Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38220130

RESUMO

Assessments of arterial and venous blood gases are required to understand the function of respiratory organs in animals at different stages of development. We measured blood gases in the arteries entering and veins leaving the chorioallantoic membrane (CAM) in embryonic alligators (Alligator mississippiensis). The CAM accounts for virtually all gas exchange in these animals, and we hypothesized that the CAM vasculature would be larger in eggs incubated in hypoxia (10% O2 for 50% or 70% of incubation), which would be reflected in a lower partial pressure of CO2 (PCO2). Contrary to this hypothesis, our measurements revealed no effects of hypoxic incubation on PCO2, and seemingly no increase in vascularization of the CAM in response to incubation in 10% O2. PCO2 was lower on the venous side, but only significantly different from arterial blood at 70% of incubation. The calculated blood flow to the CAM increased with development and was lower in both groups of alligators that had been incubated in hypoxia. Future studies should include measurements of blood parameters taken from embryos held in conditions that mirror incubation O2 levels, in combination with direct measurements of CAM artery blood flow.


Assuntos
Jacarés e Crocodilos , Membrana Corioalantoide , Animais , Gases , Artérias , Hipóxia
2.
J Exp Biol ; 222(Pt 7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30787137

RESUMO

Reptiles have the capacity to differentially perfuse the systemic and pulmonary vascular circuits via autonomic regulation of the heart and the vascular trees. While this aptitude is widely recognized, the role of 'shunting' as a homeostatic mechanism to match convective transport with tissue demand remains unknown. In crocodilians, it has been hypothesized that a pulmonary vascular bypass of systemic venous blood - a right-to-left (R-L) shunt - serves to deliver CO2-rich blood with protons needed for gastric acid secretion during digestion. This hypothesis is partially based on the unique crocodilian vascular anatomy where a left aorta (LAo) arises from the right ventricle, and appears to preferentially supply the gastrointestinal system, whereas the right aorta emerges from the left ventricle. Recent theoretical considerations imply that a R-L shunt would have minuscule effects on PCO2 , but direct measurements of blood gases in both the right and left aortae or both the right and left atria in fed animals have not been conducted. For this reason, we measured blood parameters including PO2 , PCO2 , pHe and [HCO3-] in the right and left aortae and atria following ingestion of a gavage-fed standardized meal (5% body mass). Blood samples were taken at 3, 6, 12, 24, 36 and 48 h into the digestive period to encompass the period of maximal gastric acid secretion. At no point did PCO2  or pH differ between the left and right aortae, whereas PO2  was significantly lower in the left aorta at several time points during digestion. Our findings do not support the hypothesis that a R-L shunt serves to deliver CO2 for the gastrointestinal system after feeding in crocodilians.


Assuntos
Jacarés e Crocodilos/fisiologia , Digestão/fisiologia , Trato Gastrointestinal/irrigação sanguínea , Prótons , Jacarés e Crocodilos/anatomia & histologia , Jacarés e Crocodilos/sangue , Animais , Aorta/anatomia & histologia , Dióxido de Carbono/sangue , Trato Gastrointestinal/fisiologia , Concentração de Íons de Hidrogênio , Oxigênio/sangue
3.
J Exp Biol ; 221(Pt 10)2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29487152

RESUMO

Vertebrates reduce arterial blood pH (pHa) when body temperature increases. In water breathers, this response occurs primarily by reducing plasma HCO3- levels with small changes in the partial pressure of CO2 (PCO2 ). In contrast, air breathers mediate the decrease in pHa by increasing arterial PCO2  (PaCO2 ) at constant plasma HCO3- by reducing lung ventilation relative to metabolic CO2 production. Much less is known about bimodal breathers, which utilize both water and air. Here, we characterized the influence of temperature on arterial acid-base balance and intracellular pH (pHi) in the bimodal-breathing swamp eel, Monopterus albus This teleost uses the buccopharyngeal cavity for gas exchange and has very reduced gills. When exposed to ecologically relevant temperatures (20, 25, 30 and 35°C) for 24 and 48 h, pHa decreased by -0.025 pH units (U) °C-1 in association with an increase in PaCO2 , but without changes in plasma [HCO3-]. pHi was also reduced with increased temperature. The slope of pHi of liver and muscle was -0.014 and -0.019 U °C-1, while the heart muscle showed a smaller reduction (-0.008 U °C-1). When exposed to hypercapnia (7 or 14 mmHg) at either 25 or 35°C, M. albus elevated plasma [HCO3-] and therefore seemed to defend the new pHa set-point, demonstrating an adjusted control of acid-base balance with temperature. Overall, the effects of temperature on acid-base balance in M. albus resemble those in air-breathing amniotes, and we discuss the possibility that this pattern of acid-base balance results from a progressive transition in CO2 excretion from water to air as temperature rises.


Assuntos
Equilíbrio Ácido-Base/fisiologia , Smegmamorpha/fisiologia , Temperatura , Animais , Bicarbonatos/sangue , Dióxido de Carbono/sangue , Feminino , Concentração de Íons de Hidrogênio , Masculino , Smegmamorpha/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA