Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(37): e2411583121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39236242

RESUMO

Residual nonvisible bladder cancer after proper treatment caused by technological and therapeutic limitations is responsible for tumor relapse and progression. This study aimed to demonstrate the feasibility of a solution for simultaneous detection and treatment of bladder cancer lesions smaller than one millimeter. The α5ß1 integrin was identified as a specific marker in 81% of human high-grade nonmuscle invasive bladder cancers and used as a target for the delivery of targeted gold nanorods (GNRs). In a preclinical model of orthotopic bladder cancer expressing the α5ß1 integrin, the photoacoustic imaging of targeted GNRs visualized lesions smaller than one millimeter, and their irradiation with continuous laser was used to induce GNR-assisted hyperthermia. Necrosis of the tumor mass, improved survival, and computational modeling were applied to demonstrate the efficacy and safety of this solution. Our study highlights the potential of the GNR-assisted theranostic strategy as a complementary solution in clinical practice to reduce the risk of nonvisible residual bladder cancer after current treatment. Further validation through clinical studies will support the findings of the present study.


Assuntos
Ouro , Nanotubos , Nanomedicina Teranóstica , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/patologia , Ouro/química , Nanotubos/química , Humanos , Animais , Nanomedicina Teranóstica/métodos , Camundongos , Neoplasia Residual , Linhagem Celular Tumoral , Feminino , Técnicas Fotoacústicas/métodos
2.
Bioconjug Chem ; 28(5): 1382-1390, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28453929

RESUMO

In this work, iron/silica/gold core-shell nanoparticles (Fe3O4@SiO2@Au NPs) characterized by magnetic and optical properties have been synthesized to obtain a promising theranostic platform. To improve their biocompatibility, the obtained multilayer nanoparticles have been entrapped in polymeric micelles, decorated with folic acid moieties, and tested in vivo for photoacoustic and magnetic resonance imaging detection of ovarian cancer.


Assuntos
Compostos Férricos/química , Ouro/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/administração & dosagem , Neoplasias Ovarianas/patologia , Técnicas Fotoacústicas/métodos , Polímeros/química , Dióxido de Silício/química , Animais , Proliferação de Células/efeitos dos fármacos , Feminino , Ácido Fólico/química , Humanos , Processamento de Imagem Assistida por Computador/métodos , Nanopartículas de Magnetita/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Micelas , Imagem Multimodal/métodos , Neoplasias Ovarianas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Org Chem ; 80(5): 2562-72, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25654488

RESUMO

The 5-amino-1,2,3-triazole-4-carboxylic acid is a suitable molecule for the preparation of collections of peptidomimetics or biologically active compounds based on the triazole scaffold. However, its chemistry may be influenced by the possibility of undergoing the Dimroth rearrangement. To overcome this problem, a protocol based on the ruthenium-catalyzed cycloaddition of N-Boc ynamides with azides has been developed to give a protected version of this triazole amino acid. When aryl or alkyl azides are reacted with N-Boc-aminopropiolates or arylynamides, the cycloaddition occurs with complete regiocontrol, while N-Boc-alkyl ynamides yield a mixture of regioisomers. The prepared amino acids were employed for the preparation of triazole-containing dipeptides having the structural motives typical of turn inducers. In addition, triazoles active as HSP90 inhibitors (as compound 41, IC50 = 29 nM) were synthesized.


Assuntos
Aminoácidos/química , Azidas/química , Ácidos Carboxílicos/química , Dipeptídeos/química , Proteínas de Choque Térmico HSP90/química , Peptidomiméticos/química , Rutênio/química , Triazóis/síntese química , Catálise , Reação de Cicloadição , Proteínas de Choque Térmico HSP90/agonistas , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Concentração Inibidora 50 , Triazóis/química , Triazóis/farmacologia
4.
Nanoscale Adv ; 6(14): 3655-3667, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38989511

RESUMO

Fibrillar collagen accumulation emerges as a promising biomarker in several diseases, such as desmoplastic tumors and unstable atherosclerotic plaque. Gold nanorods (GNRs) hold great potential as contrast agents in high-resolution, biomedically safe, and non-invasive photoacoustic imaging (PAI). This study presents the design and characterization of a specialized imaging tool which exploits GNR assisted targeted photoacoustic imaging that is tailored for the identification of fibrillar collagen. In addition to the photoacoustic characterization of collagen in the NIR 1 and 2 regions, we demonstrate the detailed steps of conjugating a decoy to GNRs. This study serves as a proof of concept, that demonstrates that conjugated collagenase-1 (MMP-1) generates a distinct and collagen-specific photoacoustic signal, facilitating real-time visualization in the wavelength range of 700-970 nm (NIR I). As most of the reported studies utilized the endogenous contrast of collagen in the NIR II wavelength that has major limitations to perform in vivo deep tissue imaging, the approach that we are proposing is unique and it highlights the promise of MMP-1 decoy-functionalized GNRs as novel contrast agents for photoacoustic imaging of collagen in the NIR 1 region. To our knowledge this is the first time functionalized GNRs are optimized for the detection of fibrillar collagen and utilized in the field of non-invasive photoacoustic imaging that can facilitate a better prognosis of desmoplastic tumors and broken atherosclerotic plaques.

5.
Sci Rep ; 13(1): 4630, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944737

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive primary tumor of the central nervous system and the diagnosis is often dismal. GBM pharmacological treatment is strongly limited by its intracranial location beyond the blood-brain barrier (BBB). While Temozolomide (TMZ) exhibits the best clinical performance, still less than 20% crosses the BBB, therefore requiring administration of very high doses with resulting unnecessary systemic side effects. Here, we aimed at designing new negative temperature-responsive gel formulations able to locally release TMZ beyond the BBB. The biocompatibility of a chitosan-ß-glycerophosphate-based thermogel (THG)-containing mesoporous SiO2 nanoparticles (THG@SiO2) or polycaprolactone microparticles (THG@PCL) was ascertained in vitro and in vivo by cell counting and histological examination. Next, we loaded TMZ into such matrices (THG@SiO2-TMZ and THG@PCL-TMZ) and tested their therapeutic potential both in vitro and in vivo, in a glioblastoma resection and recurrence mouse model based on orthotopic growth of human cancer cells. The two newly designed anticancer formulations, consisting in TMZ-silica (SiO2@TMZ) dispersed in the thermogel matrix (THG@SiO2-TMZ) and TMZ, spray-dried on PLC and incorporated into the thermogel (THG@PCL-TMZ), induced cell death in vitro. When applied intracranially to a resected U87-MG-Red-FLuc human GBM model, THG@SiO2-TMZ and THG@PCL-TMZ caused a significant reduction in the growth of tumor recurrences, when compared to untreated controls. THG@SiO2-TMZ and THG@PCL-TMZ are therefore new promising gel-based local therapy candidates for the treatment of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Camundongos , Animais , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/patologia , Xenoenxertos , Dióxido de Silício/farmacologia , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/prevenção & controle , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Encefálicas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico
6.
Org Biomol Chem ; 10(15): 2911-22, 2012 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-22378196

RESUMO

Several small organic molecule catalysts are reminiscent of natural enzymes in their mode of action and substrate interaction/activation. This striking similarity has been a great source of inspiration for the development of new organocatalytic asymmetric processes. A few representative examples, mostly dealing with catalysts interacting through multiple hydrogen-bonds (synthetic oxyanion holes), are highlighted in this perspective.


Assuntos
Materiais Biomiméticos/química , Aminação , Catálise , Domínio Catalítico , Ciclização , Esterases/química , Ligação de Hidrogênio , Ligação Proteica , Serina Proteases/química , Estereoisomerismo , Tioureia/análogos & derivados , Tioureia/síntese química , Tioureia/química , Ureia/análogos & derivados , Ureia/síntese química , Ureia/química
7.
Biomolecules ; 12(9)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36139004

RESUMO

Microcrystalline cellulose (MCC) is an emerging material with outstanding properties in many scientific and industrial fields, in particular as an additive in composite materials. Its surface modification allows for the fine-tuning of its properties and the exploitation of these materials in a plethora of applications. In this paper, we present the covalent linkage of a luminescent Ir-complex onto the surface of MCC, representing the first incorporation of an organometallic luminescent probe in this biomaterial. This goal has been achieved with an easy and sustainable procedure, which employs a Bronsted-acid ionic liquid as a catalyst for the esterification reaction of -OH cellulose surface groups. The obtained luminescent cellulose microcrystals display high and stable emissions with the incorporation of only a small amount of iridium (III). Incorporation of MCC-Ir in dry and wet matrices, such as films and gels, has been also demonstrated, showing the maintenance of the luminescent properties even in possible final manufacturers.


Assuntos
Líquidos Iônicos , Irídio , Materiais Biocompatíveis , Celulose/química , Líquidos Iônicos/química , Irídio/química , Luminescência
8.
Macromolecules ; 55(8): 3087-3095, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36820328

RESUMO

Material science is recognized as a frontrunner in achieving a sustainable future, owing to its primary reliance upon petroleum-based chemical raw materials. Several efforts are made to implement common renewable feedstocks as an alternative to common fossil resources. For this purpose, additive manufacturing (AM) represents promising and effective know-how for the replacement of high energy- and resource-demanding processes with more environmentally friendly practices. This work presents a novel biobased ink for stereolithography, which has been formulated by mixing a photocurable poly(ester amide) (PEA) obtained from renewable resources with citrate and itaconate cross-linkers and appropriate photopolymerization initiators, terminators, and dyes. The mechanical features and the relative biocompatibility of 3D-printed objects have been carefully studied to evaluate the possible resin implementation in the field of the textile fashion industry.

9.
Pharmaceutics ; 14(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36297659

RESUMO

Small interfering RNA (siRNA) therapies require effective delivery vehicles capable of carrying the siRNA cargo into target cells. To achieve tumor-targeting, a drug delivery system would have to incorporate ligands that specifically bind to receptors expressed on cancer cells to function as portals via receptor-mediated endocytosis. Cell-targeting and internalizing aptamers are the most suitable ligands for functionalization of drug-loaded nanocarriers. Here, we designed a novel aptamer-based platform for the active delivery of siRNA targeting programmed cell death-ligand 1 (PD-L1) to triple-negative breast cancer (TNBC) cells. The generated nanovectors consist of PLGA-based polymeric nanoparticles, which were loaded with PD-L1 siRNA and conjugated on their surface with a new RNA aptamer, specific for TNBC and resistant to nucleases. In vitro results demonstrated that these aptamer-conjugated nanoparticles promote siRNA uptake specifically into TNBC MDA-MB-231 and BT-549 target cells, along with its endosomal release, without recognizing non-TNBC BT-474 breast cancer cells. Their efficiency resulted in an almost complete suppression of PD-L1 expression as early as 90 min of cell treatment. This research provides a rational strategy for optimizing siRNA delivery systems for TNBC treatments.

10.
Nanomaterials (Basel) ; 11(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33435563

RESUMO

Gold nanorods (GNRs) showed to be a suitable contrast agent in photoacoustics (PA), and are able to provide a tunable absorption contrast against background tissue, while a detectable PA signal can be generated from highly localized and targeted areas. A crucial issue for these imaging techniques is represented by the discrimination between exogenous and endogenous contrast and the assessment of the real PA signal magnitude. The application of image resolution/unmixing methods was implemented and optimized to recover the relative magnitude spectra and distribution maps of image constituents of the biological sample based on multivariate analysis (multivariate curve resolution-alternating least squares, MCR-ALS) in the presence of GNRs with tunable absorption properties. The proposed data analysis methodology is demonstrated on real PA images from experimental animal models and ex-vivo preparations.

11.
Nanomaterials (Basel) ; 11(4)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916739

RESUMO

Photothermal therapy has always been a very attractive anti-cancer strategy, drawing a lot of attention thanks to its excellent performance as a non-invasive and pretty safe technique. Lately, nanostructures have become the main characters of the play of cancer therapy due to their ability to absorb near-infrared radiation and efficient light-to-heat conversion. Here we present the synthesis of polyethylene glycol (PEG)-stabilized hybrid ultrasmall (<20 nm) gold-silver nanotriangles (AuAgNTrs) and their application in photothermal therapy. The obtained AuAgNTrs were deeply investigated using high-resolution transmission electron microscopy (HR-TEM). The cell viability assay was performed on U-87 glioblastoma multiforme cell model. Excellent photothermal performance of AuAgNTrs upon irradiation with NIR laser was demonstrated in suspension and in vitro, with >80% cell viability decrease already after 10 min laser irradiation with a laser power P = 3W/cm2 that was proved to be harmless to the control cells. Moreover, a previous cell viability test had shown that the nanoparticles themselves were reasonably biocompatible: without irradiation cell viability remained high. Herein, we show that our hybrid AuAgNTrs exhibit very exciting potential as nanostructures for hyperthermia cancer therapy, mostly due to their easy synthesis protocol, excellent cell compatibility and promising photothermal features.

12.
RSC Adv ; 11(62): 39004-39026, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-35492476

RESUMO

In recent years, the interest regarding the use of proteins as renewable resources has deeply intensified. The strongest impact of these biomaterials is clear in the field of smart medicines and biomedical engineering. Zein, a vegetal protein extracted from corn, is a suitable biomaterial for all the above-mentioned purposes due to its biodegradability and biocompatibility. The controlled drug delivery of small molecules, fabrication of bioactive membranes, and 3D assembly of scaffold for tissue regeneration are just some of the topics now being extensively investigated and reported in the literature. Herein, we review the recent literature on zein as a biopolymer and its applications in the biomedical world, focusing on the different shapes and sizes through which it can be manipulated.

13.
Int J Nanomedicine ; 15: 9909-9937, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335392

RESUMO

Presently, a plenty of concerns related to the environment are due to the overuse of petroleum-based chemicals and products; the synthesis of functional materials, starting from the natural sources, is the current trend in research. The interest for nanocellulose has recently increased in a huge range of fields, from the material science to the biomedical engineering. Nanocellulose gained this leading role because of several reasons: its natural abundance on this planet, the excellent mechanical and optical features, the good biocompatibility and the attractive capability of undergoing surface chemical modifications. Nanocellulose surface tuning techniques are adopted by the high reactivity of the hydroxyl groups available; the chemical modifications are mainly performed to introduce either charged or hydrophobic moieties that include amination, esterification, oxidation, silylation, carboxymethylation, epoxidation, sulfonation, thiol- and azido-functional capability. Despite the several already published papers regarding nanocellulose, the aim of this review involves discussing the surface chemical functional capability of nanocellulose and the subsequent applications in the main areas of nanocellulose research, such as drug delivery, biosensing/bioimaging, tissue regeneration and bioprinting, according to these modifications. The final goal of this review is to provide a novel and unusual overview on this topic that is continuously under expansion for its intrinsic sophisticated properties.


Assuntos
Engenharia Biomédica/métodos , Celulose/química , Nanomedicina/métodos , Nanoestruturas/química , Celulose/farmacologia , Propriedades de Superfície
14.
Nanomaterials (Basel) ; 10(10)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086532

RESUMO

The interest for biodegradable electronic devices is rapidly increasing for application in the field of wearable electronics, precision agriculture, biomedicine, and environmental monitoring. Energy storage devices integrated on polymeric substrates are of particular interest to enable the large-scale on field use of complex devices. This work presents a novel class of eco-friendly supercapacitors based on biodegradable poly(3-hydroxybutyrrate) PHB, ionic liquids, and cluster-assembled gold electrodes. By electrochemical characterization, we demonstrate the possibility of tuning the supercapacitor energetic performance according to the type and amount of the ionic liquid employed. Our devices based on hydrophobic plastic materials are stable under cyclic operation and resistant to moisture exposure.

15.
Nanomaterials (Basel) ; 10(5)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384645

RESUMO

The majority of the clinically approved iron oxide nanoparticles (IO NPs) used as contrast agents for magnetic resonance imaging (MRI) have been withdrawn from the market either due to safety concerns or lack of profits. To address this challenge, liposomes have been used to prepare IO-based T2 contrast agents. We studied the influence of different phospholipids on the relaxivity (r2) values of magneto-liposomes (MLs) containing magnetic NPs in the bilayer, where a strong correlation between the bilayer fluidity and r2 is clearly shown. Embedding 5-nm IO NPs in the lipid bilayer leads to a significant improvement in their relaxivity, where r2 values range from 153 ± 5 s-1 mM-1 for DPPC/cholesterol/DSPE-PEG (96/50/4) up to 673 ± 12 s-1 mM-1 for DOPC/DSPE-PEG (96/4), compared to "free" IO NPs with an r2 value of 16 s-1 mM-1, measured at 9.4 T MRI scanner. In vitro MRI measurements, together with the ICP-MS analysis, revealed MLs as highly selective contrast agents that were preferentially taken up by cancerous T24 cells, which led to an improvement in the contrast and an easier distinction between the healthy and the cancerous cells. A careful selection of the lipid bilayer to prepare MLs could offer efficient MRI contrast agents, even at very low IO NP concentrations.

16.
Biomater Sci ; 7(5): 1746-1775, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30901017

RESUMO

Photoacoustic (PA) imaging is indeed one of the most promising bioimaging techniques for theranostics applications in humans, allowing for the visualization of blood vessels and melanomas with high spatial resolution. However, in order to overcome the endogenous contrast arising from interfering endogenous species such as haemoglobin and melanin, specific contrast agents need to be developed, allowing PAI to successfully identify targeted contrast in the range of wavelengths in which interference from the biomatrix is minimized. This has been first performed by small molecule dyes, which, however, suffer from some important limitations such as low hydrophilicity and short circulation times. For this reason, scientific research has recently directed its efforts towards the development of nanostructured contrast agents capable of providing efficient PA contrast at low concentrations with low toxicity and high biocompatibility. The principal nanostructures are based on (1) metal and semiconducting nanoparticles, amongst which variously shaped nano-gold plays the main role, (2) carbon nanomaterials, such as carbon nanotubes and graphene, and (3) conjugated polymer nanoparticles. In this review, the principal characteristics of this class of materials are reported and greater focus is directed towards in vivo studies. A detailed analysis is performed on various physical-chemical parameters that define the PA response of reported contrast agents, like absorption coefficients and photoacoustic efficiencies. By comparing the experimental data, this review provides a comprehensive tool for the evaluation of new nanostructured contrast agents for PA imaging.


Assuntos
Meios de Contraste/química , Nanoestruturas , Técnicas Fotoacústicas/métodos , Animais , Humanos , Nanotecnologia
17.
Int J Nanomedicine ; 14: 1877-1892, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30936691

RESUMO

INTRODUCTION AND PURPOSE: Cancer stem cells (CSCs) present a higher capacity to evade being killed by cancer agents and developing chemoresistance, thus leading to failure of conventional anticancer therapeutics. Nanomaterials specifically designed for targeting and treating not only tumor cells, but also CSCs, may encompass therapeutic and diagnostic tools, thus successfully eradicating the tumor. MATERIALS AND METHODS: Polymeric micelles simultaneously loaded with gold nanorods (GNRs) and Adriamycin were prepared and used as a novel therapeutic and diagnostic weapon. Epithelial cell adhesion molecule (EpCAM) is an important CSC surface marker and has been exploited in this work as an active targeting agent. Photoacoustic imaging was applied for GNR individuation and tissue recognition. RESULTS: The nanosystem was demonstrated to be able to elicit effective targeting of cancer cells and cause their killing, in particular under laser ablation. Moreover, ex vivo photoacoustic imaging is able to clearly identify tumor regions thanks to GNR's contrast. CONCLUSION: The nanosystem can be considered a powerful and promising theranostic weapon for hepatocellular carcinoma treatment.


Assuntos
Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Molécula de Adesão da Célula Epitelial/imunologia , Nanotubos/química , Técnicas Fotoacústicas/métodos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/instrumentação , Ouro/química , Humanos , Terapia a Laser , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos C57BL , Micelas , Terapia de Alvo Molecular/instrumentação , Terapia de Alvo Molecular/métodos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Técnicas Fotoacústicas/instrumentação , Nanomedicina Teranóstica/instrumentação , Nanomedicina Teranóstica/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
ACS Macro Lett ; 8(4): 414-420, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35651125

RESUMO

We report on the fabrication and electro-mechanical characterization of a nanocomposite system exhibiting anisotropic electrical response under the application of tactile compressive stresses (5 kPa) at low frequencies (0.1-1 Hz). The nanocomposite is based on a chemically cross-linked gel incorporating a highly conductive ionic liquid and surface functionalized barium titanate (BaTiO3) ferroelectric nanoparticles. The system was engineered to respond to mechanical stimulations by combining piezoionic and piezoelectric activity, generating electric charge due to a redistribution of the mobile ions across the polymer matrix and to the presence of the electrically polarized ceramic nanoparticles, respectively. The nanocomposite response was characterized in a quasi-static regime using a custom-designed apparatus. The results obtained showed that the combination of both piezo-effects led to output voltages up to 8 mV and anisotropy in the response. This allows to discriminate the sample orientation with respect to the load direction by monitoring the phase and amplitude modulation of the output signal. The integration of cluster-assembled gold electrodes produced by Supersonic Cluster Beam Deposition (SCBD) was also performed, enabling to enhance the charge transduction efficiency by a factor of 10, compared to the bare nanocomposite. This smart piezoionic/piezoelectric nanocomposite represents an interesting solution for the development of soft devices for discriminative touch sensing and objects localization in physically unstructured environments.

19.
J Org Chem ; 73(17): 6657-65, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18661943

RESUMO

A series of novel N,O-psiconucleosides has been prepared in both enantiomeric forms by resolution of an advanced racemic synthetic intermediate using (R)-N-phenylpantolactam as a chiral resolution agent. The absolute configuration of all of these compounds has been unequivocally established by chemical correlation with the novel (R)- or (S)-1-methyl-5-phenylpyrrolidine-2,3-dione, prepared from the known (R)- and (S)-1-methyl-5-phenylpyrrolidin-2-one, respectively.


Assuntos
4-Butirolactona/análogos & derivados , Antivirais/farmacologia , Vírus de DNA/efeitos dos fármacos , Lactamas/química , Vírus de RNA/efeitos dos fármacos , 4-Butirolactona/química , Animais , Antivirais/síntese química , Vírus de DNA/crescimento & desenvolvimento , Esterificação , Humanos , Espectroscopia de Ressonância Magnética , Pirrolidinas/química , Vírus de RNA/crescimento & desenvolvimento , Estereoisomerismo , Difração de Raios X
20.
J Mater Chem B ; 6(19): 2993-2999, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32254334

RESUMO

Herein we report the synthesis of a resilient nanosystem based on silica-coated magnetic MnFe2O3 nanoparticles conjugated to fluorescein and PEGylated gold nanorods embedded in polymeric micelles (MnFe2O4@SiO2@GNRs@PMs), for magnetic-photoacoustic-optical triple-modality imaging. The magnetic relaxivity of the nanosystem has been evaluated, revealing high r2/r1 ratios that suggest the effectiveness of the nanosystem as the T2-contrast agent. In addition, contrast-based fluorescence imaging has been tested both in vitro and ex vivo, showing that the nanosystem exhibits the suitable optical properties of fluorescein, with contrast intensities comparable with previously reported results. Finally, photoacoustic, due to gold nanorods, performances of the nanosystem have been evaluated, revealing good linearity between concentration and photoacoustic response in the 25-250 nM concentration under irradiation at 690 nm. The results showed a contrast-to-noise ratio (CNR) as high as 60 in a mouse leg subcutaneously injected with the nanosystem. Biocompatibility studies revealed no hemolytic effect induced by the nanoconstruct, revealing the applicability of the studied diagnostic tool for medical studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA