Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Hum Genet ; 108(10): 1852-1865, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34559995

RESUMO

Genome-wide association studies (GWASs) have discovered 20 risk loci in the human genome where germline variants associate with risk of pancreatic ductal adenocarcinoma (PDAC) in populations of European ancestry. Here, we fine-mapped one such locus on chr16q23.1 (rs72802365, p = 2.51 × 10-17, OR = 1.36, 95% CI = 1.31-1.40) and identified colocalization (PP = 0.87) with aberrant exon 5-7 CTRB2 splicing in pancreatic tissues (pGTEx = 1.40 × 10-69, ßGTEx = 1.99; pLTG = 1.02 × 10-30, ßLTG = 1.99). Imputation of a 584 bp structural variant overlapping exon 6 of CTRB2 into the GWAS datasets resulted in a highly significant association with pancreatic cancer risk (p = 2.83 × 10-16, OR = 1.36, 95% CI = 1.31-1.42), indicating that it may underlie this signal. Exon skipping attributable to the deletion (risk) allele introduces a premature stop codon in exon 7 of CTRB2, yielding a truncated chymotrypsinogen B2 protein that lacks chymotrypsin activity, is poorly secreted, and accumulates intracellularly in the endoplasmic reticulum (ER). We propose that intracellular accumulation of a nonfunctional chymotrypsinogen B2 protein leads to ER stress and pancreatic inflammation, which may explain the increased pancreatic cancer risk in carriers of CTRB2 exon 6 deletion alleles.


Assuntos
Quimotripsina/genética , Neoplasias Pancreáticas/patologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Deleção de Sequência , Estudos de Casos e Controles , Quimotripsina/antagonistas & inibidores , Quimotripsina/metabolismo , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo
2.
Nucleic Acids Res ; 47(5): 2289-2305, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30597065

RESUMO

Polycomb repressive complex 1 (PRC1) is critical for mediating gene repression during development and adult stem cell maintenance. Five CBX proteins, CBX2,4,6,7,8, form mutually exclusive PRC1 complexes and are thought to play a role in the association of PRC1 with chromatin. Specifically, the N-terminal chromodomain (CD) in the CBX proteins is thought to mediate specific targeting to methylated histones. For CBX8, however, the chromodomain has demonstrated weak affinity and specificity for methylated histones in vitro, leaving doubt as to its role in CBX8 chromatin association. Here, we investigate the function of the CBX8 CD in vitro and in vivo. We find that the CD is in fact a major driver of CBX8 chromatin association and determine that this is driven by both histone and previously unrecognized DNA binding activity. We characterize the structural basis of histone and DNA binding and determine how they integrate on multiple levels. Notably, we find that the chromatin environment is critical in determining the ultimate function of the CD in CBX8 association.


Assuntos
Cromatina/metabolismo , DNA/metabolismo , Histonas/química , Histonas/metabolismo , Complexo Repressor Polycomb 1/química , Complexo Repressor Polycomb 1/metabolismo , Arginina/química , Arginina/metabolismo , Cromatina/genética , DNA/química , DNA/genética , Células HEK293 , Humanos , Metilação , Modelos Moleculares , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Domínios Proteicos
3.
Proteomics ; 18(11): e1700427, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29655301

RESUMO

Analysis of protein complexes provides insights into how the ensemble of expressed proteome is organized into functional units. While there have been advances in techniques for proteome-wide profiling of cytoplasmic protein complexes, information about human nuclear protein complexes are very limited. To close this gap, we combined native size exclusion chromatography (SEC) with label-free quantitative MS profiling to characterize hundreds of nuclear protein complexes isolated from human glioblastoma multiforme T98G cells. We identified 1794 proteins that overlapped between two biological replicates of which 1244 proteins were characterized as existing within stably associated putative complexes. co-IP experiments confirmed the interaction of PARP1 with Ku70/Ku80 proteins and HDAC1 (histone deacetylase complex 1) and CHD4. HDAC1/2 also co-migrated with various SIN3A and nucleosome remodeling and deacetylase components in SEC fractionation including SIN3A, SAP30, RBBP4, RBBP7, and NCOR1. Co-elution of HDAC1/2/3 with both the KDM1A and RCOR1 further confirmed that these proteins are integral components of human deacetylase complexes. Our approach also demonstrated the ability to identify potential moonlighting complexes and novel complexes containing uncharacterized proteins. Overall, the results demonstrated the utility of SEC fractionation and LC-MS analysis for system-wide profiling of proteins to predict the existence of distinct forms of nuclear protein complexes.


Assuntos
Glioblastoma/metabolismo , Espectrometria de Massas/métodos , Complexos Multiproteicos/análise , Proteínas Nucleares/análise , Proteoma/análise , Cromatografia em Gel , Glioblastoma/patologia , Humanos , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Células Tumorais Cultivadas
4.
Yale J Biol Med ; 89(4): 431-440, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28018136

RESUMO

Glioblastoma multiforme (GBM) lacks effective therapeutic options leaving patients with a survival time of approximately one year. Recently, the alteration of chromatin modulators has been implicated in the pathogenesis and chemoresistance of numerous cancers; in particular, the Polycomb Group Proteins have been shown to play a role in glioblastoma progression and maintenance [1-5]. In this study, we aimed to identify drug combinations that decrease GBM cell viability by combining small molecule inhibitors against the Polycomb family with two standard chemotherapies. We identified dual inhibition of the CBX chromodomain with doxorubicin as a novel therapeutic strategy. While treatment with chromodomain inhibitor is non-toxic to cells alone, it dramatically increased the toxicity of standard chemotherapy drugs. We further validated an increase in DNA damage resulting in a G2/M block and subsequent apoptosis using the dual inhibitor treatment.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Glioblastoma/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Doxorrubicina/farmacologia , Citometria de Fluxo , Imunofluorescência , Glioblastoma/genética , Humanos , Complexo Repressor Polycomb 1/genética , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Temozolomida
5.
ChemMedChem ; 16(19): 3027-3034, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34174168

RESUMO

Methyllysine reader proteins bind to methylated lysine residues and alter gene transcription by changing either the compaction state of chromatin or by the recruitment of other multiprotein complexes. The polycomb paralog family of methyllysine readers bind to trimethylated lysine on the tail of histone 3 (H3) via a highly conserved aromatic cage located in their chromodomains. Each of the polycomb paralogs are implicated in several disease states. CBX6 and CBX8 are members of the polycomb paralog family with two structurally similar chromodomains. By exploring the structure-activity relationships of a previously reported CBX6 inhibitor we have discovered more potent and cell permeable analogs. Our current report includes potent, dual-selective inhibitors of CBX6 and CBX8. We have shown that the -2 position in our scaffold is an important residue for selectivity amongst the polycomb paralogs. Preliminary cell-based studies show that the new inhibitors impact cell proliferation in a rhabdoid tumor cell line.


Assuntos
Antineoplásicos/farmacologia , Peptídeos/farmacologia , Complexo Repressor Polycomb 1/antagonistas & inibidores , Proteínas do Grupo Polycomb/antagonistas & inibidores , Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Estrutura Molecular , Peptídeos/química , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Relação Estrutura-Atividade
6.
ACS Chem Biol ; 15(1): 112-131, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31755685

RESUMO

Polycomb repressive complex 1 (PRC1) is critical for mediating gene expression during development. Five chromobox (CBX) homolog proteins, CBX2, CBX4, CBX6, CBX7, and CBX8, are incorporated into PRC1 complexes, where they mediate targeting to trimethylated lysine 27 of histone H3 (H3K27me3) via the N-terminal chromodomain (ChD). Individual CBX paralogs have been implicated as drug targets in cancer; however, high similarities in sequence and structure among the CBX ChDs provide a major obstacle in developing selective CBX ChD inhibitors. Here we report the selection of small, focused, DNA-encoded libraries (DELs) against multiple homologous ChDs to identify modifications to a parental ligand that confer both selectivity and potency for the ChD of CBX8. This on-DNA, medicinal chemistry approach enabled the development of SW2_110A, a selective, cell-permeable inhibitor of the CBX8 ChD. SW2_110A binds CBX8 ChD with a Kd of 800 nM, with minimal 5-fold selectivity for CBX8 ChD over all other CBX paralogs in vitro. SW2_110A specifically inhibits the association of CBX8 with chromatin in cells and inhibits the proliferation of THP1 leukemia cells driven by the MLL-AF9 translocation. In THP1 cells, SW2_110A treatment results in a significant decrease in the expression of MLL-AF9 target genes, including HOXA9, validating the previously established role for CBX8 in MLL-AF9 transcriptional activation, and defining the ChD as necessary for this function. The success of SW2_110A provides great promise for the development of highly selective and cell-permeable probes for the full CBX family. In addition, the approach taken provides a proof-of-principle demonstration of how DELs can be used iteratively for optimization of both ligand potency and selectivity.


Assuntos
Antineoplásicos/química , Inibidores Enzimáticos/química , Biblioteca Gênica , Ligantes , Complexo Repressor Polycomb 1/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Proliferação de Células/efeitos dos fármacos , Cromatina/metabolismo , Clonagem Molecular , DNA/metabolismo , Desenvolvimento de Medicamentos , Expressão Gênica , Histonas/química , Humanos , Ligases/metabolismo , Lisina/química , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/genética , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Relação Estrutura-Atividade , Especificidade por Substrato , Translocação Genética
7.
Sci Rep ; 9(1): 987, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700785

RESUMO

SANT domains are found in a number of chromatin regulators. They contain approximately 50 amino acids and have high similarity to the DNA binding domain of Myb related proteins. Though some SANT domains associate with DNA others have been found to bind unmodified histone tails. There are two SANT domains in Enhancer of Zeste 2 (EZH2), the catalytic subunit of the Polycomb Repressive Complex 2 (PRC2), of unknown function. Here we show that the first SANT domain (SANT1) of EZH2 is a histone binding domain with specificity for the histone H4 N-terminal tail. Using NMR spectroscopy, mutagenesis, and molecular modeling we structurally characterize the SANT1 domain and determine the molecular mechanism of binding to the H4 tail. Though not important for histone binding, we find that the adjacent stimulation response motif (SRM) stabilizes SANT1 and transiently samples its active form in solution. Acetylation of H4K16 (H4K16ac) or acetylation or methylation of H4K20 (H4K20ac and H4K20me3) are seen to abrogate binding of SANT1 to H4, which is consistent with these modifications being anti-correlated with H3K27me3 in-vivo. Our results provide significant insight into this important regulatory region of EZH2 and the first characterization of the molecular mechanism of SANT domain histone binding.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/química , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histonas/química , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Humanos , Domínios Proteicos , Relação Estrutura-Atividade
8.
Biochim Biophys Acta Gene Regul Mech ; 1860(2): 233-245, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28007606

RESUMO

The compositional complexity of Polycomb Repressive Complex 1 (PRC1) increased dramatically during vertebrate evolution. What is considered the "canonical" PRC1 complex consists of four subunits originally identified as regulators of body segmentation in Drosophila. In mammals, each of these four canonical subunits consists of two to six paralogs that associate in a combinatorial manner to produce over a hundred possible distinct PRC1 complexes with unknown function. Genetic studies have begun to define the phenotypic roles for different PRC1 paralogs; however, relating these phenotypes to unique biochemical and transcriptional function for the different paralogs has been challenging. In this review, we attempt to address how the compositional diversity of canonical PRC1 complexes relates to unique roles for individual PRC1 paralogs in transcriptional regulation. This review focuses primarily on PRC1 complex composition, genome targeting, and biochemical function.


Assuntos
Mamíferos/genética , Mamíferos/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Animais , Humanos , Fenótipo , Transcrição Gênica/genética
9.
J Vis Exp ; (128)2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28994797

RESUMO

Elucidation of the binding properties of chromatin-targeting proteins can be very challenging due to the complex nature of chromatin and the heterogeneous nature of most mammalian chromatin-modifying complexes. In order to overcome these hurdles, we have adapted a sequential salt extraction (SSE) assay for evaluating the relative binding affinities of chromatin-bound complexes. This easy and straightforward assay can be used by non-experts to evaluate the relative difference in binding affinity of two related complexes, the changes in affinity of a complex when a subunit is lost or an individual domain is inactivated, and the change in binding affinity after alterations to the chromatin landscape. By sequentially re-suspending bulk chromatin in increasing amounts of salt, we are able to profile the elution of a particular protein from chromatin. Using these profiles, we are able to determine how alterations in a chromatin-modifying complex or alterations to the chromatin environment affect binding interactions. Coupling SSE with other in vitro and in vivo assays, we can determine the roles of individual domains and proteins on the functionality of a complex in a variety of chromatin environments.


Assuntos
Fracionamento Químico/métodos , Cromatina/metabolismo , Cloreto de Sódio/química , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Feminino , Células HEK293 , Humanos , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/química , Neoplasias Ovarianas/metabolismo , Ligação Proteica , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA