Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 94(2): 201-206, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30754264

RESUMO

A new nylon membrane bag (NMB) assay was developed for studies to determine the effect of chemicals added to soil on survival of soilborne plant pathogens. The rapid and effective assay can be used to study organisms for which there are no selective media or for which a selective medium is expensive or difficult to prepare. This assay consists of placing pathogens inside a bag made of small-pore (0.22-µm) nylon filtration membrane, which is placed in soil and later retrieved to determine survival of the pathogens on nonselective media. Chemicals but not other microorganisms can enter the bag from the soil. Using this assay, Streptomyces scabies, Fusarium oxysporum f. sp. lycopersici race 3, and Ralstonia solanacearum were successfully recovered from soil after 72 h as demonstrated by growth on a semiselective Streptomyces medium (S. scabies) or nonselective potato dextrose agar medium (F. oxysporum f. sp. lycopersici race 3 and R. solanacearum) with minimal microbial contamination. Addition of acetic acid (200 mM) to soil killed 100% of S. scabies. SPK (a mixture of organic chemicals) at a concentration of 1,500 mg kg-1 of soil killed 83.3% of F. oxysporum f. sp. lycopersici race 3 culture plugs, 100% of F. oxysporum f. sp. lycopersici race 3 spores, and 97.2% of R. solanacearum cells. SPK at 1,000 mg kg-1 of soil killed 50% of F. oxysporum f. sp. lycopersici race 3 culture plugs, 68.2% of F. oxysporum f. sp. lycopersici race 3 spores, and 12% of R. solanacearum. Benlate (500 to 1,500 mg kg-1 of soil) did not kill the culture plugs of F. oxysporum f. sp. lycopersici race 3 but reduced the growth rate of F. oxysporum f. sp. lycopersici race 3. Benlate (500, 1,000, and 1,500 mg kg-1 of soil) reduced F. oxysporum f. sp. lycopersici race 3 spore germination by 39.4, 49.3, and 50.4%, respectively. Streptomycin sulfate (1,500, 800, 400, and 200 mg kg-1 of soil) caused 75.3, 21, 11.9, and 0.9% mortality, respectively, of R. solanacearum.

2.
Phytopathology ; 97(9): 1071-82, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18944172

RESUMO

ABSTRACT In order to determine possible relationships between geocaulosphere soil properties and severity of common scab of potato caused by Streptomyces scabies, soils were collected from representative commercial potato fields in Canada: in Simcoe and Dufferin Counties, Ontario and across Prince Edward Island (PEI) in August 2004. Soils immediately adjacent to tubers were sampled and analyzed for select edaphic factors and for pathogen presence using polymerase chain reaction (PCR) tests with primers that amplify a region of the TxtA gene involved in regulating the biosynthesis of the thaxtomin toxin family. Individual tubers were assessed visually for scab severity. The relationships between soil chemical factors and disease severity were investigated for each region to detect the strongest relationships. Principal component analysis revealed a distinctive clustering of samples with respect to disease severity in PEI but not in Ontario soils. Total and percent saturation of K (%K) were the only factors found associated with high disease severity in soils from both provinces. In PEI soils, pH, Mg, Ca, Cu, and %K, %Mg, %Ca, and %Na were associated with high disease severity, whereas cation exchange capacity (CEC) and Al were correlated with low disease severity soils. In Ontario, high Mn content was strongly correlated with low disease severity soils, whereas %K and organic matter content were correlated with disease severity. Partitioning samples into presence or absence of the TxtA PCR product with corresponding high or low severity showed further significant relationships in the data. There was an excellent correlation between Streptomyces spp. presence as detected by PCR and disease severity in PEI soils; however, the relationship was not as clear in Ontario soils, where many PCR-positive soils had low disease incidence. Principal component and partial least square analysis indicated that disease severity was predicted by soil factors such as organic matter, CEC, pH, Al, %Ca, %Mg, and %K for PEI but not for Ontario soils. The data reveal that the relationship between scab severity and soil chemical components is complex and potentially soil specific.

3.
J Environ Qual ; 36(2): 440-7, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17255631

RESUMO

In order to minimize odor and manage nutrients in liquid pig manure we need to be able to predict what operational practices most influence the concentrations of volatile fatty acids (VFAs), ammonium nitrogen (NH(4)(+)-N), and other nutrients present in the manure. To determine this, we collected manure from 15 pig operations in southwestern Ontario in the fall of 2001 and 2002 and spring of 2002 and 2003. The manure was stored in concrete tanks at all operations. Manure from finishing pigs had the highest concentration of VFAs, NH(4)(+)-N, and other nutrients, followed by manure from mixed operations, and then manure from sow operations. The average concentration of total VFAs and NH(4)(+)-N in finishing pig manure was 166 mM compared with 36 and 99 mM, respectively, in sow manure. Total N, P, and K were 2.3, 2.5, and 1.7 times greater, respectively, in finishing pig compared with sow manure. There was no seasonal or year to year variation in amount. The diet of the pigs, use of feed additives or antibiotics, location of tanks, and whether the tanks were covered or mixed were not significant factors contributing to the difference in manure chemistry. The main reason for the differences between the three types of manure was manure dilution. The average dry matter content of finishing pig manure was 4.5 times that of sow manure. This was due to larger density of pigs in finishing compared with sow operations, less manure storage capacity per pig for finishing compared with sow operations, and more wash water being used for sow operations.


Assuntos
Criação de Animais Domésticos/métodos , Ácidos Graxos Voláteis/análise , Esterco/análise , Compostos de Amônio Quaternário/análise , Amônia/análise , Animais , Antibacterianos/administração & dosagem , Cálcio/análise , Dieta , Feminino , Fertilizantes , Magnésio/análise , Nitrogênio/análise , Odorantes , Ontário , Fósforo/análise , Potássio/análise , Estações do Ano , Suínos
4.
Phytopathology ; 95(1): 28-35, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18943833

RESUMO

ABSTRACT In previous studies, liquid swine manure (LSM) was sometimes shown to reduce Verticillium wilt of potato caused by Verticillium dahliae. We also observed that microsclerotia of this fungus died within 1 day, or between 3 and 6 weeks, after addition of LSM to some acid soils and within 1 week in some alkaline soils. In this study, we demonstrated that a volatile fatty acid (VFA) mixture with an identical concentration of VFAs as that found in an effective LSM reduced germination in an acid soil (pH 5.1) to the same extent as the LSM after 1 day of exposure. Germination was reduced by 45, 75, and 90% in the 10, 20, and 40% ([wt/wt] soil moisture) treatments, respectively, with the latter being equivalent to an application of 80 hl/ha. Addition to this acid soil of 19 LSMs (30% [wt/wt] soil moisture) collected from different producers resulted in complete kill of microsclerotia with 12 manures. Effective manures had a total concentration of nonionized forms of VFAs in soil solution of 2.7 mM or higher. In some acid soils (pH 5.8), addition of LSM (40% [wt/wt] soil moisture) did not kill microsclerotia until 3 to 6 weeks later. Here, a reduction in viability of microsclerotia was attributed to the accumulation of 0.06 mM nitrous acid in the soil solution at 4 weeks. When an LSM was added (40% [wt/wt] soil moisture) to an alkaline soil (pH 7.9) where VFAs are not toxic, microsclerotia germination was reduced by 80% after 1 week. Here the pH increased to 8.9 and the concentration of ammonia reached 30 mM in the soil solution. An ammonium chloride solution having an equivalent concentration of ammonium as the manure was shown to have the same spectrum of toxicity as the manure in assays ranging from pH 7 to 9, both in solutions and above the solutions. At pH 9, the concentration of ammonia reached 18 mM and 100% mortality of microsclerotia occurred. Thus, in acid soils, LSM can kill microsclerotia of V. dahliae by VFA and/or nitrous acid toxicity and in alkaline soils by ammonia toxicity. In order to take advantage of these mechanisms for disease reduction, the manure chemical composition, rate of addition, and soil characteristics need to be determined for each instance of use.

5.
Front Plant Sci ; 6: 92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25750649

RESUMO

It has been hypothesized that the relatively low concentration of sulfur amino acids in legume seeds might be an ecological adaptation to nutrient poor, marginal soils. SARC1 and SMARC1N-PN1 are genetically related lines of common bean (dry bean, Phaseolus vulgaris) differing in seed storage protein composition. In SMARC1N-PN1, the lack of phaseolin and major lectins is compensated by increased levels of sulfur-rich proteins, resulting in an enhanced concentration of cysteine and methionine, mostly at the expense of the abundant non-protein amino acid, S-methylcysteine. To identify potential effects associated with an increased concentration of sulfur amino acids in the protein pool, the response of the two genotypes to low and high sulfur nutrition was evaluated under controlled conditions. Seed yield was increased by the high sulfate treatment in SMARC1N-PN1. The seed concentrations of sulfur, sulfate, and S-methylcysteine were altered by the sulfur treatment in both genotypes. The concentration of total cysteine and extractible globulins was increased specifically in SMARC1N-PN1. Proteomic analysis identified arcelin-like protein 4, lipoxygenase-3, albumin-2, and alpha amylase inhibitor beta chain as having increased levels under high sulfur conditions. Lipoxygenase-3 accumulation was sensitive to sulfur nutrition only in SMARC1N-PN1. Under field conditions, both SARC1 and SMARC1N-PN1 exhibited a slight increase in yield in response to sulfur treatment, typical for common bean.

6.
Phytopathology ; 92(5): 548-52, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-18943030

RESUMO

ABSTRACT Liquid swine manure added to acidic soils killed microsclerotia of the wilt fungus Verticillium dahliae. We investigated whether volatile fatty acids (VFAs) in the manure were responsible for this toxicity. The survival of microsclerotia was determined after exposure to various dilutions of manure or its VFA components. Acetic, propionic, and isobutyric acids constituted the major VFAs in the manure, while n-butyric, n-valeric, iso-valeric, and n-caproic acids were present in lesser amounts. Formic acid was not detected. The individual VFAs were more toxic to microsclerotia as the solution pH was decreased, indicating that the protonated forms of the VFAs were toxic (e.g., acetic acid and not acetate). The effective concentration reducing germination of microsclerotia by 95% (EC(95)) for formic and n-caproic acids was approximately 4 mM, the most toxic of the acids tested; for n-valeric, the EC(95) was 9.2 mM, isovaleric was 16.1 mM acids, and acetic, propionic, n-butyric, and isobutyric acids were approximately 30 mM. The toxicity of acetic acid, and likely all the others, was directly related to the duration of exposure. Inhibition of microsclerotia germination followed identical trends in solutions of the manure or in a mixture of VFAs with equivalent concentrations of the individual acids found in the manure. Similarly, germination declined to the same extent in the atmosphere above the manure or the VFA mixture, confirming the toxicity of VFAs to microsclerotia. Thus, under acid conditions, VFAs in liquid swine manure can kill microsclerotia of V. dahliae.

7.
Plant Dis ; 82(6): 631-638, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30857012

RESUMO

A procedure is described for estimating Streptomyces populations in soil. Soils are air-dried, 10g quantities are shaken in plastic bags containing 0.1% water agar and homogenized with a Stomacher homogenizer, serial dilutions are plated on a semi-selective culture (STR) medium and incubated for 2 weeks at 22°C, and the Streptomyces colonies are enumerated. Use of STR medium reduced the bacterial and fungal colonies recovered from soil to levels below that of the Streptomyces spp. while not affecting the number of Streptomyces colonies compared with those enumerated on yeast malt extract medium. A procedure for screening large numbers of Streptomyces strains for thaxtomin production, a phytotoxin recognized as a virulence marker in S. scabies, is also described. Strains are grown on oatmeal medium, and the thaxtomin is extracted from the medium by facilitated diffusion and detected by miniature thin layer chromatography. S. scabies and S. acidiscabies strains (approximately 130 from Ontario and 70 from other locations in North America) that produced thaxtomin did not form aerial mycelia or sporulate on STR medium within 2 weeks at 22°C. Ontario S. scabies strains that produced thaxtomin A also produced melanin on STR medium. All S. scabies strains from scab lesions that produced thaxtomin A had this colony morphology, whereas only 4 to 9% of strains from soil with this colony morphology produced thaxtomin A. Using these procedures, we determined that the population of thaxtomin-producing S. scabies in soil from a potato field in Ontario with a history of potato scab was about 20,000 CFU/g soil.

8.
Environ Toxicol ; 19(3): 216-25, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15101037

RESUMO

The potential exists for natural or synthetic hormonal chemicals present in agricultural fertilizers to be transferred to adjacent aquatic environments in order to alter endocrine function in exposed wildlife. Recombinant yeast and mammalian cell line (BG1Luc4E2) assays were used to screen crude organic extracts of municipal biosolids and animal manures for estrogen-, androgen-, and progesterone receptor gene transcription activities. Of the biosolid extracts, those samples that had undergone aerobic digestion had no or minimal estrogen- and no androgen receptor gene transcription activities. In contrast, those biosolid samples that had undergone anaerobic digestion had much higher estrogen- and, for all but one site, androgen receptor gene transcription activities. Extracts prepared from animal manure samples had variable levels of androgen- and estrogen receptor gene transcription activities, which may be related to the type, sex, age, and reproductive status of the animals. The diet and treatment of animals with hormone implants also appeared to be factors influencing hormone activity in animal manure. Progesterone receptor gene transcription activity was observed for only one chicken litter sample. Overall, results of this study suggest that in vitro bioassays can be used to survey and detect hormone activity in municipal biosolids and animal manures. Furthermore, results of these assays can be used to develop practices that will minimize the potential environmental endocrine-disrupting effects of these substances.


Assuntos
Fertilizantes/análise , Hormônios Esteroides Gonadais/análise , Esterco/análise , Esgotos/análise , Transcrição Gênica/efeitos dos fármacos , Poluentes Químicos da Água/análise , Animais , Bioensaio , Canadá , Bovinos , Linhagem Celular Tumoral , Galinhas , Feminino , Hormônios Esteroides Gonadais/genética , Humanos , Masculino , Receptores Androgênicos/genética , Receptores de Estrogênio/genética , Receptores de Progesterona/genética , Suínos , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA