Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Rheumatology (Oxford) ; 61(7): 2826-2834, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34788409

RESUMO

OBJECTIVES: Anti-carbamylated protein antibodies (anti-CarPAs) are present in RA sera and have been associated with erosive disease. The exact targets of anti-CarPAs in vivo are currently not well known; we used a proteomic approach on serum and SF of RA patients to assess the human carbamylome and to identify carbamylated autoantigens as potential biomarkers in early RA. METHODS: Mass spectrometry was performed on SF and serum from RA patients. Carbamylated proteins present in both sample types were selected as candidate autoantigens for the establishment of ELISAs. A cohort of early RA patients was tested for positivity for specific anti-CarPAs. RESULTS: Eleven novel carbamylated proteins were identified, and five were selected as potential autoantigens for detection of anti-CarPAs. Among them, antibodies against carbamylated hemopexin (anti-CaHPX) and alpha-2-macroglobulin (anti-CaA2M) showed comparable diagnostic value to the established carbamylated foetal calf serum-based ELISA. A cohort of 189 early RA patients was studied. The combination of these new biomarkers with anti-citrullinated protein antibodies and RF identified 89% of early RA patients in our cohort. There was little correlation between the tested biomarkers, and each one of the tested antigens could identify a different subset of seronegative RA patients. Anti-CaA2M positivity showed clinical potential, being associated with higher disease disability. CONCLUSION: We highlight the detection of novel carbamylated autoantigens in vivo using a combined proteomics approach in the SF and serum of RA patients. Anti-CaHPX and anti-CaA2M are promising clinical biomarkers, especially in seronegative RA.


Assuntos
Artrite Reumatoide , Autoantígenos , Hemopexina , alfa 2-Macroglobulinas Associadas à Gravidez , Artrite Reumatoide/diagnóstico , Autoanticorpos , Biomarcadores , Humanos , Peptídeos Cíclicos , Proteínas , Proteômica
2.
Neurocrit Care ; 37(2): 463-470, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35523916

RESUMO

BACKGROUND: Quantitative analysis of ventricular cerebrospinal fluid (vCSF) proteins following acute brain injury (ABI) may help identify pathophysiological pathways and potential biomarkers that can predict unfavorable outcome. METHODS: In this prospective proteomic analysis study, consecutive patients with severe ABI expected to require intraventricular catheterization for intracranial pressure (ICP) monitoring for at least 5 days and patients without ABI admitted for elective clipping of an unruptured cerebral aneurysm were included. vCSF samples were collected within the first 24 h after ABI and ventriculostomy insertion and then every 24 h for 5 days. In patients without ABI, a single vCSF sample was collected at the time of elective clipping. Data-independent acquisition and sequential window acquisition of all theoretical spectra (SWATH) mass spectrometry were used to compare differences in protein expression in patients with ABI and patients without ABI and in patients with traumatic and nontraumatic ABI. Differences in protein expression according to different ICP values, intensive care unit outcome, subarachnoid hemorrhage (SAH) versus traumatic brain injury (TBI), and good versus poor 3-month functional status (assessed by using the Glasgow Outcome Scale) were also evaluated. vCSF proteins with significant differences between groups were compared by using linear models and selected for gene ontology analysis using R Language and the Panther database. RESULTS: We included 50 patients with ABI (SAH n = 23, TBI n = 15, intracranial hemorrhage n = 6, ischemic stroke n = 3, others n = 3) and 12 patients without ABI. There were significant differences in the expression of 255 proteins between patients with and without ABI (p < 0.01). There were intraday and interday differences in expression of seven proteins related to increased inflammation, apoptosis, oxidative stress, and cellular response to hypoxia and injury. Among these, glial fibrillary acidic protein expression was higher in patients with ABI with severe intracranial hypertension (ICH) (ICP ≥ 30 mm Hg) or death compared to those without (log 2 fold change: + 2.4; p < 0.001), suggesting extensive primary astroglial injury or death. There were differences in the expression of 96 proteins between patients with traumatic and nontraumatic ABI (p < 0.05); intraday and interday differences were observed for six proteins related to structural damage, complement activation, and cholesterol metabolism. Thirty-nine vCSF proteins were associated with an increased risk of severe ICH (ICP ≥ 30 mm Hg) in patients with traumatic compared with nontraumatic ABI (p < 0.05). No significant differences were found in protein expression between patients with SAH versus TBI or between those with good versus poor 3-month Glasgow Outcome Scale score. CONCLUSIONS: Dysregulated vCSF protein expression after ABI may be associated with an increased risk of severe ICH and death.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Hipertensão Intracraniana , Hemorragia Subaracnóidea , Biomarcadores , Colesterol , Proteína Glial Fibrilar Ácida , Humanos , Hipertensão Intracraniana/etiologia , Pressão Intracraniana/fisiologia , Estudos Prospectivos , Proteômica , Hemorragia Subaracnóidea/complicações
3.
Crit Care ; 25(1): 278, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34353354

RESUMO

BACKGROUND: Acute brain injuries are associated with high mortality rates and poor long-term functional outcomes. Measurement of cerebrospinal fluid (CSF) biomarkers in patients with acute brain injuries may help elucidate some of the pathophysiological pathways involved in the prognosis of these patients. METHODS: We performed a systematic search and descriptive review using the MEDLINE database and the PubMed interface from inception up to June 29, 2021, to retrieve observational studies in which the relationship between CSF concentrations of protein biomarkers and neurological outcomes was reported in patients with acute brain injury [traumatic brain injury, subarachnoid hemorrhage, acute ischemic stroke, status epilepticus or post-cardiac arrest]. We classified the studies according to whether or not biomarker concentrations were associated with neurological outcomes. The methodological quality of the studies was evaluated using the Newcastle-Ottawa quality assessment scale. RESULTS: Of the 39 studies that met our criteria, 30 reported that the biomarker concentration was associated with neurological outcome and 9 reported no association. In TBI, increased extracellular concentrations of biomarkers related to neuronal cytoskeletal disruption, apoptosis and inflammation were associated with the severity of acute brain injury, early mortality and worse long-term functional outcome. Reduced concentrations of protein biomarkers related to impaired redox function were associated with increased risk of neurological deficit. In non-traumatic acute brain injury, concentrations of CSF protein biomarkers related to dysregulated inflammation and apoptosis were associated with a greater risk of vasospasm and a larger volume of brain ischemia. There was a high risk of bias across the studies. CONCLUSION: In patients with acute brain injury, altered CSF concentrations of protein biomarkers related to cytoskeletal damage, inflammation, apoptosis and oxidative stress may be predictive of worse neurological outcomes.


Assuntos
Biomarcadores/análise , Lesões Encefálicas/complicações , Líquido Cefalorraquidiano , Proteínas/análise , Adulto , Biomarcadores/líquido cefalorraquidiano , Lesões Encefálicas/fisiopatologia , Humanos , Prognóstico
4.
J Neurosci ; 39(38): 7513-7528, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31363062

RESUMO

The regulation of the striatum by the GPCR signaling through neuromodulators is essential for its physiology and physiopathology, so it is necessary to know all the compounds of these pathways. In this study, we identified a new important partner of the dopaminergic pathway: GPRIN3 (a member of the GPRIN family). GPRIN3 is highly expressed in the striatum but with undefined function. Cell sorting of medium spiny neurons (MSNs) in indirect MSNs and direct MSNs indicated the presence of the GPRIN3 gene in both populations with a preferential expression in indirect MSNs. This led us to generate GPRIN3 KO mice by CRISPR/Cas9 and test male animals to access possible alterations in morphological, electrophysiological, and behavioral parameters following its absence. 3D reconstruction analysis of MSNs revealed increased neuronal arborization in GPRIN3 KO and modified passive and active electrophysiological properties. These cellular alterations were coupled with increased motivation and cocaine-induced hyperlocomotion. Additionally, using a specific indirect MSN knockdown, we showed a preferential role for GPRIN3 in indirect MSNs related to the D2R signaling. Together, these results show that GPRIN3 is a mediator of D2R function in the striatum playing a major role in striatal physiology.SIGNIFICANCE STATEMENT The striatum is the main input of the basal ganglia processing information from different brain regions through the combined actions of direct pathway neurons and indirect pathway neurons. Both neuronal populations are defined by the expression of dopamine D1R or D2R GPCRs, respectively. How these neurons signal to the respective G-protein is still debatable. Here we identified GPRIN3 as a putative selective controller of D2R function in the striatum playing a critical role in striatal-associated behaviors and cellular functions. This study represents the identification of a new target to tackle striatal dysfunction associated with the D2R, such as schizophrenia, Parkinson's disease, and drug addiction.


Assuntos
Corpo Estriado/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologia
6.
PLoS Pathog ; 7(11): e1002358, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22072972

RESUMO

Viral diseases of the respiratory tract, which include influenza pandemic, children acute bronchiolitis, and viral pneumonia of the elderly, represent major health problems. Plasmacytoid dendritic cells play an important role in anti-viral immunity, and these cells were recently shown to express ChemR23, the receptor for the chemoattractant protein chemerin, which is expressed by epithelial cells in the lung. Our aim was to determine the role played by the chemerin/ChemR23 system in the physiopathology of viral pneumonia, using the pneumonia virus of mice (PVM) as a model. Wild-type and ChemR23 knock-out mice were infected by PVM and followed for functional and inflammatory parameters. ChemR23(-/-) mice displayed higher mortality/morbidity, alteration of lung function, delayed viral clearance and increased neutrophilic infiltration. We demonstrated in these mice a lower recruitment of plasmacytoid dendritic cells and a reduction in type I interferon production. The role of plasmacytoid dendritic cells was further addressed by performing depletion and adoptive transfer experiments as well as by the generation of chimeric mice, demonstrating two opposite effects of the chemerin/ChemR23 system. First, the ChemR23-dependent recruitment of plasmacytoid dendritic cells contributes to adaptive immune responses and viral clearance, but also enhances the inflammatory response. Second, increased morbidity/mortality in ChemR23(-/-) mice is not due to defective plasmacytoid dendritic cells recruitment, but rather to the loss of an anti-inflammatory pathway involving ChemR23 expressed by non-leukocytic cells. The chemerin/ChemR23 system plays important roles in the physiopathology of viral pneumonia, and might therefore be considered as a therapeutic target for anti-viral and anti-inflammatory therapies.


Assuntos
Fatores Quimiotáticos/metabolismo , Células Dendríticas/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Vírus da Pneumonia Murina/imunologia , Pneumonia Viral/imunologia , Infecções por Pneumovirus/imunologia , Receptores Acoplados a Proteínas G/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Quimiocinas , Fatores Quimiotáticos/biossíntese , Células Dendríticas/metabolismo , Mediadores da Inflamação , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Interferon Tipo I/biossíntese , Interferon Tipo I/deficiência , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus da Pneumonia Murina/metabolismo , Vírus da Pneumonia Murina/patogenicidade , Pneumonia Viral/metabolismo , Infecções por Pneumovirus/metabolismo , Receptores de Quimiocinas , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/genética , Carga Viral
7.
J Immunol ; 187(3): 1475-85, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21709160

RESUMO

The peptide F2L was previously characterized as a high-affinity natural agonist for the human formyl peptide receptor (FPR) 3. F2L is an acetylated 21-aa peptide corresponding with the N terminus of the intracellular heme-binding protein 1 (HEBP1). In the current work, we have investigated which proteases were able to generate the F2L peptide from its precursor HEBP1. Structure-function analysis of F2L identified three amino acids, G(3), N(7), and S(8), as the most important for interaction of the peptide with FPR3. We expressed a C-terminally His-tagged form of human HEBP1 in yeast and purified it to homogeneity. The purified protein was used as substrate to identify proteases generating bioactive peptides for FPR3-expressing cells. A conditioned medium from human monocyte-derived macrophages was able to generate bioactivity from HEBP1, and this activity was inhibited by pepstatin A. Cathepsin D was characterized as the protease responsible for HEBP1 processing, and the bioactive product was identified as F2L. We have therefore determined how F2L, the specific agonist of FPR3, is generated from the intracellular protein HEBP1, although it is unknown in which compartment the processing by cathepsin D occurs in vivo.


Assuntos
Proteínas de Transporte/metabolismo , Catepsina D/fisiologia , Fatores Quimiotáticos/agonistas , Hemeproteínas/metabolismo , Peptídeos/agonistas , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional/imunologia , Receptores de Formil Peptídeo/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Proteínas de Transporte/biossíntese , Catepsina D/deficiência , Células Cultivadas , Fatores Quimiotáticos/biossíntese , Fatores Quimiotáticos/metabolismo , Cricetinae , Cricetulus , Proteínas Ligantes de Grupo Heme , Hemeproteínas/biossíntese , Humanos , Ligantes , Macrófagos/enzimologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Neutrófilos/enzimologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peptídeos/metabolismo , Ligação Proteica/imunologia , Precursores de Proteínas/biossíntese , Receptores de Formil Peptídeo/biossíntese
8.
Brain Commun ; 5(1): fcad007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865673

RESUMO

Friedreich ataxia is an autosomal recessive multisystem disorder with prominent neurological manifestations and cardiac involvement. The disease is caused by large GAA expansions in the first intron of the FXN gene, encoding the mitochondrial protein frataxin, resulting in downregulation of gene expression and reduced synthesis of frataxin. The selective loss of proprioceptive neurons is a hallmark of Friedreich ataxia, but the cause of the specific vulnerability of these cells is still unknown. We herein perform an in vitro characterization of human induced pluripotent stem cell-derived sensory neuronal cultures highly enriched for primary proprioceptive neurons. We employ neurons differentiated from healthy donors, Friedreich ataxia patients and Friedreich ataxia sibling isogenic control lines. The analysis of the transcriptomic and proteomic profile suggests an impairment of cytoskeleton organization at the growth cone, neurite extension and, at later stages of maturation, synaptic plasticity. Alterations in the spiking profile of tonic neurons are also observed at the electrophysiological analysis of mature neurons. Despite the reversal of the repressive epigenetic state at the FXN locus and the restoration of FXN expression, isogenic control neurons retain many features of Friedreich ataxia neurons. Our study suggests the existence of abnormalities affecting proprioceptors in Friedreich ataxia, particularly their ability to extend towards their targets and transmit proper synaptic signals. It also highlights the need for further investigations to better understand the mechanistic link between FXN silencing and proprioceptive degeneration in Friedreich ataxia.

9.
Artigo em Inglês | MEDLINE | ID: mdl-37188652

RESUMO

BACKGROUND: Danger-associated molecular patterns (DAMPs) may be implicated in the pathophysiological pathways associated with an unfavorable outcome after acute brain injury (ABI). METHODS: We collected samples of ventricular cerebrospinal fluid (vCSF) for 5 days in 50 consecutive patients at risk of intracranial hypertension after traumatic and nontraumatic ABI. Differences in vCSF protein expression over time were evaluated using linear models and selected for functional network analysis using the PANTHER and STRING databases. The primary exposure of interest was the type of brain injury (traumatic vs. nontraumatic), and the primary outcome was the vCSF expression of DAMPs. Secondary exposures of interest included the occurrence of intracranial pressure ≥20 or ≥ 30 mm Hg during the 5 days post-ABI, intensive care unit (ICU) mortality, and neurological outcome (assessed using the Glasgow Outcome Score) at 3 months post-ICU discharge. Secondary outcomes included associations of these exposures with the vCSF expression of DAMPs. RESULTS: A network of 6 DAMPs (DAMP_trauma; protein-protein interaction [PPI] P=0.04) was differentially expressed in patients with ABI of traumatic origin compared with those with nontraumatic ABI. ABI patients with intracranial pressure ≥30 mm Hg differentially expressed a set of 38 DAMPS (DAMP_ICP30; PPI P< 0.001). Proteins in DAMP_ICP30 are involved in cellular proteolysis, complement pathway activation, and post-translational modifications. There were no relationships between DAMP expression and ICU mortality or unfavorable versus favorable outcomes. CONCLUSIONS: Specific patterns of vCSF DAMP expression differentiated between traumatic and nontraumatic types of ABI and were associated with increased episodes of severe intracranial hypertension.

10.
Front Neurosci ; 16: 885313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911978

RESUMO

Clinical trials in rare diseases as Friedreich ataxia (FRDA) offer special challenges, particularly when multiple treatments become ready for clinical testing. Regulatory health authorities have developed specific pathways for "orphan" drugs allowing the use of a validated biomarker for initial approval. This study aimed to identify changes in cerebrospinal fluid (CSF) proteins occurring in FRDA patients that may be potential biomarkers in therapeutic trials. CSF was obtained from 5 FRDA patients (4 females, 1 male) from the Brussels site of the European Friedreich Ataxia Consortium for Translational Studies (EFACTS). Two patients were ambulatory, three used a wheelchair. Residual CSF samples from 19 patients who had had a lumbar puncture as part of a diagnostic workup were used as controls. All CSF samples had normal cells, total protein and glucose levels. Proteins were identified by label-free data-dependent acquisition mass spectrometry (MS) coupled to micro-high performance liquid chromatography. We found 172 differentially expressed proteins (DEPs) (92 up, 80 down) between FRDA patients and controls at P < 0.05, 34 DEPs (28 up, 6 down) at P < 0.0001. Remarkably, there was no overlap between FRDA patients and controls for seven upregulated and six downregulated DEPs. Represented pathways included extracellular matrix organization, signaling, the complement cascade, adhesion molecules, synaptic proteins, neurexins and neuroligins. This study supports the hypothesis that the quantitative analysis CSF proteins may provide robust biomarkers for clinical trials as well as shed light on pathogenic mechanisms. Interestingly, DEPs in FA patients CSF point to neurodegeneration and neuroinflammation processes that may respond to treatment.

11.
J Exp Med ; 201(4): 509-15, 2005 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-15728234

RESUMO

Chemerin is a chemotactic agent that was recently identified as the ligand of ChemR23, a serpentine receptor expressed by activated macrophages and monocyte-derived dendritic cells (DCs). This paper shows that blood plasmacytoid and myeloid DCs express functional ChemR23. Recombinant chemerin induced the transmigration of plasmacytoid and myeloid DCs across an endothelial cell monolayer. In secondary lymphoid organs (lymph nodes and tonsils), ChemR23 is expressed by CD123(+) plasmacytoid DCs and by CD1a(+) DC-SIGN(+) DCs in the interfollicular T cell area. ChemR23(+) DCs were also observed in dermis from normal skin, whereas Langerhans cells were negative. Chemerin expression was selectively detected on the luminal side of high endothelial venules in secondary lymphoid organs and in dermal endothelial vessels of lupus erythematosus skin lesions. Chemerin(+) endothelial cells were surrounded by ChemR23(+) plasmacytoid DCs. Thus, ChemR23 is expressed and functional in plasmacytoid DCs, a property shared only by CXCR4 among chemotactic receptors. This finding, together with the selective expression of the cognate ligand on the luminal side of high endothelial venules and inflamed endothelium, suggests a key role of the ChemR23/chemerin axis in directing plasmacytoid DC trafficking.


Assuntos
Células Dendríticas/fisiologia , Lúpus Eritematoso Sistêmico/imunologia , Tecido Linfoide/irrigação sanguínea , Receptores de Quimiocinas/fisiologia , Pele/irrigação sanguínea , Movimento Celular , Células Cultivadas , Quimiocinas/biossíntese , Quimiocinas/farmacologia , Fatores Quimiotáticos/biossíntese , Fatores Quimiotáticos/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Endoteliais/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Ligantes , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/patologia , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Células Mieloides/imunologia , Plasmócitos/imunologia , Receptores de Quimiocinas/biossíntese , Pele/imunologia , Pele/metabolismo , Pele/patologia , Vênulas/imunologia , Vênulas/metabolismo
12.
J Exp Med ; 201(1): 83-93, 2005 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-15623572

RESUMO

Chemotaxis of dendritic cells (DCs) and monocytes is a key step in the initiation of an adequate immune response. Formyl peptide receptor (FPR) and FPR-like receptor (FPRL)1, two G protein-coupled receptors belonging to the FPR family, play an essential role in host defense mechanisms against bacterial infection and in the regulation of inflammatory reactions. FPRL2, the third member of this structural family of chemoattractant receptors, is characterized by its specific expression on monocytes and DCs. Here, we present the isolation from a spleen extract and the functional characterization of F2L, a novel chemoattractant peptide acting specifically through FPRL2. F2L is an acetylated amino-terminal peptide derived from the cleavage of the human heme-binding protein, an intracellular tetrapyrolle-binding protein. The peptide binds and activates FPRL2 in the low nanomolar range, which triggers intracellular calcium release, inhibition of cAMP accumulation, and phosphorylation of extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases through the G(i) class of heterotrimeric G proteins. When tested on monocytes and monocyte-derived DCs, F2L promotes calcium mobilization and chemotaxis. Therefore, F2L appears as a new natural chemoattractant peptide for DCs and monocytes, and the first potent and specific agonist of FPRL2.


Assuntos
Cálcio/metabolismo , Fatores Quimiotáticos/genética , Quimiotaxia/imunologia , Células Dendríticas/imunologia , Receptores de Formil Peptídeo/metabolismo , Transdução de Sinais/genética , Sequência de Aminoácidos , Anticorpos Monoclonais , Proteínas de Transporte/metabolismo , Fatores Quimiotáticos/metabolismo , Quimiotaxia/genética , Primers do DNA , Células Dendríticas/metabolismo , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Proteínas Ligantes de Grupo Heme , Hemeproteínas/metabolismo , Humanos , Ligantes , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos , Receptores de Formil Peptídeo/agonistas , Receptores de Lipoxinas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência
13.
Nat Med ; 9(7): 936-43, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12796773

RESUMO

Therapeutic angiogenesis is likely to require the administration of factors that complement each other. Activation of the receptor tyrosine kinase (RTK) Flk1 by vascular endothelial growth factor (VEGF) is crucial, but molecular interactions of other factors with VEGF and Flk1 have been studied to a limited extent. Here we report that placental growth factor (PGF, also known as PlGF) regulates inter- and intramolecular cross talk between the VEGF RTKs Flt1 and Flk1. Activation of Flt1 by PGF resulted in intermolecular transphosphorylation of Flk1, thereby amplifying VEGF-driven angiogenesis through Flk1. Even though VEGF and PGF both bind Flt1, PGF uniquely stimulated the phosphorylation of specific Flt1 tyrosine residues and the expression of distinct downstream target genes. Furthermore, the VEGF/PGF heterodimer activated intramolecular VEGF receptor cross talk through formation of Flk1/Flt1 heterodimers. The inter- and intramolecular VEGF receptor cross talk is likely to have therapeutic implications, as treatment with VEGF/PGF heterodimer or a combination of VEGF plus PGF increased ischemic myocardial angiogenesis in a mouse model that was refractory to VEGF alone.


Assuntos
Proteínas da Gravidez/metabolismo , Receptor Cross-Talk/fisiologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Cultivadas , Dimerização , Fatores de Crescimento Endotelial/metabolismo , Fatores de Crescimento Endotelial/farmacologia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Ativação Enzimática , Perfilação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Linfocinas/metabolismo , Linfocinas/farmacologia , Camundongos , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Fosforilação , Fator de Crescimento Placentário , Proteínas da Gravidez/farmacologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular , Proteínas Virais/metabolismo , Proteínas Virais/farmacologia
14.
J Biol Chem ; 284(52): 36062-36076, 2009 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-19880507

RESUMO

The SH2 domain containing inositol 5-phosphatase SHIP2 contains several interacting domains that are important for scaffolding properties. We and others have previously reported that SHIP2 interacts with the E3 ubiquitin ligase c-Cbl. Here, we identified human SHIP2 monoubiquitination on lysine 315. SHIP2 could also be polyubiquitinated but was not degraded by the 26 S proteasome. Furthermore, we identified a ubiquitin-interacting motif at the C-terminal end of SHIP2 that confers ubiquitin binding capacity. However, this ubiquitin-interacting motif is dispensable for its monoubiquitination. We showed that neither c-Cbl nor Nedd4-1 play the role of ubiquitin ligase for SHIP2. Strikingly, monoubiquitination of the DeltaSH2-SHIP2 mutant (lacking the N-terminal SH2 domain) is strongly increased, suggesting an intrinsic inhibitory effect of the SHIP2 SH2 domain on its monoubiquitination. Moreover, SHIP2 monoubiquitination was increased upon 30 min of epidermal growth factor stimulation. This correlates with the loss of interaction between the SHIP2 SH2 domain and c-Cbl. In this model, c-Cbl could mask the monoubiquitination site and thereby prevent SHIP2 monoubiquitination. The present study thus reveals an unexpected and novel role of SHIP2 SH2 domain in the regulation of its newly identified monoubiquitination.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Modelos Biológicos , Monoéster Fosfórico Hidrolases/metabolismo , Ubiquitinação/fisiologia , Motivos de Aminoácidos/fisiologia , Animais , Células COS , Chlorocebus aethiops , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Humanos , Ubiquitina-Proteína Ligases Nedd4 , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Estrutura Terciária de Proteína/fisiologia , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Fatores de Tempo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
15.
J Exp Med ; 198(7): 977-85, 2003 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-14530373

RESUMO

Dendritic cells (DCs) and macrophages are professional antigen-presenting cells (APCs) that play key roles in both innate and adaptive immunity. ChemR23 is an orphan G protein-coupled receptor related to chemokine receptors, which is expressed specifically in these cell types. Here we present the characterization of chemerin, a novel chemoattractant protein, which acts through ChemR23 and is abundant in a diverse set of human inflammatory fluids. Chemerin is secreted as a precursor of low biological activity, which upon proteolytic cleavage of its COOH-terminal domain, is converted into a potent and highly specific agonist of ChemR23, the chemerin receptor. Activation of chemerin receptor results in intracellular calcium release, inhibition of cAMP accumulation, and phosphorylation of p42-p44 MAP kinases, through the Gi class of heterotrimeric G proteins. Chemerin is structurally and evolutionary related to the cathelicidin precursors (antibacterial peptides), cystatins (cysteine protease inhibitors), and kininogens. Chemerin was shown to promote calcium mobilization and chemotaxis of immature DCs and macrophages in a ChemR23-dependent manner. Therefore, chemerin appears as a potent chemoattractant protein of a novel class, which requires proteolytic activation and is specific for APCs.


Assuntos
Células Apresentadoras de Antígenos/fisiologia , Quimiocinas/fisiologia , Receptores de Quimiocinas/metabolismo , Sequência de Aminoácidos , Cálcio/metabolismo , Movimento Celular , Quimiocinas/química , Quimiocinas/genética , Quimiocinas/isolamento & purificação , Células Dendríticas/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Dados de Sequência Molecular
16.
Adv Biol Regul ; 76: 100651, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31519471

RESUMO

Opsismodysplasia (OPS) is a rare but severe autosomal recessive skeletal chondrodysplasia caused by inactivating mutations in the Inppl1/Ship2 gene. The molecular mechanism leading from Ship2 gene inactivation to OPS is currently unknown. Here, we used our Ship2Δ/Δ mouse expressing reduced amount of a catalytically-inactive SHIP2 protein and a previously reported SHIP2 inhibitor to investigate growth plate development and mineralization in vivo, ex vivo and in vitro. First, as observed in OPS patients, catalytic inactivation of SHIP2 in mouse leads to reduced body length, shortening of long bones, craniofacial dysmorphism, reduced height of the hyperthrophic chondrocyte zone and to defects in growth plate mineralization. Second, intrinsic Ship2Δ/Δ bone defects were sufficient to induce the characteristic OPS alterations in bone growth, histology and mineralization ex vivo. Third, expression of osteocalcin was significantly increased in SHIP2-inactivated chondrocyte cultures whereas production of mineralized nodules was markedly decreased. Targeting osteocalcin mRNA with a specific shRNA increased the production of mineralized nodules. Fourth, levels of p-MEK and p-Erk1/2 were significantly increased in SHIP2-inactivated chondrocytes in response to serum and IGF-1, but not to FGF2, as compared to control chondrocytes. Treatment of chondrocytes and bones in culture with a MEK inhibitor partially rescued the production of mineralized nodules, the size of the hypertrophic chondrocyte zone and bone growth, raising the possibility of a treatment that could partially reduce the phenotype of this severe condition. Altogether, our results indicate that Ship2Δ/Δ mice represent a relevant model for human OPS. They also highlight the important role of SHIP2 in chondrocytes during endochondral ossification and its different differentiation steps. Finally, we identified a role of osteocalcin in mineralized nodules production and for the MEK-Erk1/2 signaling pathway in the OPS phenotype.


Assuntos
Condrócitos/metabolismo , MAP Quinase Quinase Quinases/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Osteocalcina/genética , Osteocondrodisplasias/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Aminoacetonitrila/análogos & derivados , Aminoacetonitrila/farmacologia , Animais , Calcificação Fisiológica/genética , Diferenciação Celular , Condrócitos/patologia , Modelos Animais de Doenças , Fator 2 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica , Lâmina de Crescimento/metabolismo , Lâmina de Crescimento/patologia , Humanos , Fator de Crescimento Insulin-Like I/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Osteocalcina/antagonistas & inibidores , Osteocalcina/metabolismo , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patologia , Osteogênese/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/antagonistas & inibidores , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/deficiência , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Tiofenos/farmacologia
17.
J Leukoc Biol ; 84(6): 1530-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18753310

RESUMO

Chemerin is a potent chemotactic factor that was identified recently as the ligand of ChemR23, a G protein-coupled receptor expressed by mononuclear phagocytes, dendritic cells (DCs), and NK cells. Chemerin is synthesized as a secreted precursor, prochemerin, which is poorly active on ChemR23. However, prochemerin can be converted rapidly into a full ChemR23 agonist by proteolytic removal of a carboxy-terminal peptide. This maturation step is mediated by the neutrophil-derived serine proteases elastase and cathepsin G. In the present work, we have investigated proteolytic events that negatively control chemerin activity. We demonstrate here that neutrophil-derived proteinase 3 (PR3) and mast cell (MC) chymase are involved in the generation of specific chemerin variants, which are inactive, as they do not induce calcium release or DC chemotaxis. Mass spectrometry analysis showed that PR3 specifically converts prochemerin into a chemerin form, lacking the last eight carboxy-terminal amino acids, and is inactive on ChemR23. Whereas PR3 had no effect on bioactive chemerin, MC chymase was shown to abolish chemerin activity by the removal of additional amino acids from its C-terminus. This effect was shown to be specific to bioactive chemerin (chemerin-157 and to a lesser extent, chemerin-156), as MC chymase does not use prochemerin as a substrate. These mechanisms, leading to the production of inactive variants of chemerin, starting from the precursor or the active variants, highlight the complex interplay of proteases regulating the bioactivity of this novel mediator during early innate immune responses.


Assuntos
Quimiocinas/metabolismo , Quimases/fisiologia , Células Dendríticas/metabolismo , Mastócitos/enzimologia , Mieloblastina/fisiologia , Neutrófilos/enzimologia , Equorina/metabolismo , Animais , Apoproteínas/metabolismo , Células da Medula Óssea/metabolismo , Células CHO , Cálcio/metabolismo , Células Cultivadas , Quimiotaxia , Cricetinae , Cricetulus , Meios de Cultivo Condicionados/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Monócitos/metabolismo , Neutrófilos/citologia , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Cytokine Growth Factor Rev ; 17(6): 501-19, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17084101

RESUMO

The formyl peptide receptor (FPR) family is involved in host defence against pathogens, but also in sensing internal molecules that may constitute signals of cellular dysfunction. It includes three subtypes in human and other primates. FPR responds to formyl peptides derived from bacterial and mitochondrial proteins. FPRL1 displays a large array of exogenous and endogenous ligands, including the chemokine variant sCKbeta8-1, the neuroprotective peptide humanin, and lipoxin A4. Two high affinity agonists (F2L and humanin) were recently described for FPRL2. In mouse, eight FPR-related receptors have been described. Fpr1 is the ortholog of human FPR, while fpr2 appears to share many ligands with human FPRL1. Altogether, the physiological role of the FPR family is still incompletely understood, due in part to the large variety of ligands, the redundancy with other chemoattractant agents, and the lack of clear orthologs between human and mouse receptors. Newly developed tools will allow to study further this family of receptors.


Assuntos
Receptores de Formil Peptídeo/imunologia , Sequência de Aminoácidos , Animais , Clonagem Molecular , Humanos , Ligantes , Camundongos , Dados de Sequência Molecular , Filogenia , Receptores de Formil Peptídeo/classificação , Receptores de Formil Peptídeo/genética , Receptores de Lipoxinas/imunologia , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Distribuição Tecidual
19.
Microbiologyopen ; 8(12): e932, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31517452

RESUMO

Shigella invasion and dissemination in intestinal epithelial cells relies on a type 3 secretion system (T3SS), which mediates translocation of virulence proteins into host cells. T3SSs are composed of three major parts: an extracellular needle, a basal body, and a cytoplasmic complex. Three categories of proteins are hierarchically secreted: (a) the needle components, (b) the translocator proteins which form a pore (translocon) inside the host cell membrane and (c) the effectors interfering with the host cell signaling pathways. In the absence of host cell contact, the T3SS is maintained in an "off" state by the presence of a tip complex. Secretion is activated by host cell contact which allows the release of a gatekeeper protein called MxiC. In this work, we have investigated the role of Spa33, a component of the cytoplasmic complex, in the regulation of secretion. The spa33 gene encodes a 33-kDa protein and a smaller fragment of 12 kDa (Spa33C ) which are both essential components of the cytoplasmic complex. We have shown that the spa33 gene gives rise to 5 fragments of various sizes. Among them, three are necessary for T3SS. Interestingly, we have shown that Spa33 is implicated in the regulation of secretion. Indeed, the mutation of a single residue in Spa33 induces an effector mutant phenotype, in which MxiC is sequestered. Moreover, we have shown a direct interaction between Spa33 and MxiC.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica , Shigella/fisiologia , Sistemas de Secreção Tipo III/fisiologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Códon de Iniciação , Mutação , Ligação Proteica , Virulência/genética
20.
J Cell Biochem ; 104(4): 1161-71, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18465786

RESUMO

We were looking by a proteomic approach for new phospho-proteins involved during the early steps of the TNF + cycloheximide (CHX)-induced apoptosis-preceding mitochondrial membrane permeabilization-of endothelial cells (BAEC). In the present study, we observed on the autoradiography from 2D gel of (32)P-labeled samples a string of proteins undergoing a complete dephosphorylation after 1 h of stimulation with TNF + CHX-while mitochondrial membrane permeabilization was observed after 3 h-identified the different spots by mass spectrometry as one and only protein, HDGF, and confirmed the identity by western blot. The intensity of the 2D phosphorylation pattern of HDGF was correlated with the amount of apoptosis induced by TNF + CHX and TNF or CHX alone and this event was inhibited by the Caspase specific inhibitor zVADfmk. Moreover the TNF + CHX-treatment did not affect the nuclear localization of GFP-HDGF. Taken together, our data suggest an involvement of HDGF during the initiation phase of the apoptotic process downstream from an initiator Caspase and a regulation of this protein by phosphorylation in the nucleus.


Assuntos
Apoptose , Caspases/fisiologia , Células Endoteliais/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Animais , Aorta/citologia , Apoptose/efeitos dos fármacos , Bovinos , Núcleo Celular/metabolismo , Células Cultivadas , Cicloeximida/farmacologia , Fosforilação , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA