Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
BMC Psychiatry ; 24(1): 409, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816707

RESUMO

BACKGROUND: Eating disorders (EDs) are serious, often chronic, conditions associated with pronounced morbidity, mortality, and dysfunction increasingly affecting young people worldwide. Illness progression, stages and recovery trajectories of EDs are still poorly characterised. The STORY study dynamically and longitudinally assesses young people with different EDs (restricting; bingeing/bulimic presentations) and illness durations (earlier; later stages) compared to healthy controls. Remote measurement technology (RMT) with active and passive sensing is used to advance understanding of the heterogeneity of earlier and more progressed clinical presentations and predictors of recovery or relapse. METHODS: STORY follows 720 young people aged 16-25 with EDs and 120 healthy controls for 12 months. Online self-report questionnaires regularly assess ED symptoms, psychiatric comorbidities, quality of life, and socioeconomic environment. Additional ongoing monitoring using multi-parametric RMT via smartphones and wearable smart rings ('Oura ring') unobtrusively measures individuals' daily behaviour and physiology (e.g., Bluetooth connections, sleep, autonomic arousal). A subgroup of participants completes additional in-person cognitive and neuroimaging assessments at study-baseline and after 12 months. DISCUSSION: By leveraging these large-scale longitudinal data from participants across ED diagnoses and illness durations, the STORY study seeks to elucidate potential biopsychosocial predictors of outcome, their interplay with developmental and socioemotional changes, and barriers and facilitators of recovery. STORY holds the promise of providing actionable findings that can be translated into clinical practice by informing the development of both early intervention and personalised treatment that is tailored to illness stage and individual circumstances, ultimately disrupting the long-term burden of EDs on individuals and their families.


Assuntos
Transtornos da Alimentação e da Ingestão de Alimentos , Humanos , Adolescente , Adulto Jovem , Adulto , Transtornos da Alimentação e da Ingestão de Alimentos/psicologia , Transtornos da Alimentação e da Ingestão de Alimentos/fisiopatologia , Transtornos da Alimentação e da Ingestão de Alimentos/diagnóstico , Estudos Prospectivos , Feminino , Masculino , Progressão da Doença , Tecnologia de Sensoriamento Remoto/métodos , Tecnologia de Sensoriamento Remoto/instrumentação , Smartphone , Estudos Longitudinais , Qualidade de Vida/psicologia
2.
J Med Internet Res ; 26: e55302, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941600

RESUMO

BACKGROUND: Previous mobile health (mHealth) studies have revealed significant links between depression and circadian rhythm features measured via wearables. However, the comprehensive impact of seasonal variations was not fully considered in these studies, potentially biasing interpretations in real-world settings. OBJECTIVE: This study aims to explore the associations between depression severity and wearable-measured circadian rhythms while accounting for seasonal impacts. METHODS: Data were sourced from a large longitudinal mHealth study, wherein participants' depression severity was assessed biweekly using the 8-item Patient Health Questionnaire (PHQ-8), and participants' behaviors, including sleep, step count, and heart rate (HR), were tracked via Fitbit devices for up to 2 years. We extracted 12 circadian rhythm features from the 14-day Fitbit data preceding each PHQ-8 assessment, including cosinor variables, such as HR peak timing (HR acrophase), and nonparametric features, such as the onset of the most active continuous 10-hour period (M10 onset). To investigate the association between depression severity and circadian rhythms while also assessing the seasonal impacts, we used three nested linear mixed-effects models for each circadian rhythm feature: (1) incorporating the PHQ-8 score as an independent variable, (2) adding seasonality, and (3) adding an interaction term between season and the PHQ-8 score. RESULTS: Analyzing 10,018 PHQ-8 records alongside Fitbit data from 543 participants (n=414, 76.2% female; median age 48, IQR 32-58 years), we found that after adjusting for seasonal effects, higher PHQ-8 scores were associated with reduced daily steps (ß=-93.61, P<.001), increased sleep variability (ß=0.96, P<.001), and delayed circadian rhythms (ie, sleep onset: ß=0.55, P=.001; sleep offset: ß=1.12, P<.001; M10 onset: ß=0.73, P=.003; HR acrophase: ß=0.71, P=.001). Notably, the negative association with daily steps was more pronounced in spring (ß of PHQ-8 × spring = -31.51, P=.002) and summer (ß of PHQ-8 × summer = -42.61, P<.001) compared with winter. Additionally, the significant correlation with delayed M10 onset was observed solely in summer (ß of PHQ-8 × summer = 1.06, P=.008). Moreover, compared with winter, participants experienced a shorter sleep duration by 16.6 minutes, an increase in daily steps by 394.5, a delay in M10 onset by 20.5 minutes, and a delay in HR peak time by 67.9 minutes during summer. CONCLUSIONS: Our findings highlight significant seasonal influences on human circadian rhythms and their associations with depression, underscoring the importance of considering seasonal variations in mHealth research for real-world applications. This study also indicates the potential of wearable-measured circadian rhythms as digital biomarkers for depression.


Assuntos
Ritmo Circadiano , Depressão , Estações do Ano , Dispositivos Eletrônicos Vestíveis , Humanos , Feminino , Ritmo Circadiano/fisiologia , Masculino , Adulto , Estudos Longitudinais , Depressão/fisiopatologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Telemedicina/estatística & dados numéricos
3.
Sensors (Basel) ; 24(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39066012

RESUMO

IoT sensors offer a wide range of sensing capabilities, many of which have potential health applications. Existing solutions for IoT in healthcare have notable limitations, such as closed-source, limited I/O protocols, limited cloud platform support, and missing specific functionality for health use cases. Developing an open-source internet of things (IoT) gateway solution that addresses these limitations and provides reliability, broad applicability, and utility is highly desirable. Combining a wide range of sensor data streams from IoT devices with ambulatory mHealth data would open up the potential to provide a detailed 360-degree view of the relationship between patient physiology, behavior, and environment. We have developed RADAR-IoT as an open-source IoT gateway framework, to harness this potential. It aims to connect multiple IoT devices at the edge, perform limited on-device data processing and analysis, and integrate with cloud-based mobile health platforms, such as RADAR-base, enabling real-time data processing. We also present a proof-of-concept data collection from this framework, using prototype hardware in two locations. The RADAR-IoT framework, combined with the RADAR-base mHealth platform, provides a comprehensive view of a user's health and environment by integrating static IoT sensors and wearable devices. Despite its current limitations, it offers a promising open-source solution for health research, with potential applications in managing infection control, monitoring chronic pulmonary disorders, and assisting patients with impaired motor control or cognitive ability.


Assuntos
Internet das Coisas , Radar , Telemedicina , Humanos , Telemedicina/instrumentação , Dispositivos Eletrônicos Vestíveis , Computação em Nuvem
4.
J Med Internet Res ; 25: e45233, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578823

RESUMO

BACKGROUND: Major depressive disorder (MDD) affects millions of people worldwide, but timely treatment is not often received owing in part to inaccurate subjective recall and variability in the symptom course. Objective and frequent MDD monitoring can improve subjective recall and help to guide treatment selection. Attempts have been made, with varying degrees of success, to explore the relationship between the measures of depression and passive digital phenotypes (features) extracted from smartphones and wearables devices to remotely and continuously monitor changes in symptomatology. However, a number of challenges exist for the analysis of these data. These include maintaining participant engagement over extended time periods and therefore understanding what constitutes an acceptable threshold of missing data; distinguishing between the cross-sectional and longitudinal relationships for different features to determine their utility in tracking within-individual longitudinal variation or screening individuals at high risk; and understanding the heterogeneity with which depression manifests itself in behavioral patterns quantified by the passive features. OBJECTIVE: We aimed to address these 3 challenges to inform future work in stratified analyses. METHODS: Using smartphone and wearable data collected from 479 participants with MDD, we extracted 21 features capturing mobility, sleep, and smartphone use. We investigated the impact of the number of days of available data on feature quality using the intraclass correlation coefficient and Bland-Altman analysis. We then examined the nature of the correlation between the 8-item Patient Health Questionnaire (PHQ-8) depression scale (measured every 14 days) and the features using the individual-mean correlation, repeated measures correlation, and linear mixed effects model. Furthermore, we stratified the participants based on their behavioral difference, quantified by the features, between periods of high (depression) and low (no depression) PHQ-8 scores using the Gaussian mixture model. RESULTS: We demonstrated that at least 8 (range 2-12) days were needed for reliable calculation of most of the features in the 14-day time window. We observed that features such as sleep onset time correlated better with PHQ-8 scores cross-sectionally than longitudinally, whereas features such as wakefulness after sleep onset correlated well with PHQ-8 longitudinally but worse cross-sectionally. Finally, we found that participants could be separated into 3 distinct clusters according to their behavioral difference between periods of depression and periods of no depression. CONCLUSIONS: This work contributes to our understanding of how these mobile health-derived features are associated with depression symptom severity to inform future work in stratified analyses.


Assuntos
Transtorno Depressivo Maior , Telemedicina , Dispositivos Eletrônicos Vestíveis , Humanos , Smartphone , Estudos Transversais , Transtorno Depressivo Maior/diagnóstico , Estudos Retrospectivos
5.
BMC Psychiatry ; 22(1): 136, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35189842

RESUMO

BACKGROUND: Major Depressive Disorder (MDD) is prevalent, often chronic, and requires ongoing monitoring of symptoms to track response to treatment and identify early indicators of relapse. Remote Measurement Technologies (RMT) provide an opportunity to transform the measurement and management of MDD, via data collected from inbuilt smartphone sensors and wearable devices alongside app-based questionnaires and tasks. A key question for the field is the extent to which participants can adhere to research protocols and the completeness of data collected. We aimed to describe drop out and data completeness in a naturalistic multimodal longitudinal RMT study, in people with a history of recurrent MDD. We further aimed to determine whether those experiencing a depressive relapse at baseline contributed less complete data. METHODS: Remote Assessment of Disease and Relapse - Major Depressive Disorder (RADAR-MDD) is a multi-centre, prospective observational cohort study conducted as part of the Remote Assessment of Disease and Relapse - Central Nervous System (RADAR-CNS) program. People with a history of MDD were provided with a wrist-worn wearable device, and smartphone apps designed to: a) collect data from smartphone sensors; and b) deliver questionnaires, speech tasks, and cognitive assessments. Participants were followed-up for a minimum of 11 months and maximum of 24 months. RESULTS: Individuals with a history of MDD (n = 623) were enrolled in the study,. We report 80% completion rates for primary outcome assessments across all follow-up timepoints. 79.8% of people participated for the maximum amount of time available and 20.2% withdrew prematurely. We found no evidence of an association between the severity of depression symptoms at baseline and the availability of data. In total, 110 participants had > 50% data available across all data types. CONCLUSIONS: RADAR-MDD is the largest multimodal RMT study in the field of mental health. Here, we have shown that collecting RMT data from a clinical population is feasible. We found comparable levels of data availability in active and passive forms of data collection, demonstrating that both are feasible in this patient group.


Assuntos
Transtorno Depressivo Maior , Aplicativos Móveis , Doença Crônica , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/epidemiologia , Humanos , Estudos Prospectivos , Recidiva , Smartphone
6.
Pattern Recognit ; 123: 108403, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34720200

RESUMO

This study proposes a contrastive convolutional auto-encoder (contrastive CAE), a combined architecture of an auto-encoder and contrastive loss, to identify individuals with suspected COVID-19 infection using heart-rate data from participants with multiple sclerosis (MS) in the ongoing RADAR-CNS mHealth research project. Heart-rate data was remotely collected using a Fitbit wristband. COVID-19 infection was either confirmed through a positive swab test, or inferred through a self-reported set of recognised symptoms of the virus. The contrastive CAE outperforms a conventional convolutional neural network (CNN), a long short-term memory (LSTM) model, and a convolutional auto-encoder without contrastive loss (CAE). On a test set of 19 participants with MS with reported symptoms of COVID-19, each one paired with a participant with MS with no COVID-19 symptoms, the contrastive CAE achieves an unweighted average recall of 95.3 % , a sensitivity of 100 % and a specificity of 90.6 % , an area under the receiver operating characteristic curve (AUC-ROC) of 0.944, indicating a maximum successful detection of symptoms in the given heart rate measurement period, whilst at the same time keeping a low false alarm rate.

7.
BMC Psychiatry ; 21(1): 435, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488697

RESUMO

BACKGROUND: The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes a clinical illness Covid-19, has had a major impact on mental health globally. Those diagnosed with major depressive disorder (MDD) may be negatively impacted by the global pandemic due to social isolation, feelings of loneliness or lack of access to care. This study seeks to assess the impact of the 1st lockdown - pre-, during and post - in adults with a recent history of MDD across multiple centres. METHODS: This study is a secondary analysis of an on-going cohort study, RADAR-MDD project, a multi-centre study examining the use of remote measurement technology (RMT) in monitoring MDD. Self-reported questionnaire and passive data streams were analysed from participants who had joined the project prior to 1st December 2019 and had completed Patient Health and Self-esteem Questionnaires during the pandemic (n = 252). We used mixed models for repeated measures to estimate trajectories of depressive symptoms, self-esteem, and sleep duration. RESULTS: In our sample of 252 participants, 48% (n = 121) had clinically relevant depressive symptoms shortly before the pandemic. For the sample as a whole, we found no evidence that depressive symptoms or self-esteem changed between pre-, during- and post-lockdown. However, we found evidence that mean sleep duration (in minutes) decreased significantly between during- and post- lockdown (- 12.16; 95% CI - 18.39 to - 5.92; p <  0.001). We also found that those experiencing clinically relevant depressive symptoms shortly before the pandemic showed a decrease in depressive symptoms, self-esteem and sleep duration between pre- and during- lockdown (interaction p = 0.047, p = 0.045 and p <  0.001, respectively) as compared to those who were not. CONCLUSIONS: We identified changes in depressive symptoms and sleep duration over the course of lockdown, some of which varied according to whether participants were experiencing clinically relevant depressive symptoms shortly prior to the pandemic. However, the results of this study suggest that those with MDD do not experience a significant worsening in symptoms during the first months of the Covid - 19 pandemic.


Assuntos
COVID-19 , Transtorno Depressivo Maior , Adulto , Estudos de Coortes , Controle de Doenças Transmissíveis , Depressão , Transtorno Depressivo Maior/epidemiologia , Humanos , SARS-CoV-2 , Tecnologia
8.
J Med Internet Res ; 22(9): e19992, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32877352

RESUMO

BACKGROUND: In the absence of a vaccine or effective treatment for COVID-19, countries have adopted nonpharmaceutical interventions (NPIs) such as social distancing and full lockdown. An objective and quantitative means of passively monitoring the impact and response of these interventions at a local level is needed. OBJECTIVE: We aim to explore the utility of the recently developed open-source mobile health platform Remote Assessment of Disease and Relapse (RADAR)-base as a toolbox to rapidly test the effect and response to NPIs intended to limit the spread of COVID-19. METHODS: We analyzed data extracted from smartphone and wearable devices, and managed by the RADAR-base from 1062 participants recruited in Italy, Spain, Denmark, the United Kingdom, and the Netherlands. We derived nine features on a daily basis including time spent at home, maximum distance travelled from home, the maximum number of Bluetooth-enabled nearby devices (as a proxy for physical distancing), step count, average heart rate, sleep duration, bedtime, phone unlock duration, and social app use duration. We performed Kruskal-Wallis tests followed by post hoc Dunn tests to assess differences in these features among baseline, prelockdown, and during lockdown periods. We also studied behavioral differences by age, gender, BMI, and educational background. RESULTS: We were able to quantify expected changes in time spent at home, distance travelled, and the number of nearby Bluetooth-enabled devices between prelockdown and during lockdown periods (P<.001 for all five countries). We saw reduced sociality as measured through mobility features and increased virtual sociality through phone use. People were more active on their phones (P<.001 for Italy, Spain, and the United Kingdom), spending more time using social media apps (P<.001 for Italy, Spain, the United Kingdom, and the Netherlands), particularly around major news events. Furthermore, participants had a lower heart rate (P<.001 for Italy and Spain; P=.02 for Denmark), went to bed later (P<.001 for Italy, Spain, the United Kingdom, and the Netherlands), and slept more (P<.001 for Italy, Spain, and the United Kingdom). We also found that young people had longer homestay than older people during the lockdown and fewer daily steps. Although there was no significant difference between the high and low BMI groups in time spent at home, the low BMI group walked more. CONCLUSIONS: RADAR-base, a freely deployable data collection platform leveraging data from wearables and mobile technologies, can be used to rapidly quantify and provide a holistic view of behavioral changes in response to public health interventions as a result of infectious outbreaks such as COVID-19. RADAR-base may be a viable approach to implementing an early warning system for passively assessing the local compliance to interventions in epidemics and pandemics, and could help countries ease out of lockdown.


Assuntos
Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/psicologia , Coleta de Dados , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/psicologia , Smartphone , Isolamento Social , Telemedicina , Dispositivos Eletrônicos Vestíveis , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Dinamarca/epidemiologia , Feminino , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Aplicativos Móveis , Monitorização Fisiológica , Países Baixos/epidemiologia , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Mídias Sociais , Espanha/epidemiologia , Reino Unido/epidemiologia , Adulto Jovem
11.
JMIR Ment Health ; 11: e51259, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39441952

RESUMO

Background: The use of digital biomarkers through remote patient monitoring offers valuable and timely insights into a patient's condition, including aspects such as disease progression and treatment response. This serves as a complementary resource to traditional health care settings leveraging mobile technology to improve scale and lower latency, cost, and burden. Objective: Smartphones with embedded and connected sensors have immense potential for improving health care through various apps and mobile health (mHealth) platforms. This capability could enable the development of reliable digital biomarkers from long-term longitudinal data collected remotely from patients. Methods: We built an open-source platform, RADAR-base, to support large-scale data collection in remote monitoring studies. RADAR-base is a modern remote data collection platform built around Confluent's Apache Kafka to support scalability, extensibility, security, privacy, and quality of data. It provides support for study design and setup and active (eg, patient-reported outcome measures) and passive (eg, phone sensors, wearable devices, and Internet of Things) remote data collection capabilities with feature generation (eg, behavioral, environmental, and physiological markers). The back end enables secure data transmission and scalable solutions for data storage, management, and data access. Results: The platform has been used to successfully collect longitudinal data for various cohorts in a number of disease areas including multiple sclerosis, depression, epilepsy, attention-deficit/hyperactivity disorder, Alzheimer disease, autism, and lung diseases. Digital biomarkers developed through collected data are providing useful insights into different diseases. Conclusions: RADAR-base offers a contemporary, open-source solution driven by the community for remotely monitoring, collecting data, and digitally characterizing both physical and mental health conditions. Clinicians have the ability to enhance their insight through the use of digital biomarkers, enabling improved prevention, personalization, and early intervention in the context of disease management.


Assuntos
Smartphone , Telemedicina , Humanos , Telemedicina/instrumentação , Fenótipo , Tecnologia de Sensoriamento Remoto/instrumentação , Tecnologia de Sensoriamento Remoto/métodos , Aplicativos Móveis , Biomarcadores/análise , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos
12.
JMIR Mhealth Uhealth ; 12: e44214, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241070

RESUMO

BACKGROUND: Multiparametric remote measurement technologies (RMTs), which comprise smartphones and wearable devices, have the potential to revolutionize understanding of the etiology and trajectory of major depressive disorder (MDD). Engagement with RMTs in MDD research is of the utmost importance for the validity of predictive analytical methods and long-term use and can be conceptualized as both objective engagement (data availability) and subjective engagement (system usability and experiential factors). Positioning the design of user interfaces within the theoretical framework of the Behavior Change Wheel can help maximize effectiveness. In-app components containing information from credible sources, visual feedback, and access to support provide an opportunity to promote engagement with RMTs while minimizing team resources. Randomized controlled trials are the gold standard in quantifying the effects of in-app components on engagement with RMTs in patients with MDD. OBJECTIVE: This study aims to evaluate whether a multiparametric RMT system with theoretically informed notifications, visual progress tracking, and access to research team contact details could promote engagement with remote symptom tracking over and above the system as usual. We hypothesized that participants using the adapted app (intervention group) would have higher engagement in symptom monitoring, as measured by objective and subjective engagement. METHODS: A 2-arm, parallel-group randomized controlled trial (participant-blinded) with 1:1 randomization was conducted with 100 participants with MDD over 12 weeks. Participants in both arms used the RADAR-base system, comprising a smartphone app for weekly symptom assessments and a wearable Fitbit device for continuous passive tracking. Participants in the intervention arm (n=50, 50%) also had access to additional in-app components. The primary outcome was objective engagement, measured as the percentage of weekly questionnaires completed during follow-up. The secondary outcomes measured subjective engagement (system engagement, system usability, and emotional self-awareness). RESULTS: The levels of completion of the Patient Health Questionnaire-8 (PHQ-8) were similar between the control (67/97, 69%) and intervention (66/97, 68%) arms (P value for the difference between the arms=.83, 95% CI -9.32 to 11.65). The intervention group participants reported slightly higher user engagement (1.93, 95% CI -1.91 to 5.78), emotional self-awareness (1.13, 95% CI -2.93 to 5.19), and system usability (2.29, 95% CI -5.93 to 10.52) scores than the control group participants at follow-up; however, all CIs were wide and included 0. Process evaluation suggested that participants saw the in-app components as helpful in increasing task completion. CONCLUSIONS: The adapted system did not increase objective or subjective engagement in remote symptom tracking in our research cohort. This study provides an important foundation for understanding engagement with RMTs for research and the methodologies by which this work can be replicated in both community and clinical settings. TRIAL REGISTRATION: ClinicalTrials.gov NCT04972474; https://clinicaltrials.gov/ct2/show/NCT04972474. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/32653.


Assuntos
Transtorno Depressivo Maior , Aplicativos Móveis , Humanos , Transtorno Depressivo Maior/terapia , Emoções , Monitores de Aptidão Física , Publicação Pré-Registro
13.
Lancet Digit Health ; 6(9): e640-e650, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39138096

RESUMO

BACKGROUND: The emergence of long COVID as a COVID-19 sequela was largely syndromic in characterisation. Digital health technologies such as wearable devices open the possibility to study this condition with passive, objective data in addition to self-reported symptoms. We aimed to quantify the prevalence and severity of symptoms across collected mobile health metrics over 12 weeks following COVID-19 diagnosis and to identify risk factors for the development of post-COVID-19 condition (also known as long COVID). METHODS: The Covid Collab study was a longitudinal, self-enrolled, community, case-control study. We recruited participants from the UK through a smartphone app, media publications, and promotion within the Fitbit app between Aug 28, 2020, and May 31, 2021. Adults (aged ≥18 years) who reported a COVID-19 diagnosis with a positive antigen or PCR test before Feb 1, 2022, were eligible for inclusion. We compared a cohort of 1200 patients who tested positive for COVID-19 with a cohort of 3600 sex-matched and age-matched controls without a COVID-19 diagnosis. Participants could provide information on COVID-19 symptoms and mental health through self-reported questionnaires (active data) and commercial wearable fitness devices (passive data). Data were compared between cohorts at three periods following diagnosis: acute COVID-19 (0-4 weeks), ongoing COVID-19 (4-12 weeks), and post-COVID-19 (12-16 weeks). We assessed sociodemographic and mobile health risk factors for the development of long COVID (defined as either a persistent change in a physiological signal or self-reported symptoms for ≥12 weeks after COVID-19 diagnosis). FINDINGS: By Aug 1, 2022, 17 667 participants had enrolled into the study, of whom 1200 (6·8%) cases and 3600 (20·4%) controls were included in the analyses. Compared with baseline (65 beats per min), resting heart rate increased significantly during the acute (0·47 beats per min; odds ratio [OR] 1·06 [95% CI 1·03-1·09]; p<0·0001), ongoing (0·99 beats per min; 1·11 [1·08-1·14]; p<0·0001), and post-COVID-19 (0·52 beats per min; 1·04 [1·02-1·07]; p=0·0017) phases. An increased level of historical activity in the period from 24 months to 6 months preceding COVID-19 diagnosis was protective against long COVID (coefficient -0·017 [95% CI -0·030 to -0·003]; p=0·015). Depressive symptoms were persistently elevated following COVID-19 (OR 1·03 [95% CI 1·01-1·06]; p=0·0033) and were a potential risk factor for developing long COVID (1·14 [1·07-1·22]; p<0·0001). INTERPRETATION: Mobile health technologies and commercial wearable devices might prove to be a useful resource for tracking recovery from COVID-19 and the prevalence of its long-term sequelae, as well as representing an abundant source of historical data. Mental wellbeing can be impacted negatively for an extended period following COVID-19. FUNDING: National Institute for Health and Care Research (NIHR), NIHR Maudsley Biomedical Research Centre, UK Research and Innovation, and Medical Research Council.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Smartphone , Dispositivos Eletrônicos Vestíveis , Humanos , Masculino , Feminino , Estudos de Casos e Controles , Reino Unido/epidemiologia , Fatores de Risco , COVID-19/epidemiologia , Pessoa de Meia-Idade , Adulto , Estudos Longitudinais , Idoso , SARS-CoV-2
14.
Digit Health ; 10: 20552076241238133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601188

RESUMO

Introduction: Remote monitoring technologies (RMTs) can measure cognitive and functional decline objectively at-home, and offer opportunities to measure passively and continuously, possibly improving sensitivity and reducing participant burden in clinical trials. However, there is skepticism that age and cognitive or functional impairment may render participants unable or unwilling to comply with complex RMT protocols. We therefore assessed the feasibility and usability of a complex RMT protocol in all syndromic stages of Alzheimer's disease and in healthy control participants. Methods: For 8 weeks, participants (N = 229) used two activity trackers, two interactive apps with either daily or weekly cognitive tasks, and optionally a wearable camera. A subset of participants participated in a 4-week sub-study (N = 45) using fixed at-home sensors, a wearable EEG sleep headband and a driving performance device. Feasibility was assessed by evaluating compliance and drop-out rates. Usability was assessed by problem rates (e.g., understanding instructions, discomfort, forgetting to use the RMT or technical problems) as discussed during bi-weekly semi-structured interviews. Results: Most problems were found for the active apps and EEG sleep headband. Problem rates increased and compliance rates decreased with disease severity, but the study remained feasible. Conclusions: This study shows that a highly complex RMT protocol is feasible, even in a mild-to-moderate AD population, encouraging other researchers to use RMTs in their study designs. We recommend evaluating the design of individual devices carefully before finalizing study protocols, considering RMTs which allow for real-time compliance monitoring, and engaging the partners of study participants in the research.

15.
J Affect Disord ; 355: 40-49, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552911

RESUMO

BACKGROUND: Prior research has associated spoken language use with depression, yet studies often involve small or non-clinical samples and face challenges in the manual transcription of speech. This paper aimed to automatically identify depression-related topics in speech recordings collected from clinical samples. METHODS: The data included 3919 English free-response speech recordings collected via smartphones from 265 participants with a depression history. We transcribed speech recordings via automatic speech recognition (Whisper tool, OpenAI) and identified principal topics from transcriptions using a deep learning topic model (BERTopic). To identify depression risk topics and understand the context, we compared participants' depression severity and behavioral (extracted from wearable devices) and linguistic (extracted from transcribed texts) characteristics across identified topics. RESULTS: From the 29 topics identified, we identified 6 risk topics for depression: 'No Expectations', 'Sleep', 'Mental Therapy', 'Haircut', 'Studying', and 'Coursework'. Participants mentioning depression risk topics exhibited higher sleep variability, later sleep onset, and fewer daily steps and used fewer words, more negative language, and fewer leisure-related words in their speech recordings. LIMITATIONS: Our findings were derived from a depressed cohort with a specific speech task, potentially limiting the generalizability to non-clinical populations or other speech tasks. Additionally, some topics had small sample sizes, necessitating further validation in larger datasets. CONCLUSION: This study demonstrates that specific speech topics can indicate depression severity. The employed data-driven workflow provides a practical approach for analyzing large-scale speech data collected from real-world settings.


Assuntos
Aprendizado Profundo , Fala , Humanos , Smartphone , Depressão/diagnóstico , Interface para o Reconhecimento da Fala
16.
JMIR Ment Health ; 10: e42866, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36692937

RESUMO

BACKGROUND: Remote measurement technologies (RMTs) such as smartphones and wearables can help improve treatment for depression by providing objective, continuous, and ecologically valid insights into mood and behavior. Engagement with RMTs is varied and highly context dependent; however, few studies have investigated their feasibility in the context of treatment. OBJECTIVE: A mixed methods design was used to evaluate engagement with active and passive data collection via RMT in people with depression undergoing psychotherapy. We evaluated the effects of treatment on 2 different types of engagement: study attrition (engagement with study protocol) and patterns of missing data (engagement with digital devices), which we termed data availability. Qualitative interviews were conducted to help interpret the differences in engagement. METHODS: A total of 66 people undergoing psychological therapy for depression were followed up for 7 months. Active data were gathered from weekly questionnaires and speech and cognitive tasks, and passive data were gathered from smartphone sensors and a Fitbit (Fitbit Inc) wearable device. RESULTS: The overall retention rate was 60%. Higher-intensity treatment (χ21=4.6; P=.03) and higher baseline anxiety (t56.28=-2.80, 2-tailed; P=.007) were associated with attrition, but depression severity was not (t50.4=-0.18; P=.86). A trend toward significance was found for the association between longer treatments and increased attrition (U=339.5; P=.05). Data availability was higher for active data than for passive data initially but declined at a sharper rate (90%-30% drop in 7 months). As for passive data, wearable data availability fell from a maximum of 80% to 45% at 7 months but showed higher overall data availability than smartphone-based data, which remained stable at the range of 20%-40% throughout. Missing data were more prevalent among GPS location data, followed by among Bluetooth data, then among accelerometry data. As for active data, speech and cognitive tasks had lower completion rates than clinical questionnaires. The participants in treatment provided less Fitbit data but more active data than those on the waiting list. CONCLUSIONS: Different data streams showed varied patterns of missing data, despite being gathered from the same device. Longer and more complex treatments and clinical characteristics such as higher baseline anxiety may reduce long-term engagement with RMTs, and different devices may show opposite patterns of missingness during treatment. This has implications for the scalability and uptake of RMTs in health care settings, the generalizability and accuracy of the data collected by these methods, feature construction, and the appropriateness of RMT use in the long term.

17.
J Atten Disord ; 27(9): 1040-1050, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269091

RESUMO

OBJECTIVE: We assessed the feasibility and validity of remote researcher-led administration and self-administration of modified versions of two cognitive tasks sensitive to ADHD, a four-choice reaction time task (Fast task) and a combined Continuous Performance Test/Go No-Go task (CPT/GNG), through a new remote measurement technology system. METHOD: We compared the cognitive performance measures (mean and variability of reaction times (MRT, RTV), omission errors (OE) and commission errors (CE)) at a remote baseline researcher-led administration and three remote self-administration sessions between participants with and without ADHD (n = 40). RESULTS: The most consistent group differences were found for RTV, MRT and CE at the baseline researcher-led administration and the first self-administration, with 8 of the 10 comparisons statistically significant and all comparisons indicating medium to large effect sizes. CONCLUSION: Remote administration of cognitive tasks successfully captured the difficulties with response inhibition and regulation of attention, supporting the feasibility and validity of remote assessments.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Projetos Piloto , Tempo de Reação/fisiologia , Atenção/fisiologia , Testes Neuropsicológicos , Cognição/fisiologia
18.
J Affect Disord ; 341: 128-136, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598722

RESUMO

BACKGROUND: Speech contains neuromuscular, physiological and cognitive components, and so is a potential biomarker of mental disorders. Previous studies indicate that speaking rate and pausing are associated with major depressive disorder (MDD). However, results are inconclusive as many studies are small and underpowered and do not include clinical samples. These studies have also been unilingual and use speech collected in controlled settings. If speech markers are to help understand the onset and progress of MDD, we need to uncover markers that are robust to language and establish the strength of associations in real-world data. METHODS: We collected speech data in 585 participants with a history of MDD in the United Kingdom, Spain, and Netherlands as part of the RADAR-MDD study. Participants recorded their speech via smartphones every two weeks for 18 months. Linear mixed models were used to estimate the strength of specific markers of depression from a set of 28 speech features. RESULTS: Increased depressive symptoms were associated with speech rate, articulation rate and intensity of speech elicited from a scripted task. These features had consistently stronger effect sizes than pauses. LIMITATIONS: Our findings are derived at the cohort level so may have limited impact on identifying intra-individual speech changes associated with changes in symptom severity. The analysis of features averaged over the entire recording may have underestimated the importance of some features. CONCLUSIONS: Participants with more severe depressive symptoms spoke more slowly and quietly. Our findings are from a real-world, multilingual, clinical dataset so represent a step-change in the usefulness of speech as a digital phenotype of MDD.


Assuntos
Transtorno Depressivo Maior , Fala , Humanos , Transtorno Depressivo Maior/diagnóstico , Depressão , Idioma , Individualidade
19.
NPJ Digit Med ; 6(1): 25, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36806317

RESUMO

Recent growth in digital technologies has enabled the recruitment and monitoring of large and diverse populations in remote health studies. However, the generalizability of inference drawn from remotely collected health data could be severely impacted by uneven participant engagement and attrition over the course of the study. We report findings on long-term participant retention and engagement patterns in a large multinational observational digital study for depression containing active (surveys) and passive sensor data collected via Android smartphones, and Fitbit devices from 614 participants for up to 2 years. Majority of participants (67.6%) continued to remain engaged in the study after 43 weeks. Unsupervised clustering of participants' study apps and Fitbit usage data showed 3 distinct engagement subgroups for each data stream. We found: (i) the least engaged group had the highest depression severity (4 PHQ8 points higher) across all data streams; (ii) the least engaged group (completed 4 bi-weekly surveys) took significantly longer to respond to survey notifications (3.8 h more) and were 5 years younger compared to the most engaged group (completed 20 bi-weekly surveys); and (iii) a considerable proportion (44.6%) of the participants who stopped completing surveys after 8 weeks continued to share passive Fitbit data for significantly longer (average 42 weeks). Additionally, multivariate survival models showed participants' age, ownership and brand of smartphones, and recruitment sites to be associated with retention in the study. Together these findings could inform the design of future digital health studies to enable equitable and balanced data collection from diverse populations.

20.
Biomedicines ; 10(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36289925

RESUMO

Epilepsy is one of the most common neurological disorders, characterized by the occurrence of repeated seizures. Given that epilepsy is considered a network disorder, tools derived from network neuroscience may confer the valuable ability to quantify the properties of epileptic brain networks. In this study, we use well-established brain network metrics (i.e., mean strength, variance of strength, eigenvector centrality, betweenness centrality) to characterize the temporal evolution of epileptic functional networks over several days prior to seizure occurrence. We infer the networks using long-term electroencephalographic recordings from 12 people with epilepsy. We found that brain network metrics are variable across days and show a circadian periodicity. In addition, we found that in 9 out of 12 patients the distribution of the variance of strength in the day (or even two last days) prior to seizure occurrence is significantly different compared to the corresponding distributions on all previous days. Our results suggest that brain network metrics computed fromelectroencephalographic recordings could potentially be used to characterize brain network changes that occur prior to seizures, and ultimately contribute to seizure warning systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA