Animal , Peso Corporal , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Metalotioneína 3 , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Fragmentos de Peptídeos/metabolismo
14.
J Neurosci Res ; 88(8): 1708-18, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20127815

RESUMO

Traumatic injury to the brain is one of the leading causes of injury-related death or disability, but current therapies are limited. Previously it has been shown that the antioxidant proteins metallothioneins (MTs) are potent neuroprotective factors in animal models of brain injury. The exogenous administration of MTs causes effects consistent with the roles proposed from studies in knock-out mice. We herewith report the results comparing full mouse MT-1 with the independent alpha and beta domains, alone or together, in a cryoinjury model. The lesion of the cortex caused the mice to perform worse in the horizontal ladder beam and the rota-rod tests; all the proteins showed a modest effect in the former test, while only full MT-1 improved the performance of animals in the rota-rod, and the alpha domain showed a rather detrimental effect. Gene expression analysis by RNA protection assay demonstrated that all proteins may alter the expression of host-response genes such as GFAP, Mac1 and ICAM, in some cases being the beta domain more effective than the alpha domain or even the full MT-1. A MT-1-to-MT-3 mutation blunted some but not all the effects caused by the normal MT-1, and in some cases increased its potency. Thus, splitting the two MT-1 domains do not seem to eliminate all MT functions but certainly modifies them, and different motifs seem to be present in the protein underlying such functions.


Assuntos
Lesões Encefálicas/metabolismo , Regulação da Expressão Gênica/fisiologia , Metalotioneína/química , Metalotioneína/metabolismo , Mutação/genética , Animais , Peso Corporal/genética , Lesões Encefálicas/fisiopatologia , Modelos Animais de Doenças , Metalotioneína/classificação , Metalotioneína/deficiência , Metalotioneína 3 , Camundongos , Camundongos Knockout , Atividade Motora/genética , Atividade Motora/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Estrutura Terciária de Proteína/genética , Desempenho Psicomotor/fisiologia
15.
Cells ; 9(2)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023844

RESUMO

BACKGROUND: Interleukin-6 (IL-6) is a pleiotropic and multifunctional cytokine that plays a critical role in induction of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). Although EAE has always been considered a peripherally elicited disease, Il6 expression exclusively within central nervous system is sufficient to induce EAE development. Neurons, astrocytes, and microglia can secrete and respond to IL-6. METHODS: To dissect the relevance of each cell source for establishing EAE, we generated and immunized conditional Il6 knockout mice for each of these cell types with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) peptide dissolved in complete Freund's adjuvant (CFA) and supplemented with Mycobacterium tuberculosis. RESULTS AND CONCLUSIONS: The combined results reveal a minor role for Il6 expression in both astrocytes and microglia for symptomatology and neuropathology of EAE, whereas neuronal Il6 expression was not relevant for the variables analyzed.


Assuntos
Sistema Nervoso Central/metabolismo , Encefalomielite Autoimune Experimental/patologia , Interleucina-6/metabolismo , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Doenças Desmielinizantes/patologia , Encefalomielite Autoimune Experimental/genética , Feminino , Regulação da Expressão Gênica , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/patologia , Inflamação/genética , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito/metabolismo , Medula Espinal/patologia
16.
Cells ; 9(7)2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630818

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that causes the most prevalent dementia in the elderly people. Obesity and insulin resistance, which may cause major health problems per se, are risk factors for AD, and cytokines such as interleukin-6 (IL-6) have a role in these conditions. IL-6 can signal either through a membrane receptor or by trans-signaling, which can be inhibited by the soluble form of the co-receptor gp130 (sgp130). We have addressed the possibility that blocking IL-6 trans-signaling in the brain could have an effect in the triple transgenic 3xTg-AD mouse model of AD and/or in obesity progression, by crossing 3xTg-AD mice with GFAP-sgp130Fc mice. To serve as control groups, GFAP-sgp130Fc mice were also crossed with C57BL/6JOlaHsd mice. Seventeen-month-old mice were fed a control diet (18% kcal from fat) and a high-fat diet (HFD; 58.4% kcal from fat). In our experimental conditions, the 3xTg-AD model showed a mild amyloid phenotype, which nevertheless altered the control of body weight and related endocrine and metabolic factors, suggestive of a hypermetabolic state. The inhibition of IL-6 trans-signaling modulated some of these traits in both 3xTg-AD and control mice, particularly during HFD, and in a sex-dependent manner. These experiments provide evidence of IL-6 trans-signaling playing a role in the CNS of a mouse model of AD.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Modelos Animais de Doenças , Interleucina-6/metabolismo , Fenótipo , Transdução de Sinais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide/metabolismo , Animais , Receptor gp130 de Citocina/genética , Feminino , Proteína Glial Fibrilar Ácida/genética , Hibridização Genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Transgênicos , Aumento de Peso
17.
Metallomics ; 11(2): 327-337, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30543238

RESUMO

Mouse metallothionein-1 and 2 (MT1 and MT2) are often considered physiologically equivalent, because they are normally regulated coordinately by a wide range of stimuli, and it is assumed that in vivo they will be normally fully loaded with zinc(ii) (Zn7-MT1/2), although other metal ions, such as copper(i), may be eventually found as well. However, mouse MT2, in contrast to MT1, exhibits a preference for Zn(ii) coordination in comparison to that for Cu(i), which might underlie putatively different biological functions for these two mammalian isoforms. We have characterized the effects of exogenously administered mouse MT1 and MT2, and of transgenic Mt1 overexpression, in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), by active immunization with MOG35-55 peptide. Mice treated daily with MT2 showed a significant amelioration of the clinical course, with decreased peak and cumulative scores and delayed onset of EAE. In contrast, treatment with MT1 or its transgenic overexpression only caused a non-significant trend. MT2 treatment preserved better the myelin of the spinal cord, and the pattern of leukocyte infiltrates and gene expression are compatible with an inhibitory effect on neuroinflammation. Splenocytes from these animals in culture responded adequately to MOG35-55 peptide, but a bias for a Th2 profile seemed to be present in the MT2-treated mice. Interestingly, MT1 but not MT2 decreased the number of cytokines in the serum. The present results indicate that mouse MT1 and MT2 are not biologically interchangeable in the EAE model.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Metalotioneína/metabolismo , Esclerose Múltipla/metabolismo , Animais , Encefalomielite Autoimune Experimental/genética , Feminino , Leucócitos/metabolismo , Masculino , Metalotioneína/genética , Camundongos , Esclerose Múltipla/genética
18.
PLoS One ; 12(3): e0173675, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28319140

RESUMO

The aim of the present work was to further explore the physiological roles of muscle-derived IL-6. Adult-floxed and conditional skeletal muscle IL-6 knock out male and female mice were used to study energy expenditure (indirect calorimetry at rest and during treadmill exercise, and body temperature cycle during the light phase) and energy intake (response to fast/refeeding). We also evaluated the responses to leptin and the activity of the insulin signalling pathway in skeletal muscle and liver by phosphorylation of Akt at Ser 473. The stress response was also studied. Results indicate a relevant role of muscle IL-6 in maintaining energy homeostasis, especially in males. Absence of muscle IL-6 in male mice results in lower core body temperature in the light phase, increased respiratory exchange ratio (RER) both at rest and during exercise, increased expression of TCA cycle marked gene, citrate synthase in muscle, reduced fat storage and decreased body weight and food consumption in response to leptin. In females, muscle IL-6 deficiency increases VO2 and CO2 levels similarly. Also in contrast to males, energy expenditure (EE) measured over 48h reveals a significant elevation in female mice with muscle IL-6 deficiency; moreover, they show a modified response to fasting-refeeding and to restraint stress. The present results contribute to the understanding of the role of muscle IL-6 in male and female mouse metabolism, not only during exercise but also in the basal state and in situations where energy balance is altered.


Assuntos
Metabolismo Energético , Interleucina-6/metabolismo , Músculo Esquelético/metabolismo , Caracteres Sexuais , Animais , Temperatura Corporal , Teste de Esforço , Jejum/metabolismo , Jejum/fisiologia , Técnicas de Inativação de Genes , Insulina/metabolismo , Interleucina-6/deficiência , Interleucina-6/genética , Masculino , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Descanso , Serina/metabolismo , Transdução de Sinais , Estresse Fisiológico/efeitos dos fármacos
19.
Brain Sci ; 6(2)2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27196935

RESUMO

Interleukin-6 (IL-6) is a multifunctional cytokine that not only plays major roles in the immune system, but also serves as a coordinator between the nervous and endocrine systems. IL-6 is produced in multiple cell types in the CNS, and in turn, many cells respond to it. It is therefore important to ascertain which cell type is the key responder to IL-6 during both physiological and pathological conditions. In order to test the role of astrocytic IL-6 in neuroinflammation, we studied an extensively-used animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), in mice with an IL-6 deficiency in astrocytes (Ast-IL-6 KO). Results indicate that lack of astrocytic IL-6 did not cause major changes in EAE symptomatology. However, a delay in the onset of clinical signs was observed in Ast-IL-6 KO females, with fewer inflammatory infiltrates and decreased demyelination and some alterations in gliosis and vasogenesis, compared to floxed mice. These results suggest that astrocyte-secreted IL-6 has some roles in EAE pathogenesis, at least in females.

20.
J Alzheimers Dis ; 51(1): 81-95, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26836194

RESUMO

Alzheimer's disease (AD) is the most commonly diagnosed dementia, where signs of neuroinflammation and oxidative stress are prominent. In this study we intend to further characterize the roles of the antioxidant, anti-inflammatory, and heavy metal binding protein, metallothionein-1 (MT-1), by crossing Mt1 overexpressing mice with a well-known mouse model of AD, Tg2576 mice, which express the human amyloid-ß protein precursor (hAßPP) with the Swedish K670N/M671L mutations. Mt1 overexpression increased overall perinatal survival, but did not affect significantly hAßPP-induced mortality and weight loss in adult mice. Amyloid plaque burden in ∼14-month-old mice was increased by Mt1 overexpression in the hippocampus but not the cortex. Despite full length hAßPP levels and amyloid plaques being increased by Mt1 overexpression in the hippocampus of both sexes, oligomeric and monomeric forms of Aß, which may contribute more to toxicity, were decreased in the hippocampus of females and increased in males. Several behavioral traits such as exploration, anxiety, and learning were altered in Tg2576 mice to various degrees depending on the age and the sex. Mt1 overexpression ameliorated the effects of hAßPP on exploration in young females, and potentiated those on anxiety in old males, and seemed to improve the rate of spatial learning (Morris water maze) and the learning elicited by a classical conditioning procedure (eye-blink test). These results clearly suggest that MT-1 may be involved in AD pathogenesis.


Assuntos
Doença de Alzheimer/complicações , Ansiedade/etiologia , Regulação da Expressão Gênica/genética , Metalotioneína/metabolismo , Fatores Etários , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Feminino , Humanos , Masculino , Metaloproteinase 16 da Matriz/genética , Metaloproteinase 16 da Matriz/metabolismo , Aprendizagem em Labirinto/fisiologia , Metalotioneína/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/genética , Mutação/genética , Fenótipo , Transtornos Psicomotores/etiologia , Transtornos Psicomotores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA