Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 8(23): 13026-13033, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35541227

RESUMO

Colloidal nanocrystals attract considerable attention in the field of light emitting devices thanks to their high fluorescence quantum yield, low amplified spontaneous emission (ASE) threshold, and spectral tunability via electronic structure engineering and surface functionalization. Combining polymer microcavities with colloidal nanocrystals as gain material promises a solution-based fabrication route to plastic laser cavities as well as applications in the field of smart flexible large area light sources and sensors. Here we demonstrate lasing from polymer microcavities embedding solution processable dot-in-rod (DiR) CdSe/CdS nanocrystals. Two highly reflective polymer dielectric mirrors are prepared by spin-coating of alternated layers of polyacrylic acid and poly(N-vinyl carbazole), with their photonic band gap tailored to the emission of the DiRs. The DiRs are enclosed in the polymer microcavity by drop-cast deposition on one mirror, followed by pressing the mirrors onto each other. We obtain excellent overlap of the ASE band of the DiRs with the photonic band gap of the cavity and observe optically pumped lasing at 640 nm with a threshold of about 50 µJ cm-2.

3.
Phys Rev B Condens Matter ; 53(23): 15653-15659, 1996 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-9983399
9.
Langmuir ; 21(8): 3480-5, 2005 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-15807591

RESUMO

We report on the formation of ordered arrays of micrometric holes on the surface of polystyrene (PS) films cast from volatile solvents in the presence of humidity at different temperatures. The formation mechanism is investigated for PS having different molecular weights, polydispersities, and carboxylic terminations. Among the chosen materials, a highly regular honeycomb microstructured morphology is obtained on the surface of films prepared with dicarboxy-terminated PS with = 100,000. Experiments and observations on film formation indicate that polar groups are playing a fundamental role in this process. Tuning the surface tension by means of polar terminations allows the film morphology to be modified and in particular the preparation of two- or three-dimensional microstructured films. Finally, we show how these structures can be replicated by soft lithography and then used in the fields of photonic crystals and organic electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA