Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
J Am Chem Soc ; 146(33): 23297-23305, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39110484

RESUMO

Aggregation of protein-based therapeutics can occur during development, production, or storage and can lead to loss of efficacy and potential toxicity. Native mass spectrometry of a covalently linked pentameric monoclonal antibody complex with a mass of ∼800 kDa reveals several distinct conformations, smaller complexes, and abundant higher-order aggregates of the pentameric species. Charge detection mass spectrometry (CDMS) reveals individual oligomers up to the pentamer mAb trimer (15 individual mAb molecules; ∼2.4 MDa) whereas intermediate aggregates composed of 6-9 mAb molecules and aggregates larger than the pentameric dimer (1.6 MDa) were not detected/resolved by standard mass spectrometry, size exclusion chromatography (SEC), capillary electrophoresis (CE-SDS), or by mass photometry. Conventional quadrupole time-of-flight mass spectrometry (QTOF MS), mass photometry, SEC, and CE-SDS did not resolve partially or more fully unfolded conformations of each oligomer that were readily identified using CDMS by their significantly higher extents of charging. Trends in the charge-state distributions of individual oligomers provides detailed insight into how the structures of compact and elongated mAb aggregates change as a function of aggregate size. These results demonstrate the advantages of CDMS for obtaining accurate masses and information about the conformations of large antibody aggregates despite extensive overlapping m/z values. These results open up the ability to investigate structural changes that occur in small, soluble oligomers during the earliest stages of aggregation for antibodies or other proteins.


Assuntos
Anticorpos Monoclonais , Espectrometria de Massas , Conformação Proteica , Anticorpos Monoclonais/química , Espectrometria de Massas/métodos , Agregados Proteicos , Eletroforese Capilar , Cromatografia em Gel
2.
Analyst ; 149(3): 735-744, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38189568

RESUMO

Salt cluster ions produced by electrospray ionization are used for mass calibration and fundamental investigations into cluster stability and charge separation processes. However, previous studies have been limited to relatively small clusters owing to the heterogeneity associated with large, multiply-charged clusters that leads to unresolved signals in conventional m/z spectra. Here, charge detection mass spectrometry is used to measure both the mass and charge distributions of positively charged clusters of KCl, CaCl2, and LaCl3 with masses between ∼1 and 10 MDa by dynamically measuring the energy per charge, m/z, charge, and mass of simultaneously trapped individual ions throughout a 1 s trapping time. The extent of remaining hydration on the clusters, determined from the change in the frequency of ion motion with time as a result of residual water loss, follows the order KCl < CaCl2 < LaCl3, and is significantly lower than that of a pure water nanodrop, consistent with tighter water binding to the more highly charged cations in these clusters. The number of ion emission events from these clusters also follows this same trend, indicating that water at the cluster surface facilitates charge loss. A new frequency-based method to determine the magnitude of the charge loss resulting from individual ion emission events clearly resolves losses of +1 and +2 ions. Achieving this individual charge state resolution for ion emission events is an important advance in obtaining information about the late stages of bare gaseous ions formation. Future experiments on more hydrated clusters are expected to lead to a better understanding of ion formation in electrospray ionization.

3.
Nature ; 563(7733): 661-665, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30464339

RESUMO

One of the hallmarks of quantum physics is the generation of non-classical quantum states and superpositions, which has been demonstrated in several quantum systems, including ions, solid-state qubits and photons. However, only indirect demonstrations of non-classical states have been achieved in mechanical systems, despite the scientific appeal and technical utility of such a capability1,2, including in quantum sensing, computation and communication applications. This is due in part to the highly linear response of most mechanical systems, which makes quantum operations difficult, as well as their characteristically low frequencies, which hinder access to the quantum ground state3-7. Here we demonstrate full quantum control of the mechanical state of a macroscale mechanical resonator. We strongly couple a surface acoustic-wave8 resonator to a superconducting qubit, using the qubit to control and measure quantum states in the mechanical resonator. We generate a non-classical superposition of the zero- and one-phonon Fock states and map this and other states using Wigner tomography9-14. Such precise, programmable quantum control is essential to a range of applications of surface acoustic waves in the quantum limit, including the coupling of disparate quantum systems15,16.

4.
Anal Chem ; 95(45): 16659-16667, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37917546

RESUMO

The ability to determine ion energies in electrostatic ion-trap-based charge detection mass spectrometry (CDMS) experiments is important for the accurate measurement of individual ion m/z, charge, and mass. Dynamic energy measurements throughout the time an ion is trapped take advantage of the relationship between ion energy and the harmonic amplitude ratio (HAR) composed from the fundamental and second harmonic amplitudes in the Fourier transform of the ion signal. This method eliminates the need for energy-filtering optics in CDMS and makes it possible to measure energy lost in collisions and changes in ion masses due to dissociation. However, the accuracy of the energy measurement depends on the signal-to-noise ratio (S/N) of the amplitudes used to determine the HAR. Here, a major improvement to this HAR-based dynamic energy measurement method is achieved using HARs composed of higher-order harmonics in addition to the fundamental and second harmonic to determine ion energies. This combined harmonic amplitude ratios for precision energy refinement (CHARPER) method is applied to the analysis of a 103 nm polystyrene nanoparticle ion (359.7 MDa, m/z = 308,300) and the energy resolution (3140) and effective mass resolution (730) achieved are the best yet demonstrated in electrostatic ion-trap-based CDMS. The CHARPER method applied to an ensemble of several thousand adeno-associated virus ion signals also results in higher mass resolution compared to the basic HAR method, making it possible to resolve additional features in the composite mass histogram.

5.
Anal Chem ; 95(26): 10077-10086, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37343124

RESUMO

Ion-ion interactions in charge detection mass spectrometers that use electrostatic traps to measure masses of individual ions have not been reported previously, although ion trajectory simulations have shown that these types of interactions affect ion energies and thereby degrade measurement performance. Here, examples of interactions between simultaneously trapped ions that have masses ranging from ca. 2 to 350 MDa and ca. 100 to 1000 charges are studied in detail using a dynamic measurement method that makes it possible to track the evolution of the mass, charge, and energy of individual ions over their trapping lifetimes. Signals from ions that have similar oscillation frequencies can have overlapping spectral leakage artifacts that result in slightly increased uncertainties in the mass determination, but these effects can be mitigated by the careful choice of parameters used in the short-time Fourier transform analysis. Energy transfers between physically interacting ions are also observed and quantified with individual ion energy measurement resolution as high as ∼950. The mass and charge of interacting ions do not change, and their corresponding measurement uncertainties are equivalent to ions that do not undergo physical interactions. Simultaneous trapping of multiple ions in CDMS can greatly decrease the acquisition time necessary to accumulate a statistically meaningful number of individual ion measurements. These results demonstrate that while ion-ion interactions can occur when multiple ions are trapped, they have negligible effects on mass accuracy when using the dynamic measurement method.

6.
J Cardiovasc Magn Reson ; 25(1): 14, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36793101

RESUMO

BACKGROUND: Cardiomyopathy (CMP) is the most common cause of mortality in Duchenne muscular dystrophy (DMD), though the age of onset and clinical progression vary. We applied a novel 4D (3D + time) strain analysis method using cine cardiovascular magnetic resonance (CMR) imaging data to determine if localized strain metrics derived from 4D image analysis would be sensitive and specific for characterizing DMD CMP. METHODS: We analyzed short-axis cine CMR image stacks from 43 DMD patients (median age: 12.23 yrs [10.6-16.5]; [interquartile range]) and 25 male healthy controls (median age: 16.2 yrs [13.3-20.7]). A subset of 25 male DMD patients age-matched to the controls (median age: 15.7 yrs [14.0-17.8]) was used for comparative metrics. CMR images were compiled into 4D sequences for feature-tracking strain analysis using custom-built software. Unpaired t-test and receiver operator characteristic area under the curve (AUC) analysis were used to determine statistical significance. Spearman's rho was used to determine correlation. RESULTS: DMD patients had a range of CMP severity: 15 (35% of total) had left ventricular ejection fraction (LVEF) > 55% with no findings of myocardial late gadolinium enhancement (LGE), 15 (35%) had findings of LGE with LVEF > 55% and 13 (30%) had LGE with LVEF < 55%. The magnitude of the peak basal circumferential strain, basal radial strain, and basal surface area strain were all significantly decreased in DMD patients relative to healthy controls (p < 0.001) with AUC values of 0.80, 0.89, and 0.84 respectively for peak strain and 0.96, 0.91, and 0.98 respectively for systolic strain rate. Peak basal radial strain, basal radial systolic strain rate, and basal circumferential systolic strain rate magnitude values were also significantly decreased in mild CMP (No LGE, LVEF > 55%) compared to a healthy control group (p < 0.001 for all). Surface area strain significantly correlated with LVEF and extracellular volume (ECV) respectively in the basal (rho = - 0.45, 0.40), mid (rho = - 0.46, 0.46), and apical (rho = - 0.42, 0.47) regions. CONCLUSION: Strain analysis of 3D cine CMR images in DMD CMP patients generates localized kinematic parameters that strongly differentiate disease from control and correlate with LVEF and ECV.


Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Humanos , Masculino , Criança , Adolescente , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/diagnóstico por imagem , Volume Sistólico , Função Ventricular Esquerda , Meios de Contraste , Fenômenos Biomecânicos , Valor Preditivo dos Testes , Gadolínio , Imagem Cinética por Ressonância Magnética/métodos , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Espectroscopia de Ressonância Magnética
7.
Nucleic Acids Res ; 49(D1): D1046-D1057, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33221922

RESUMO

For more than two decades, the UCSC Genome Browser database (https://genome.ucsc.edu) has provided high-quality genomics data visualization and genome annotations to the research community. As the field of genomics grows and more data become available, new modes of display are required to accommodate new technologies. New features released this past year include a Hi-C heatmap display, a phased family trio display for VCF files, and various track visualization improvements. Striving to keep data up-to-date, new updates to gene annotations include GENCODE Genes, NCBI RefSeq Genes, and Ensembl Genes. New data tracks added for human and mouse genomes include the ENCODE registry of candidate cis-regulatory elements, promoters from the Eukaryotic Promoter Database, and NCBI RefSeq Select and Matched Annotation from NCBI and EMBL-EBI (MANE). Within weeks of learning about the outbreak of coronavirus, UCSC released a genome browser, with detailed annotation tracks, for the SARS-CoV-2 RNA reference assembly.


Assuntos
COVID-19/prevenção & controle , Biologia Computacional/métodos , Bases de Dados Genéticas , Genoma/genética , Genômica/métodos , SARS-CoV-2/genética , Animais , COVID-19/epidemiologia , COVID-19/virologia , Curadoria de Dados/métodos , Epidemias , Humanos , Internet , Camundongos , Anotação de Sequência Molecular/métodos , SARS-CoV-2/fisiologia , Software
8.
J Am Chem Soc ; 144(51): 23368-23378, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36525679

RESUMO

The tobacco mosaic viral capsid protein (TMV) is a frequent target for derivatization for myriad applications, including drug delivery, biosensing, and light harvesting. However, solutions of the stacked disk assembly state of TMV are difficult to characterize quantitatively due to their large size and multiple assembled states. Charge detection mass spectrometry (CDMS) addresses the need to characterize heterogeneous populations of large protein complexes in solution quickly and accurately. Using CDMS, previously unobserved assembly states of TMV, including 16-monomer disks and odd-numbered disk stacks, have been characterized. We additionally employed a peptide-protein conjugation reaction in conjunction with CDMS to demonstrate that modified TMV proteins do not redistribute between disks. Finally, this technique was used to discriminate between protein complexes of near-identical mass but different configurations. We have gained a greater understanding of the behavior of TMV, a protein used across a broad variety of fields and applications, in the solution state.


Assuntos
Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/química , Proteínas do Capsídeo/química , Fenômenos Químicos
9.
Anal Chem ; 94(33): 11703-11712, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35961005

RESUMO

Instrumental resolution of Fourier transform-charge detection mass spectrometry instruments with electrostatic ion trap detection of individual ions depends on the precision with which ion energy is determined. Energy can be selected using ion optic filters or from harmonic amplitude ratios (HARs) that provide Fellgett's advantage and eliminate the necessity of ion transmission loss to improve resolution. Unlike the ion energy-filtering method, the resolution of the HAR method increases with charge (improved S/N) and thus with mass. An analysis of the HAR method with current instrumentation indicates that higher resolution can be obtained with the HAR method than the best resolution demonstrated for instruments with energy-selective optics for ions in the low MDa range and above. However, this gain is typically unrealized because the resolution obtainable with molecular systems in this mass range is limited by sample heterogeneity. This phenomenon is illustrated with both tobacco mosaic virus (0.6-2.7 MDa) and AAV9 (3.7-4.7 MDa) samples where mass spectral resolution is limited by the sample, including salt adducts, and not by instrument resolution. Nevertheless, the ratio of full to empty AAV9 capsids and the included genome mass can be accurately obtained in a few minutes from 1× PBS buffer solution and an elution buffer containing 300+ mM nonvolatile content despite extensive adduction and lower resolution. Empty and full capsids adduct similarly indicating that salts encrust the complexes during late stages of droplet evaporation and that mass shifts can be calibrated in order to obtain accurate analyte masses even from highly salty solutions.


Assuntos
Espectrometria de Massas , Capsídeo , Análise de Fourier , Íons/química , Espectrometria de Massas/métodos , Eletricidade Estática
10.
Am J Physiol Heart Circ Physiol ; 322(3): H359-H372, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995167

RESUMO

Ischemic heart disease is the leading cause of death in the United States, Canada, and worldwide. Severe disease is characterized by coronary artery occlusion, loss of blood flow to the myocardium, and necrosis of tissue, with subsequent remodeling of the heart wall, including fibrotic scarring. The current study aims to demonstrate the efficacy of quantitating infarct size via two-dimensional (2-D) echocardiographic akinetic length and four-dimensional (4-D) echocardiographic infarct volume and surface area as in vivo analysis techniques. We further describe and evaluate a new surface area strain analysis technique for estimating myocardial infarction (MI) size after ischemic injury. Experimental MI was induced in mice via left coronary artery ligation. Ejection fraction and infarct size were measured through 2-D and 4-D echocardiography. Infarct size established via histology was compared with ultrasound-based metrics via linear regression analysis. Two-dimensional echocardiographic akinetic length (r = 0.76, P = 0.03), 4-D echocardiographic infarct volume (r = 0.85, P = 0.008), and surface area (r = 0.90, P = 0.002) correlate well with histology. Although both 2-D and 4-D echocardiography were reliable measurement techniques to assess infarct, 4-D analysis is superior in assessing asymmetry of the left ventricle and the infarct. Strain analysis performed on 4-D data also provides additional infarct sizing techniques, which correlate with histology (surface strain: r = 0.94, P < 0.001, transmural thickness: r = 0.76, P = 0.001). Two-dimensional echocardiographic akinetic length, 4-D echocardiography ultrasound, and strain provide effective in vivo methods for measuring fibrotic scarring after MI.NEW & NOTEWORTHY Our study supports that both 2-D and 4-D echocardiographic analysis techniques are reliable in quantifying infarct size though 4-D ultrasound provides a more holistic image of LV function and structure, especially after myocardial infarction. Furthermore, 4-D strain analysis correctly identifies infarct size and regional LV dysfunction after MI. Therefore, these techniques can improve functional insight into the impact of pharmacological interventions on the pathophysiology of cardiac disease.


Assuntos
Infarto do Miocárdio/diagnóstico por imagem , Ultrassonografia/métodos , Algoritmos , Animais , Débito Cardíaco , Feminino , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Imageamento Tridimensional/métodos , Imageamento Tridimensional/normas , Masculino , Camundongos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Sensibilidade e Especificidade , Ultrassonografia/normas
11.
Nucleic Acids Res ; 48(D1): D756-D761, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31691824

RESUMO

The University of California Santa Cruz Genome Browser website (https://genome.ucsc.edu) enters its 20th year of providing high-quality genomics data visualization and genome annotations to the research community. In the past year, we have added a new option to our web BLAT tool that allows search against all genomes, a single-cell expression viewer (https://cells.ucsc.edu), a 'lollipop' plot display mode for high-density variation data, a RESTful API for data extraction and a custom-track backup feature. New datasets include Tabula Muris single-cell expression data, GeneHancer regulatory annotations, The Cancer Genome Atlas Pan-Cancer variants, Genome Reference Consortium Patch sequences, new ENCODE transcription factor binding site peaks and clusters, the Database of Genomic Variants Gold Standard Variants, Genomenon Mastermind variants and three new multi-species alignment tracks.


Assuntos
Bases de Dados Genéticas , Genoma Humano , Software , Genômica , Humanos , Internet
12.
Phys Rev Lett ; 124(24): 240502, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32639797

RESUMO

Effective quantum communication between remote quantum nodes requires high fidelity quantum state transfer and remote entanglement generation. Recent experiments have demonstrated that microwave photons, as well as phonons, can be used to couple superconducting qubits, with a fidelity limited primarily by loss in the communication channel [P. Kurpiers et al., Nature (London) 558, 264 (2018)NATUAS0028-083610.1038/s41586-018-0195-y; C. J. Axline et al., Nat. Phys. 14, 705 (2018)NPAHAX1745-247310.1038/s41567-018-0115-y; P. Campagne-Ibarcq et al., Phys. Rev. Lett. 120, 200501 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.200501; N. Leung et al., npj Quantum Inf. 5, 18 (2019)2056-638710.1038/s41534-019-0128-0; Y. P. Zhong et al., Nat. Phys. 15, 741 (2019)NPAHAX1745-247310.1038/s41567-019-0507-7; A. Bienfait et al., Science 364, 368 (2019)SCIEAS0036-807510.1126/science.aaw8415]. Adiabatic protocols can overcome channel loss by transferring quantum states without populating the lossy communication channel. Here, we present a unique superconducting quantum communication system, comprising two superconducting qubits connected by a 0.73 m-long communication channel. Significantly, we can introduce large tunable loss to the channel, allowing exploration of different entanglement protocols in the presence of dissipation. When set for minimum loss in the channel, we demonstrate an adiabatic quantum state transfer protocol that achieves 99% transfer efficiency as well as the deterministic generation of entangled Bell states with a fidelity of 96%, all without populating the intervening communication channel, and competitive with a qubit-resonant mode-qubit relay method. We also explore the performance of the adiabatic protocol in the presence of significant channel loss, and show that the adiabatic protocol protects against loss in the channel, achieving higher state transfer and entanglement fidelities than the relay method.

13.
Anal Chem ; 91(11): 7458-7465, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31082222

RESUMO

Applications of charge detection mass spectrometry (CDMS) for measuring the masses of large molecules, macromolecular complexes, and synthetic polymers that are too large or heterogeneous for conventional mass spectrometry measurements are made possible by weighing individual ions in order to avoid interferences between ions. Here, a new multiplexing method that makes it possible to measure the masses of many ions simultaneously in CDMS is demonstrated. Ions with a broad range of kinetic energies are trapped. The energy of each ion is obtained from the ratio of the intensity of the fundamental to the second harmonic frequencies of the periodic trapping motion making it possible to measure both the m/ z and charge of each ion. Because ions with the exact same m/ z but with different energies appear at different frequencies, the probability of ion-ion interference is significantly reduced. We show that the measured mass of a protein complex consisting of 16 protomers, RuBisCO (517 kDa), is not affected by the number of trapped ions with up to 21 ions trapped simultaneously in these experiments. Ion-ion interactions do not affect the ion trapping lifetime up to 1 s, and there is no influence of the number of ions on the measured charge-state distribution of bovine serum albumin (66.5 kDa), indicating that ion-ion interactions do not adversely affect any of these measurements. Over an order of magnitude gain in measurement speed over single ion analysis is demonstrated, and significant additional gains are expected with this multi-ion measurement method.

14.
Basic Res Cardiol ; 114(3): 25, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-31004234

RESUMO

The goal of the present study was to evaluate the effects of SGLT2i on cardiac contractile function, substrate utilization, and efficiency before and during regional myocardial ischemia/reperfusion injury in normal, metabolically healthy swine. Lean swine received placebo or canagliflozin (300 mg PO) 24 h prior to and the morning of an invasive physiologic study protocol. Hemodynamic and cardiac function measurements were obtained at baseline, during a 30-min complete occlusion of the circumflex coronary artery, and during a 2-h reperfusion period. Blood pressure, heart rate, coronary flow, and myocardial oxygen consumption were unaffected by canagliflozin treatment. Ventricular volumes remained unchanged in controls throughout the protocol. At the onset of ischemia, canagliflozin produced acute large increases in left ventricular end-diastolic and systolic volumes which returned to baseline with reperfusion. Canagliflozin-mediated increases in end-diastolic volume were directly associated with increases in stroke volume and stroke work relative to controls during ischemia. Canagliflozin also increased cardiac work efficiency during ischemia relative to control swine. No differences in myocardial uptake of glucose, lactate, free fatty acids or ketones, were noted between treatment groups at any time. In separate experiments using a longer 60 min coronary occlusion followed by 2 h of reperfusion, canagliflozin increased end-diastolic volume and stroke volume and significantly diminished myocardial infarct size relative to control swine. These data demonstrate that SGLT2i with canagliflozin preserves cardiac contractile function and efficiency during regional myocardial ischemia and provides ischemia protection independent of alterations in myocardial substrate utilization.


Assuntos
Canagliflozina/farmacologia , Metabolismo Energético/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miocárdio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Sus scrofa
15.
Biochemistry ; 57(51): 7021-7032, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30488693

RESUMO

Purified recombinant FUsed in Sarcoma (FUS) assembles into an oligomeric state in an RNA-dependent manner to form large condensates. FUS condensates bind and concentrate the C-terminal domain of RNA polymerase II (RNA Pol II). We asked whether a granule in cells contained FUS and RNA Pol II as suggested by the binding of FUS condensates to the polymerase. We developed cross-linking protocols to recover protein particles containing FUS from cells and separated them by size exclusion chromatography. We found a significant fraction of RNA Pol II in large granules containing FUS with diameters of >50 nm or twice that of the RNA Pol II holoenzyme. Inhibition of transcription prevented the polymerase from associating with the granules. Altogether, we found physical evidence of granules containing FUS and RNA Pol II in cells that possess properties comparable to those of in vitro FUS condensates.


Assuntos
RNA Polimerase II/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Reagentes de Ligações Cruzadas , Células HEK293 , Humanos , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Tamanho da Partícula , Domínios e Motivos de Interação entre Proteínas , RNA Polimerase II/química , RNA Polimerase II/genética , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcrição Gênica
16.
Toxicol Appl Pharmacol ; 345: 19-25, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29499249

RESUMO

Many diseases and disorders are linked to exposure to endocrine disrupting chemicals (EDCs) that mimic the function of natural estrogen hormones. Here we present a Rapid Adaptable Portable In-vitro Detection biosensor platform (RAPID) for detecting chemicals that interact with the human estrogen receptor ß (hERß). This biosensor consists of an allosteric fusion protein, which is expressed using cell-free protein synthesis technology and is directly assayed by a colorimetric response. The resultant biosensor successfully detected known EDCs of hERß (BPA, E2, and DPN) at similar or better detection range than an analogous cell-based biosensor, but in a fraction of time. We also engineered cell-free protein synthesis reactions with RNAse inhibitors to increase production yields in the presence of human blood and urine. The RAPID biosensor successfully detects EDCs in these human samples in the presence of RNAse inhibitors. Engineered cell-free protein synthesis facilitates the use of protein biosensors in complex sample matrices without cumbersome protein purification.


Assuntos
Técnicas Biossensoriais/métodos , Sistema Livre de Células/metabolismo , Disruptores Endócrinos/sangue , Disruptores Endócrinos/urina , Biossíntese de Proteínas/fisiologia , Sistema Livre de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Disruptores Endócrinos/farmacologia , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/metabolismo , Humanos , Biossíntese de Proteínas/efeitos dos fármacos
17.
J Phys Chem A ; 122(47): 9224-9232, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30407019

RESUMO

Factors affecting the extrusion of guests from metal ion-capped decamethylcucurbit[5]uril (mc5) molecular container complexes are investigated using both collision-induced dissociation techniques and molecular mechanics simulations. For guests without polar bonds, the extrusion barrier increases with increasing guest volume. This is likely because escape of larger guests requires more displacement of the metal ion caps and, thus, more disruption of the ion-dipole interactions between the ion caps and the electronegative rim oxygens of mc5. However, guests larger than the optimum size for encapsulation displace the ion caps prior to collision-induced dissociation, resulting in less stable complexes and lower dissociation thresholds. The extrusion barriers obtained for guests with polar bonds are smaller than those obtained for similarly sized guests without polar bonds. This is likely because the partial charges on the guest allow electrostatic interactions with the ion cap and rim oxygens of mc5 during extrusion, thus stabilizing the extrusion transition state and reducing the extrusion barrier. Results from this study demonstrate simple principles to consider for designing host-guest complexes with specific guest-loss behaviors. Similar trends are observed between the experimental and computational results, demonstrating that molecular mechanics simulations can be used to approximate the relative stability of mc5 molecular container complexes and likely those of other similar complexes.

18.
Anal Chem ; 89(14): 7701-7708, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28621517

RESUMO

The masses and mobilities of single multiply charged ions of cytochrome c, ubiquitin, myoglobin, and bovine serum albumin formed by electrospray ionization are measured using charge detection mass spectrometry (CDMS). Single ions are trapped and repeatedly measured as they oscillate inside an electrostatic ion trap with cone electrodes for up to the maximum trapping time set at 500 ms. The histograms of the many single ion oscillation frequencies have resolved peaks that correspond to the different charge states of each protein. The m/z of each ion is determined from the initial oscillation frequency histogram, and the evolution of the ion energy with time is obtained from the changing frequency. A short-time Fourier transform of the time-domain data indicates that the increase in ion frequency occurs gradually with time with occasional sudden jumps in frequency. The frequency jumps are similar for each protein and may be caused by collision-induced changes in the ion trajectory. The rate of the gradual frequency shift increases with protein mass and charge state. This gradual frequency change is due to ion energy loss from collisions with the background gas. The total energy lost by an ion is determined from the latter frequency shifts normalized to a 500 ms lifetime, and these values increase nearly linearly with measured collisional cross-sections for these protein ions. These results show that the mass and collisional cross-section of single multiply charged ions can be obtained from these CDMS measurements by using proteins with known collisional cross-sections for calibration.


Assuntos
Citocromos c/análise , Mioglobina/análise , Soroalbumina Bovina/análise , Ubiquitina/análise , Animais , Bovinos , Íons/análise , Espectrometria de Massas
19.
Analyst ; 142(15): 2760-2769, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28636005

RESUMO

Charge detection mass spectrometry is used to measure the mass, charge, MSn and mobility of an individual ion produced by electrospray ionization of a 8 MDa polyethylene glycol sample. The charge detection mass spectrometer is an electrostatic ion trap that uses cone electrodes and a single tube detector and can detect ions for up to the full trapping time of 4.0 s. The time-domain signal induced on the detector tube by a single multiply charged ion can be complex owing to sequential fragmentation of the original precursor ion as well as increasing oscillation frequencies of the single ion owing to collisions with background gas that reduce the kinetic energy of the ion inside the trap. Simulations show that the ratio of the time for the ion to turn around inside the cone region of the trap to the time for the ion to travel through the detector tube is constant with m/z and increases with the ion energy per charge. By measuring this ratio, the kinetic energy of an ion can be obtained with good precision (∼1%) and this method to measure ion kinetic energies eliminates the necessity of ion energy selection prior to trapping for high precision mass measurement of large molecules in complex mixtures. This method also makes it possible to measure the masses of each sequential fragment ion formed from the original precursor ion. MS7 of a single multiply charged PEG molecule is demonstrated, and from these ion energy measurements and effects of collisions on the ion motion inside the trap, information about the ion mobility of the precursor ion and its fragments is obtained.

20.
Neuroimage ; 101: 215-24, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25019677

RESUMO

Electrocorticography (ECoG) in humans yields data with unmatched spatio-temporal resolution that provides novel insights into cognitive operations. However, the broader application of ECoG has been confounded by difficulties in accurately depicting individual data and performing statistically valid population-level analyses. To overcome these limitations, we developed methods for accurately registering ECoG data to individual cortical topology. We integrated this technique with surface-based co-registration and a mixed-effects multilevel analysis (MEMA) to control for variable cortical surface anatomy and sparse coverage across patients, as well as intra- and inter-subject variability. We applied this surface-based MEMA (SB-MEMA) technique to a face-recognition task dataset (n=22). Compared against existing techniques, SB-MEMA yielded results much more consistent with individual data and with meta-analyses of face-specific activation studies. We anticipate that SB-MEMA will greatly expand the role of ECoG in studies of human cognition, and will enable the generation of population-level brain activity maps and accurate multimodal comparisons.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Análise Multinível , Adulto , Encéfalo/anatomia & histologia , Eletrodos Implantados , Eletroencefalografia/normas , Face , Ritmo Gama/fisiologia , Humanos , Masculino , Reconhecimento Visual de Modelos/fisiologia , Reconhecimento Psicológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA