Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 296: 100030, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33148696

RESUMO

Heme oxygenase 1 (HO-1) and the cytochromes P450 (P450s) are endoplasmic reticulum-bound enzymes that rely on the same protein, NADPH-cytochrome P450 reductase (POR), to provide the electrons necessary for substrate metabolism. Although the HO-1 and P450 systems are interconnected owing to their common electron donor, they generally have been studied separately. As the expressions of both HO-1 and P450s are affected by xenobiotic exposure, changes in HO-1 expression can potentially affect P450 function and, conversely, changes in P450 expression can influence HO-1. The goal of this study was to examine interactions between the P450 and HO-1 systems. Using bioluminescence resonance energy transfer (BRET), HO-1 formed HO-1•P450 complexes with CYP1A2, CYP1A1, and CYP2D6, but not all P450s. Studies then focused on the HO-1-CYP1A2 interaction. CYP1A2 formed a physical complex with HO-1 that was stable in the presence of POR. As expected, both HO-1 and CYP1A2 formed BRET-detectable complexes with POR. The POR•CYP1A2 complex was readily disrupted by the addition of HO-1, whereas the POR•HO-1 complex was not significantly affected by the addition of CYP1A2. Interestingly, enzyme activities did not follow this pattern. BRET data suggested substantial inhibition of CYP1A2-mediated 7-ethoxyresorufin de-ethylation in the presence of HO-1, whereas its activity was actually stimulated at subsaturating POR. In contrast, HO-1-mediated heme metabolism was inhibited at subsaturating POR. These results indicate that HO-1 and CYP1A2 form a stable complex and have mutual effects on the catalytic behavior of both proteins that cannot be explained by a simple competition for POR.


Assuntos
Citocromo P-450 CYP1A2/metabolismo , Heme Oxigenase-1/metabolismo , Transferência de Energia , Células HEK293 , Heme/metabolismo , Humanos , Ligação Proteica
2.
Biochem J ; 478(2): 377-388, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33394027

RESUMO

P450 and heme oxygenase-1 (HO-1) receive their necessary electrons by interaction with the NADPH-cytochrome P450 reductase (POR). As the POR concentration is limiting when compared with P450 and HO-1, they must effectively compete for POR to function. In addition to these functionally required protein-protein interactions, HO-1 forms homomeric complexes, and several P450s have been shown to form complexes with themselves and with other P450s, raising the question, 'How are the HO-1 and P450 systems organized in the endoplasmic reticulum?' Recently, CYP1A2 was shown to associate with HO-1 affecting the function of both proteins. The goal of this study was to determine if CYP1A1 formed complexes with HO-1 in a similar manner. Complex formation among POR, HO-1, and CYP1A1 was measured using bioluminescence resonance energy transfer, with results showing HO-1 and CYP1A1 form a stable complex that was further stabilized in the presence of POR. The POR•CYP1A1 complex was readily disrupted by the addition of HO-1. CYP1A1 also was able to affect the POR•HO-1 complex, although the effect was smaller. This interaction between CYP1A1 and HO-1 also affected function, where the presence of CYP1A1 inhibited HO-1-mediated bilirubin formation by increasing the KmPOR•HO-1 without affecting the Vmaxapp. In like manner, HO-1 inhibited CYP1A1-mediated 7-ethoxyresorufin dealkylation by increasing the KmPOR•CYP1A1. Based on the mathematical simulation, the results could not be explained by a model where CYP1A1 and HO-1 simply compete for POR, and are consistent with the formation of a stable CYP1A1•HO-1 complex that affected the functional characteristics of both moieties.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Heme Oxigenase-1/metabolismo , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Citocromo P-450 CYP1A1/química , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Heme Oxigenase-1/química , Humanos , Domínios e Motivos de Interação entre Proteínas
3.
Biochem J ; 478(11): 2163-2178, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34032264

RESUMO

Previous studies showed that cytochrome P450 1A2 (CYP1A2) forms a homomeric complex that influences its metabolic characteristics. Specifically, CYP1A2 activity exhibits a sigmoidal response as a function of NADPH-cytochrome P450 reductase (POR) concentration and is consistent with an inhibitory CYP1A2•CYP1A2 complex that is disrupted by increasing [POR] (Reed et al. (2012) Biochem. J. 446, 489-497). The goal of this study was to identify the CYP1A2 contact regions involved in homomeric complex formation. Examination of X-ray structure of CYP1A2 implicated the proximal face in homomeric complex formation. Consequently, the involvement of residues L91-K106 (P1 region) located on the proximal face of CYP1A2 was investigated. This region was replaced with the homologous region of CYP2B4 (T81-S96) and the protein was expressed in HEK293T/17 cells. Complex formation and its disruption was observed using bioluminescence resonance energy transfer (BRET). The P1-CYP1A2 (CYP1A2 with the modified P1 region) exhibited a decreased BRET signal as compared with wild-type CYP1A2 (WT-CYP1A2). On further examination, P1-CYP1A2 was much less effective at disrupting the CYP1A2•CYP1A2 homomeric complex, when compared with WT-CYP1A2, thereby demonstrating impaired binding of P1-CYP1A2 to WT-CYP1A2 protein. In contrast, the P1 substitution did not affect its ability to form a heteromeric complex with CYP2B4. P1-CYP1A2 also showed decreased activity as compared with WT-CYP1A2, which was consistent with a decrease in the ability of P1-CYP1A2 to associate with WT-POR, again implicating the P1 region in POR binding. These results indicate that the contact region responsible for the CYP1A2•CYP1A2 homomeric complex resides in the proximal region of the protein.


Assuntos
Citocromo P-450 CYP1A2/química , Citocromo P-450 CYP1A2/metabolismo , Mutação , Multimerização Proteica , Proteínas Recombinantes de Fusão/metabolismo , Citocromo P-450 CYP1A2/genética , Células HEK293 , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
4.
Drug Metab Dispos ; 46(3): 197-203, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29233819

RESUMO

Cytochromes P450s (P450s) catalyze oxygenation reactions via interactions with their redox partners. However, other proteins, particularly other P450s, also have been shown to form complexes that modulate P450 function. Previous studies showed that CYP1A2 and CYP2B4 form a complex when reconstituted into phospholipid vesicles; however, details of the interactions among the P450s and NADPH-cytochrome P450 reductase (POR) have not been fully characterized. The goal of this study was to examine P450 complex formation in living cells, using bioluminescence resonance energy transfer (BRET). Various pairs of P450 and POR constructs were tagged with either green fluorescent protein or Renilla luciferase, and transfected into human embryonic kidney 293T cells. Complexes were demonstrated by measuring energy transfer between the tags, and disruption of the complex was verified by cotransfection with unlabeled P450-system proteins. CYP1A2 and CYP2B4 formed a stable complex that could not be disrupted by cotransfection of untagged POR. Interactions of both P450s with POR were detected, with untagged CYP1A2 disrupting the POR-CYP2B4 interaction. In contrast, untagged CYP2B4 did not affect the POR-CYP1A2 interaction. These data are consistent with POR preferentially binding to the CYP1A2 moiety of CYP1A2-CYP2B4. BRET-detectable homomeric CYP1A2-CYP1A2 also was detected, and was disrupted by cotransfection of either POR or CYP2B4. Both CYP1A2 and CYP2B4 activities were affected by their coexpression in a manner consistent with formation of the high-affinity POR-CYP1A2-CYP2B4 complex. These findings demonstrate that CYP1A2 and CYP2B4 form a heteromeric POR-CYP1A2-CYP2B4 complex in living cells that has altered catalytic activities relative to the homomeric enzymes.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Catálise , Linhagem Celular , Família 2 do Citocromo P450/metabolismo , Células HEK293 , Humanos , Oxirredução , Fosfolipídeos/metabolismo , Ligação Proteica/fisiologia
5.
J Biol Chem ; 288(12): 8209-8221, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23408431

RESUMO

Ligation of polyubiquitin chains to proteins is a fundamental post-translational modification, often resulting in targeted degradation of conjugated proteins. Attachment of polyubiquitin chains requires the activities of an E1 activating enzyme, an E2 carrier protein, and an E3 ligase. The mechanism by which polyubiquitin chains are formed remains largely speculative, especially for RING-based ligases. The tripartite motif (TRIM) superfamily of ligases functions in many cellular processes including innate immunity, cellular localization, development and differentiation, signaling, and cancer progression. The present results show that TRIM ligases catalyze polyubiquitin chain formation in the absence of substrate, the rates of which can be used as a functional readout of enzyme function. Initial rate studies under biochemically defined conditions show that TRIM32 and TRIM25 are specific for the Ubc5 family of E2-conjugating proteins and, along with TRIM5α, exhibit cooperative kinetics with respect to Ubc5 concentration, with submicromolar [S]0.5 and Hill coefficients of 3-5, suggesting they possess multiple binding sites for their cognate E2-ubiquitin thioester. Mutation studies reveal a second, non-canonical binding site encompassing the C-terminal Ubc5α-helix. Polyubiquitin chain formation requires TRIM subunit oligomerization through the conserved coiled-coil domain, but can be partially replaced by fusing the catalytic domain to GST to promote dimerization. Other results suggest that TRIM32 assembles polyubiquitin chains as a Ubc5-linked thioester intermediate. These results represent the first detailed mechanistic study of TRIM ligase activity and provide a functional context for oligomerization observed in the superfamily.


Assuntos
Fatores de Transcrição/química , Regulação Alostérica , Substituição de Aminoácidos , Animais , Bovinos , Humanos , Cinética , Poliubiquitina , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas com Motivo Tripartido , Enzimas Ativadoras de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases , Ubiquitinação
6.
Drug Metab Dispos ; 42(1): 9-22, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24130370

RESUMO

This report summarizes a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics at Experimental Biology held April 20-24 in Boston, MA. Presentations discussed the status of cytochrome P450 (P450) knowledge, emphasizing advances and challenges in relating structure with function and in applying this information to drug design. First, at least one structure of most major human drug-metabolizing P450 enzymes is known. However, the flexibility of these active sites can limit the predictive value of one structure for other ligands. A second limitation is our coarse-grain understanding of P450 interactions with membranes, other P450 enzymes, NADPH-cytochrome P450 reductase, and cytochrome b5. Recent work has examined differential P450 interactions with reductase in mixed P450 systems and P450:P450 complexes in reconstituted systems and cells, suggesting another level of functional control. In addition, protein nuclear magnetic resonance is a new approach to probe these protein/protein interactions, identifying interacting b5 and P450 surfaces, showing that b5 and reductase binding are mutually exclusive, and demonstrating ligand modulation of CYP17A1/b5 interactions. One desired outcome is the application of such information to control drug metabolism and/or design selective P450 inhibitors. A final presentation highlighted development of a CYP3A4 inhibitor that slows clearance of human immunodeficiency virus drugs otherwise rapidly metabolized by CYP3A4. Although understanding P450 structure/function relationships is an ongoing challenge, translational advances will benefit from continued integration of existing and new biophysical approaches.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Citocromos b5/metabolismo , Inativação Metabólica/fisiologia , Membrana Celular/metabolismo , Humanos , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Domínios e Motivos de Interação entre Proteínas/fisiologia
7.
Biochem J ; 446(3): 489-97, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22738171

RESUMO

Previous studies have shown that the presence of one P450 enzyme can affect the function of another. The goal of the present study was to determine if P450 enzymes are capable of forming homomeric complexes that affect P450 function. To address this problem, the catalytic activities of several P450s were examined in reconstituted systems containing NADPH-POR (cytochrome P450 reductase) and a single P450. CYP2B4 (cytochrome P450 2B4)-, CYP2E1 (cytochrome P450 2E1)- and CYP1A2 (cytochrome P450 1A2)-mediated activities were measured as a function of POR concentration using reconstituted systems containing different concentrations of P450. Although CYP2B4-dependent activities could be explained by a simple Michaelis-Menten interaction between POR and CYP2B4, both CYP2E1 and CYP1A2 activities generally produced a sigmoidal response as a function of [POR]. Interestingly, the non-Michaelis behaviour of CYP1A2 could be converted into a simple mass-action response by increasing the ionic strength of the buffer. Next, physical interactions between CYP1A2 enzymes were demonstrated in reconstituted systems by chemical cross-linking and in cellular systems by BRET (bioluminescence resonance energy transfer). Cross-linking data were consistent with the kinetic responses in that both were similarly modulated by increasing the ionic strength of the surrounding solution. Taken together, these results show that CYP1A2 forms CYP1A2-CYP1A2 complexes that exhibit altered catalytic activity.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Animais , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Catálise , Citocromo P-450 CYP1A2/metabolismo , Sistema Enzimático do Citocromo P-450/química , Células HEK293 , Humanos , Cinética , Domínios e Motivos de Interação entre Proteínas , Coelhos
8.
J Inorg Biochem ; 247: 112325, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37479567

RESUMO

CYP1A1, CYP1A2, and CYP1B1 have a high degree of sequence similarity, similar substrate selectivities and induction characteristics. However, experiments suggest that there are significant differences in their quaternary structures and function. The goal of this study was to characterize the CYP1 proteins regarding their ability to form protein-protein complexes, lipid microdomain localization, and ultimately function. This was accomplished by examining (1) substrate metabolism of the CYP1s as a function of NADPH-cytochrome P450 reductase (POR) concentration, and (2) quaternary structure, using bioluminescence resonance energy transfer (BRET). Both CYP1As were able to form BRET-detectable homomeric complexes, which was not observed with CYP1B1. When activities were measured as a function of [POR], CYP1A1 and CYP1B1 showed a hyperbolic response, consistent with mass-action binding; however, CYP1A2 produced a sigmoidal response, suggesting that the homomeric complex affected its function. Differences were observed in their ability to form heteromeric complexes. Whereas CYP1B1 and CYP1A1 formed a complex, neither the CYP1A1/CYP1A2 nor the CYP1B1/CYP1A2 pair formed BRET-detectable complexes. These proteins also differed in their lipid microdomain localization, with CYP1A2 and CYP1B1 residing in ordered membranes, and CYP1A1 in the disordered lipid regions. Taken together, despite their sequence similarities, there are substantial differences in quaternary structures and microdomain localization that can influence enzymatic activities. As these proteins exist in the endoplasmic reticulum with other ER-resident proteins, the P450s need to be considered as part of multi-enzyme systems rather than simply monomeric proteins interacting with their redox partners.


Assuntos
Citocromo P-450 CYP1A2 , Família 1 do Citocromo P450 , Citocromo P-450 CYP1A1 , Transferência de Energia , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA