Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Cell Sci ; 135(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35394045

RESUMO

Altered endocytosis and vesicular trafficking are major players during tumorigenesis. Flotillin overexpression, a feature observed in many invasive tumors and identified as a marker of poor prognosis, induces a deregulated endocytic and trafficking pathway called upregulated flotillin-induced trafficking (UFIT). Here, we found that in non-tumoral mammary epithelial cells, induction of the UFIT pathway promotes epithelial-to-mesenchymal transition (EMT) and accelerates the endocytosis of several transmembrane receptors, including AXL, in flotillin-positive late endosomes. AXL overexpression, frequently observed in cancer cells, is linked to EMT and metastasis formation. In flotillin-overexpressing non-tumoral mammary epithelial cells and in invasive breast carcinoma cells, we found that the UFIT pathway-mediated AXL endocytosis allows its stabilization and depends on sphingosine kinase 2, a lipid kinase recruited in flotillin-rich plasma membrane domains and endosomes. Thus, the deregulation of vesicular trafficking following flotillin upregulation, and through sphingosine kinase 2, emerges as a new mechanism of AXL overexpression and EMT-inducing signaling pathway activation.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Proteínas de Membrana , Fosfotransferases (Aceptor do Grupo Álcool) , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas de Membrana/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor Tirosina Quinase Axl
2.
Mol Psychiatry ; 28(4): 1527-1544, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36717740

RESUMO

The RhoGEF TRIO is known to play a major role in neuronal development by controlling actin cytoskeleton remodeling, primarily through the activation of the RAC1 GTPase. Numerous de novo mutations in the TRIO gene have been identified in individuals with neurodevelopmental disorders (NDDs). We have previously established the first phenotype/genotype correlation in TRIO-associated diseases, with striking correlation between the clinical features of the individuals and the opposite modulation of RAC1 activity by TRIO variants targeting different domains. The mutations hyperactivating RAC1 are of particular interest, as they are recurrently found in patients and are associated with a severe form of NDD and macrocephaly, indicating their importance in the etiology of the disease. Yet, it remains unknown how these pathogenic TRIO variants disrupt TRIO activity at a molecular level and how they affect neurodevelopmental processes such as axon outgrowth or guidance. Here we report an additional cohort of individuals carrying a pathogenic TRIO variant that reinforces our initial phenotype/genotype correlation. More importantly, by performing conformation predictions coupled to biochemical validation, we propose a model whereby TRIO is inhibited by an intramolecular fold and NDD-associated variants relieve this inhibition, leading to RAC1 hyperactivation. Moreover, we show that in cultured primary neurons and in the zebrafish developmental model, these gain-of-function variants differentially affect axon outgrowth and branching in vitro and in vivo, as compared to loss-of-function TRIO variants. In summary, by combining clinical, molecular, cellular and in vivo data, we provide compelling new evidence for the pathogenicity of novel genetic variants targeting the TRIO gene in NDDs. We report a novel mechanism whereby the fine-tuned regulation of TRIO activity is critical for proper neuronal development and is disrupted by pathogenic mutations.


Assuntos
Orientação de Axônios , Transtornos do Neurodesenvolvimento , Animais , Transtornos do Neurodesenvolvimento/genética , Neurônios , Fatores de Troca de Nucleotídeo Guanina Rho , Peixe-Zebra , Humanos
3.
Cancer Metastasis Rev ; 39(2): 361-374, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32297092

RESUMO

Flotillins 1 and 2 are two ubiquitous, highly conserved homologous proteins that assemble to form heterotetramers at the cytoplasmic face of the plasma membrane in cholesterol- and sphingolipid-enriched domains. Flotillin heterotetramers can assemble into large oligomers to form molecular scaffolds that regulate the clustering of at the plasma membrane and activity of several receptors. Moreover, flotillins are upregulated in many invasive carcinomas and also in sarcoma, and this is associated with poor prognosis and metastasis formation. When upregulated, flotillins promote plasma membrane invagination and induce an endocytic pathway that allows the targeting of cargo proteins in the late endosomal compartment in which flotillins accumulate. These late endosomes are not degradative, and participate in the recycling and secretion of protein cargos. The cargos of this Upregulated Flotillin-Induced Trafficking (UFIT) pathway include molecules involved in signaling, adhesion, and extracellular matrix remodeling, thus favoring the acquisition of an invasive cellular behavior leading to metastasis formation. Thus, flotillin presence from the plasma membrane to the late endosomal compartment influences the activity, and even modifies the trafficking and fate of key protein cargos, favoring the development of diseases, for instance tumors. This review summarizes the current knowledge on flotillins and their role in cancer development focusing on their function in cellular membrane remodeling and vesicular trafficking regulation.


Assuntos
Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Animais , Carcinogênese , Membrana Celular/metabolismo , Humanos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/patologia , Proteínas de Membrana/biossíntese , Neoplasias/patologia
4.
J Cell Sci ; 132(21)2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31604795

RESUMO

Directional collective cell migration (DCCM) is crucial for morphogenesis and cancer metastasis. P-cadherin (also known as CDH3), which is a cell-cell adhesion protein expressed in carcinoma and aggressive sarcoma cells and associated with poor prognosis, is a major DCCM regulator. However, it is unclear how P-cadherin-mediated mechanical coupling between migrating cells influences force transmission to the extracellular matrix (ECM). Here, we found that decorin, a small proteoglycan that binds to and organizes collagen fibers, is specifically expressed and secreted upon P-cadherin, but not E- and R-cadherin (also known as CDH1 and CDH4, respectively) expression. Through cell biological and biophysical approaches, we demonstrated that decorin is required for P-cadherin-mediated DCCM and collagen fiber orientation in the migration direction in 2D and 3D matrices. Moreover, P-cadherin, through decorin-mediated collagen fiber reorientation, promotes the activation of ß1 integrin and of the ß-Pix (ARHGEF7)/CDC42 axis, which increases traction forces, allowing DCCM. Our results identify a novel P-cadherin-mediated mechanism to promote DCCM through ECM remodeling and ECM-guided cell migration.


Assuntos
Caderinas/metabolismo , Movimento Celular/fisiologia , Colágeno/metabolismo , Decorina/metabolismo , Adesão Celular/fisiologia , Matriz Extracelular/metabolismo , Humanos , Fenômenos Mecânicos , Proteína cdc42 de Ligação ao GTP/metabolismo
5.
J Cell Sci ; 131(17)2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30111578

RESUMO

Tumor cell invasion and metastasis formation are the major cause of death in cancer patients. These processes rely on extracellular matrix (ECM) degradation mediated by organelles termed invadopodia, to which the transmembrane matrix metalloproteinase MT1-MMP (also known as MMP14) is delivered from its reservoir, the RAB7-containing endolysosomes. How MT1-MMP is targeted to endolysosomes remains to be elucidated. Flotillin-1 and -2 are upregulated in many invasive cancers. Here, we show that flotillin upregulation triggers a general mechanism, common to carcinoma and sarcoma, which promotes RAB5-dependent MT1-MMP endocytosis and its delivery to RAB7-positive endolysosomal reservoirs. Conversely, flotillin knockdown in invasive cancer cells greatly reduces MT1-MMP accumulation in endolysosomes, its subsequent exocytosis at invadopodia, ECM degradation and cell invasion. Our results demonstrate that flotillin upregulation is necessary and sufficient to promote epithelial and mesenchymal cancer cell invasion and ECM degradation by controlling MT1-MMP endocytosis and delivery to the endolysosomal recycling compartment.


Assuntos
Endossomos/metabolismo , Lisossomos/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Linhagem Celular Tumoral , Endocitose , Endossomos/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Humanos , Lisossomos/genética , Metaloproteinase 14 da Matriz/genética , Proteínas de Membrana/genética , Invasividade Neoplásica , Neoplasias/genética , Neoplasias/patologia , Podossomos/genética , Podossomos/metabolismo , Transporte Proteico , Regulação para Cima , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
6.
Biol Cell ; 109(5): 210-221, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28225561

RESUMO

Zebrafish gastrulation and particularly epiboly that involves coordinated movements of several cell layers is a dynamic process for which regulators remain to be identified. We show here that Flotillin 1 and 2, ubiquitous and highly conserved proteins, are required for epiboly. Flotillins knockdown compromised embryo survival, strongly delayed epiboly and impaired deep cell radial intercalation and directed collective migration without affecting enveloping layer cell movement. At the molecular level, we identified that Flotillins are required for the formation of E-cadherin-mediated cell-cell junctions. These results provide the first in vivo evidence that Flotillins regulate E-cadherin-mediated cell-cell junctions to allow epiboly progression.


Assuntos
Caderinas/metabolismo , Movimento Celular , Proteínas de Membrana/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Adesão Celular , Comunicação Celular , Técnicas de Silenciamento de Genes , beta Catenina/metabolismo
7.
J Cell Sci ; 127(Pt 24): 5139-47, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25413346

RESUMO

Flotillin 1 and 2 are ubiquitous and highly conserved proteins. They were initially discovered in 1997 as being associated with specific caveolin-independent cholesterol- and glycosphingolipid-enriched membrane microdomains and as being expressed during axon regeneration. Flotillins have a role in a large number of physiopathological processes, mainly through their function in membrane receptor clustering and in the regulation of clathrin-independent endocytosis. In this Commentary, we summarize the research performed so far on the role of flotillins in cell-cell adhesion. Recent studies have demonstrated that flotillins directly regulate the formation of cadherin complexes. Indeed, flotillin microdomains are required for the dynamic association and stabilization of cadherins at cell-cell junctions and also for cadherin signaling. Moreover, because flotillins regulate endocytosis and also the actin cytoskeleton, they could have an indirect role in the assembly and stabilization of cadherin complexes. Because it has also recently been shown that flotillins are overexpressed during neurodegenerative diseases and in human cancers, where their upregulation is associated with metastasis formation and poor prognosis, understanding to what extent flotillin upregulation participates in the development of such pathologies is thus of particular interest, as well as how, at the molecular level, it might affect cell adhesion processes.


Assuntos
Fenômenos Fisiológicos Celulares , Doença , Proteínas de Membrana/metabolismo , Caderinas/metabolismo , Adesão Celular , Humanos , Proteínas de Membrana/química , Modelos Biológicos
8.
J Cell Sci ; 126(Pt 22): 5293-304, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24046456

RESUMO

Cadherins are essential in many fundamental processes and assemble at regions of cell-cell contact in large macromolecular complexes named adherens junctions. We have identified flotillin 1 and 2 as new partners of the cadherin complexes. We show that flotillins are localised at cell-cell junctions (CCJs) in a cadherin-dependent manner. Flotillins and cadherins are constitutively associated at the plasma membrane and their colocalisation at CCJ increases with CCJ maturation. Using three-dimensional structured illumination super-resolution microscopy, we found that cadherin and flotillin complexes are associated with F-actin bundles at CCJs. The knockdown of flotillins dramatically affected N- and E-cadherin recruitment at CCJs in mesenchymal and epithelial cell types and perturbed CCJ integrity and functionality. Moreover, we determined that flotillins are required for cadherin association with GM1-containing plasma membrane microdomains. This allows p120 catenin binding to the cadherin complex and its stabilization at CCJs. Altogether, these data demonstrate that flotillin microdomains are required for cadherin stabilization at CCJs and for the formation of functional CCJs.


Assuntos
Caderinas/metabolismo , Junções Intercelulares/genética , Proteínas de Membrana/metabolismo , Caderinas/genética , Cateninas/metabolismo , Membrana Celular/metabolismo , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Junções Intercelulares/metabolismo , Células MCF-7 , Proteínas de Membrana/genética , Estrutura Terciária de Proteína , Proteínas Ativadoras de Esfingolipídeos/metabolismo , delta Catenina
9.
Commun Biol ; 7(1): 549, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724689

RESUMO

Amphiphysin 2 (BIN1) is a membrane and actin remodeling protein mutated in congenital and adult centronuclear myopathies. Here, we report an unexpected function of this N-BAR domain protein BIN1 in filopodia formation. We demonstrated that BIN1 expression is necessary and sufficient to induce filopodia formation. BIN1 is present at the base of forming filopodia and all along filopodia, where it colocalizes with F-actin. We identify that BIN1-mediated filopodia formation requires IRSp53, which allows its localization at negatively-curved membrane topologies. Our results show that BIN1 bundles actin in vitro. Finally, we identify that BIN1 regulates the membrane-to-cortex architecture and functions as a molecular platform to recruit actin-binding proteins, dynamin and ezrin, to promote filopodia formation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas do Tecido Nervoso , Proteínas Nucleares , Pseudópodes , Proteínas Supressoras de Tumor , Humanos , Animais , Células HeLa , Linhagem Celular , Actinas/metabolismo , Pseudópodes/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Membrana Celular/metabolismo
10.
J Biol Chem ; 284(34): 23137-45, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19546217

RESUMO

p120 catenin is a major regulator of cadherin stability at cell-cell contacts and a modulator of Rho GTPase activities. In C2C12 myoblasts, N-cadherin is stabilized at cell contacts through its association with cholesterol-rich membrane domains or lipid rafts (LR) and acts as an adhesion-activated receptor that activates RhoA, an event required for myogenesis induction. Here, we report that association of p120 catenin with N-cadherin at cell contacts occurs specifically in LR. We demonstrate that interaction of p120 catenin with N-cadherin is required for N-cadherin association with LR and for its stabilization at cell contacts. LR disruption inhibits myogenesis induction and N-cadherin-dependent RhoA activation as does the perturbation of the N-cadherin-p120 catenin complex after p120 catenin knockdown. Finally, we observe an N-cadherin-dependent accumulation of RhoA at phosphatidylinositol 4,5-bisphosphate-enriched cell contacts which is lost after LR disruption. Thus, a functional N-cadherin-catenin complex occurs in cholesterol-rich membrane microdomains which allows the recruitment of RhoA and the regulation of its activity during myogenesis induction.


Assuntos
Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/química , Desenvolvimento Muscular/fisiologia , Fosfoproteínas/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Cateninas , Moléculas de Adesão Celular/genética , Linhagem Celular , Recuperação de Fluorescência Após Fotodegradação , Imuno-Histoquímica , Imunoprecipitação , Junções Intercelulares/metabolismo , Camundongos , Desenvolvimento Muscular/genética , Fosfoproteínas/genética , Ligação Proteica , delta Catenina
11.
Mol Biol Cell ; 18(5): 1734-43, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17332503

RESUMO

Cadherins are transmembrane glycoproteins that mediate Ca(2+)-dependent homophilic cell-cell adhesion and play crucial role during skeletal myogenesis. M-cadherin is required for myoblast fusion into myotubes, but its mechanisms of action remain unknown. The goal of this study was to cast some light on the nature of the M-cadherin-mediated signals involved in myoblast fusion into myotubes. We found that the Rac1 GTPase activity is increased at the time of myoblast fusion and it is required for this process. Moreover, we showed that M-cadherin-dependent adhesion activates Rac1 and demonstrated the formation of a multiproteic complex containing M-cadherin, the Rho-GEF Trio, and Rac1 at the onset of myoblast fusion. Interestingly, Trio knockdown efficiently blocked both the increase in Rac1-GTP levels, observed after M-cadherin-dependent contact formation, and myoblast fusion. We conclude that M-cadherin-dependent adhesion can activate Rac1 via the Rho-GEF Trio at the time of myoblast fusion.


Assuntos
Caderinas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mioblastos Esqueléticos/metabolismo , Neuropeptídeos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Sequência de Bases , Caderinas/antagonistas & inibidores , Adesão Celular , Fusão Celular , Linhagem Celular , Ativação Enzimática , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos , Complexos Multiproteicos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/citologia , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/genética , Proteínas rac1 de Ligação ao GTP
12.
J Cell Biol ; 158(5): 953-65, 2002 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-12213839

RESUMO

N-cadherin, a member of the Ca(2+)-dependent cell-cell adhesion molecule family, plays an essential role in skeletal muscle cell differentiation. We show that inhibition of N-cadherin-dependent adhesion impairs the upregulation of the two cyclin-dependent kinase inhibitors p21 and p27, the expression of the muscle-specific genes myogenin and troponin T, and C2C12 myoblast fusion. To determine the nature of N-cadherin-mediated signals involved in myogenesis, we investigated whether N-cadherin-dependent adhesion regulates the activity of Rac1, Cdc42Hs, and RhoA. N-cadherin-dependent adhesion decreases Rac1 and Cdc42Hs activity, and as a consequence, c-jun NH2-terminal kinase (JNK) MAPK activity but not that of the p38 MAPK pathway. On the other hand, N-cadherin-mediated adhesion increases RhoA activity and activates three skeletal muscle-specific promoters. Furthermore, RhoA activity is required for beta-catenin accumulation at cell-cell contact sites. We propose that cell-cell contacts formed via N-cadherin trigger signaling events that promote the commitment to myogenesis through the positive regulation of RhoA and negative regulation of Rac1, Cdc42Hs, and JNK activities.


Assuntos
Caderinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , Transativadores/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Adesão Celular , Diferenciação Celular , Regulação da Expressão Gênica , Proteínas Quinases JNK Ativadas por Mitógeno , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/enzimologia , Regiões Promotoras Genéticas/genética , Proteínas Tirosina Quinases/metabolismo , Fatores de Tempo , beta Catenina , Proteínas Quinases p38 Ativadas por Mitógeno , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
13.
Mol Biol Cell ; 17(2): 749-59, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16291866

RESUMO

The Rho family of GTP-binding proteins plays critical roles during myogenesis induction. To elucidate their role later during myogenesis, we have analyzed RhoA function during myoblast fusion into myotubes. We find that RhoA activity is rapidly and transiently increased when cells are shifted into differentiation medium and then is decreased until myoblast fusion. RhoA activity must be down-regulated to allow fusion, because expression of a constitutively active form of RhoA (RhoAV14) inhibits this process. RhoAV14 perturbs the expression and localization of M-cadherin, a member of the Ca2+-dependent cell-cell adhesion molecule family that has an essential role in skeletal muscle cell differentiation. This mutant does not affect N-cadherin and other proteins involved in myoblast fusion, beta1-integrin and ADAM12. Active RhoA induces the entry of M-cadherin into a degradative pathway and thus decreases its stability in correlation with the monoubiquitination of M-cadherin. Moreover, p120 catenin association with M-cadherin is decreased in RhoAV14-expressing cells, which is partially reverted by the inhibition of the RhoA effector Rho-associated kinase ROCK. ROCK inhibition also restores M-cadherin accumulation at the cell-cell contact sites. We propose that the sustained activation of the RhoA pathway inhibits myoblast fusion through the regulation of p120 activity, which controls cadherin internalization and degradation.


Assuntos
Caderinas/metabolismo , Mioblastos/enzimologia , Proteína rhoA de Ligação ao GTP/fisiologia , Proteínas ADAM/metabolismo , Proteína ADAM12 , Animais , Caderinas/análise , Cateninas , Moléculas de Adesão Celular/metabolismo , Fusão Celular , Linhagem Celular , Integrina beta1/metabolismo , Lisossomos/metabolismo , Camundongos , Modelos Biológicos , Mioblastos/citologia , Mioblastos/metabolismo , Fosfoproteínas/metabolismo , Interferência de RNA , Proteína rhoA de Ligação ao GTP/metabolismo , delta Catenina
14.
Biol Cell ; 99(9): 503-17, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17459003

RESUMO

BACKGROUND INFORMATION: N-cadherin, a member of the Ca(2+)-dependent cell-cell adhesion molecule family, plays an essential role in the induction of the skeletal muscle differentiation programme. However, the molecular mechanisms which govern the formation of N-cadherin-dependent cell-cell contacts in myoblasts remain unexplored. RESULTS: In the present study, we show that N-cadherin-dependent cell contact formation in myoblasts is defined by two stages. In the first phase, N-cadherin is highly mobile in the lamellipodia extensions between the contacting cells. The second stage corresponds to the formation of mature N-cadherin-dependent cell contacts, characterized by the immobilization of a pool of N-cadherin which appears to be clustered in the interdigitated membrane structures that are also membrane attachment sites for F-actin filaments. We also demonstrated that the formation of N-cadherin-dependent cell-cell contacts requires a co-ordinated and sequential activity of Rac1 and RhoA. Rac1 is involved in the first stage and facilitates N-cadherin-dependent cell-cell contact formation, but it is not absolutely required. Conversely, RhoA is necessary for N-cadherin-dependent cell contact formation, since, via ROCK (Rho-associated kinase) signalling and myosin 2 activation, it allows the stabilization of N-cadherin at the cell-cell contact sites. CONCLUSIONS: We have shown that Rac1 and RhoA have opposite effects on N-cadherin-dependent cell-cell contact formation in C2C12 myoblasts and act sequentially to allow its formation.


Assuntos
Caderinas/metabolismo , Mioblastos/metabolismo , Proteínas rac1 de Ligação ao GTP/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Caderinas/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Células Cultivadas , Humanos
15.
Mol Biol Cell ; 16(5): 2168-80, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15716354

RESUMO

Cadherins are homophilic cell-cell adhesion molecules implicated in cell growth, differentiation, and organization into tissues during embryonic development. They accumulate at cell-cell contact sites and act as adhesion-activated signaling receptors. Here, we show that the dynamic assembly of N-cadherin at cell-cell contacts involves lipid rafts. In C2C12 myoblasts, immunofluorescence and biochemical experiments demonstrate that N-cadherin present at cell-cell contacts is colocalized with lipid rafts. Disruption of lipid rafts leads to the inhibition of cell-cell adhesion and disorganization of N-cadherin-dependent cell-cell contacts without modifying the association of N-cadherin with catenins and its availability at the plasma membrane. Fluorescent recovery after photobleaching experiments demonstrate that at the dorsal plasma membrane, lipid rafts are not directly involved in the diffusional mobility of N-cadherin. In contrast, at cell-cell junctions N-cadherin association with lipid rafts allows its stabilization enabling the formation of a functional adhesive complex. We show that lipid rafts, as homophilic interaction and F-actin association, stabilize cadherin-dependent adhesive complexes. Homophilic interactions and F-actin association of N-cadherin are both required for its association to lipid rafts. We thus identify lipid rafts as new regulators of cadherin-mediated cell adhesion.


Assuntos
Caderinas/metabolismo , Junções Intercelulares/metabolismo , Microdomínios da Membrana/metabolismo , Mioblastos Esqueléticos/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular , Proteínas do Citoesqueleto/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Imuno-Histoquímica , Camundongos , Modelos Biológicos
16.
Mol Biol Cell ; 13(1): 285-301, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11809840

RESUMO

Cadherin-mediated cell-cell adhesion is a dynamic process that is regulated during embryonic development, cell migration, and differentiation. Different cadherins are expressed in specific tissues consistent with their roles in cell type recognition. In this study, we examine the formation of N-cadherin-dependent cell-cell contacts in fibroblasts and myoblasts. In contrast to E-cadherin, both endogenous and ectopically expressed N-cadherin shuttles between an intracellular and a plasma membrane pool. Initial formation of N-cadherin-dependent cell-cell contacts results from the recruitment of the intracellular pool of N-cadherin to the plasma membrane. N-cadherin also localizes to the Golgi apparatus and both secretory and endocytotic vesicles. We demonstrate that the intracellular pool of N-cadherin is tightly associated with the microtubule (MT) network and that junction formation requires MTs. In addition, localization of N-cadherin to the cortex is dependent on an intact F-actin cytoskeleton. We show that N-cadherin transport requires the MT network as well as the activity of the MT-associated motor kinesin. In conclusion, we propose that N-cadherin distribution is a regulated process promoted by cell-cell contact formation, which controls the biogenesis and turnover of the junctions through the MT network.


Assuntos
Caderinas/metabolismo , Adesão Celular , Fibroblastos/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/imunologia , Actinas/metabolismo , Animais , Caderinas/genética , Caderinas/imunologia , Células Cultivadas , Endocitose , Fibroblastos/ultraestrutura , Imunofluorescência , Complexo de Golgi/metabolismo , Junções Intercelulares/metabolismo , Cinesinas/imunologia , Camundongos , Microscopia Confocal , Microscopia de Vídeo , Microtúbulos/ultraestrutura , Ratos , Proteínas Recombinantes de Fusão/análise , Transfecção
17.
Mol Biol Cell ; 14(12): 4846-56, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12960428

RESUMO

Rho GTPases are key regulators of actin dynamics. We report that the Rho GTPase TCL, which is closely related to Cdc42 and TC10, localizes to the plasma membrane and the early/sorting endosomes in HeLa cells, suggesting a role in the early endocytic pathway. Receptor-dependent internalization of transferrin (Tf) is unaffected by suppression of endogenous TCL by small interfering RNA treatment. However, Tf accumulates in Rab5-positive uncoated endocytic vesicles and fails to reach the early endosome antigen-1-positive early endosomal compartments and the pericentriolar recycling endosomes. Moreover, Tf release upon TCL knockdown is significantly slower. Conversely, in the presence of dominant active TCL, internalized Tf accumulates in early endosome antigen-1-positive early/sorting endosomes and not in perinuclear recycling endosomes. Tf recycles directly from the early/sorting endosomes and it is normally released by the cells. The same phenotype is generated by replacing the C terminus of dominant active Cdc42 and TC10 with that of TCL, indicating that all three proteins share downstream effector proteins. Thus, TCL is essential for clathrin-dependent endocytosed receptors to enter the early/sorting endosomes. Furthermore, the active GTPase favors direct recycling from early/sorting endosomes without accumulating in the perinuclear recycling endosomes.


Assuntos
Membrana Celular/enzimologia , Endocitose/fisiologia , Endossomos/enzimologia , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/efeitos dos fármacos , Células HeLa , Humanos , Imuno-Histoquímica , Ligação Proteica , Estrutura Terciária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/fisiologia , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Frações Subcelulares , Transferrina/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
18.
Biochem J ; 391(Pt 2): 261-8, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15963030

RESUMO

The Rho family of small GTPases are signalling molecules involved in cytoskeleton remodelling and gene transcription. Their activities are important for many cellular processes, including myogenesis. In particular, RhoA positively regulates skeletal-muscle differentiation. We report in the present study that the active form of RhoA increases the expression of utrophin, the autosomal homologue of dystrophin in the mouse C2C12 and rat L8 myoblastic cell lines. Even though this RhoA-dependent utrophin increase is higher in proliferating myoblasts, it is maintained during myogenic differentiation. This occurs via two mechanisms: (i) transcriptional activation of the utrophin promoter A and (ii) post-translational stabilization of utrophin. In addition, RhoA increases plasma-membrane localization of utrophin. Thus RhoA activation up-regulates utrophin levels and enhances its localization at the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Regulação para Cima , Utrofina/genética , Utrofina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Ativação Enzimática , Camundongos , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , Regiões Promotoras Genéticas/genética , Transporte Proteico , Ratos , Transcrição Gênica , Proteína rhoA de Ligação ao GTP/genética
19.
J Cell Biol ; 212(2): 199-217, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26783302

RESUMO

Collective cell migration (CCM) is essential for organism development, wound healing, and metastatic transition, the primary cause of cancer-related death, and it involves cell-cell adhesion molecules of the cadherin family. Increased P-cadherin expression levels are correlated with tumor aggressiveness in carcinoma and aggressive sarcoma; however, how P-cadherin promotes tumor malignancy remains unknown. Here, using integrated cell biology and biophysical approaches, we determined that P-cadherin specifically induces polarization and CCM through an increase in the strength and anisotropy of mechanical forces. We show that this mechanical regulation is mediated by the P-cadherin/ß-PIX/Cdc42 axis; P-cadherin specifically activates Cdc42 through ß-PIX, which is specifically recruited at cell-cell contacts upon CCM. This mechanism of cell polarization and migration is absent in cells expressing E- or R-cadherin. Thus, we identify a specific role of P-cadherin through ß-PIX-mediated Cdc42 activation in the regulation of cell polarity and force anisotropy that drives CCM.


Assuntos
Caderinas/metabolismo , Movimento Celular , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Fenômenos Biomecânicos , Polaridade Celular , Células Cultivadas , Camundongos , Mioblastos/citologia , Mioblastos/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo
20.
Mol Biol Cell ; 27(17): 2653-61, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27413008

RESUMO

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of skeletal muscle origin in children and adolescents. Among RMS subtypes, alveolar rhabdomyosarcoma (ARMS), which is characterized by the presence of the PAX3-FOXO1A or PAX7-FOXO1A chimeric oncogenic transcription factor, is associated with poor prognosis and a strong risk of metastasis compared with the embryonal subtype (ERMS). To identify molecular pathways involved in ARMS aggressiveness, we first characterized the migratory behavior of cell lines derived from ARMS and ERMS biopsies using a three-dimensional spheroid cell invasion assay. ARMS cells were more invasive than ERMS cells and adopted an ellipsoidal morphology to efficiently invade the extracellular matrix. Moreover, the invasive potential of ARMS cells depended on ROCK activity, which is regulated by the GTPase RhoE. Specifically, RhoE expression was low in ARMS biopsies, and its overexpression in ARMS cells reduced their invasion potential. Conversely, ARHGAP25, a GTPase-activating protein for Rac, was up-regulated in ARMS biopsies. Moreover, we found that ARHGAP25 inhibits Rac activity downstream of ROCKII and is required for ARMS cell invasion. Our results indicate that the RhoE/ROCK/ARHGAP25 signaling pathway promotes ARMS invasive potential and identify these proteins as potential therapeutic targets for ARMS treatment.


Assuntos
Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Diferenciação Celular , Linhagem Celular , Movimento Celular/genética , Movimento Celular/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Músculo Esquelético/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Rabdomiossarcoma , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/metabolismo , Transdução de Sinais/genética , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA