Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Molecules ; 29(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38792159

RESUMO

As a development of our research on biocompatible glycoconjugate probes and specifically multi-chromophoric systems, herein, we report the synthesis and early bactericidal tests of two luminescent glycoconjugates whose basic structure is characterized by two boron dipyrromethene difluoride (BODIPY) moieties and three galactoside rings mounted on an oligophenylene ethynylene (OPE) skeleton. BODIPY fluorophores have found widespread application in many branches of biology in the last few decades. In particular, molecular platforms showing two different BODIPY groups have unique photophysical behavior useful in fluorescence imaging. Construction of the complex architecture of the new probes is accomplished through a convergent route that exploits a series of copper-free Heck-Cassar-Sonogashira cross-couplings. The great emergency due to the proliferation of bacterial infections, in conjunction with growing antibiotic resistance, requires the production of new multifunctional drugs and efficient methods for their targeted delivery to control bacteria-associated diseases. Preliminary studies of the glycoconjugate properties as antibacterial agents against representatives of Gram-negative (P. aeruginosa) and Gram-positive (S. aureus) pathogens, which are associated with chronic infections, indicated significant bactericidal activity ascribable to their structural features.


Assuntos
Antibacterianos , Compostos de Boro , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Compostos de Boro/química , Compostos de Boro/farmacologia , Compostos de Boro/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Glicoconjugados/química , Glicoconjugados/farmacologia , Glicoconjugados/síntese química , Estrutura Molecular , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química
2.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069007

RESUMO

The search for improved transducers to fabricate better-performing (bio)sensors is a challenging but rewarding endeavor aiming to better diagnose and treat diseases. In this paper, we report on the decoration of a dense vertical array of ultrathin silicon nanowires (Si NWs), produced by metal-assisted chemical etching, with 20 nm gold nanoparticles (Au NPs) for surface-enhanced Raman scattering (SERS) applications. To optimize the production of a uniform 3D SERS active platform, we tested different Si NW surface functionalizations with various alkoxysilanes before Au decoration. Scanning electron microscopy investigations confirm that Au NPs decorate both bare and (3-glycidiloxypropyl)trimethoxysilane (GPTMS)-modified Si NWs with a high surface coverage uniformity. The SERS response of the decorated NWs was probed using a model dye system (methylene blue; MB) at 633 and 785 nm excitation wavelengths. The GPTMS-modified NWs present the highest enhancements of 2.9 and 2.6 for the 450 cm-1 and 1625 cm-1 peaks under 785 nm excitation and of 10.8 and 5.3 for the 450 cm-1 and 1625 cm-1 peaks under 633 nm excitation. These results demonstrate the perspective role of Si NWs decorated with Au NPs as a low-cost 3D SERS platform.


Assuntos
Nanopartículas Metálicas , Nanofios , Ouro , Microscopia Eletrônica de Varredura , Silício
3.
Sensors (Basel) ; 22(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35062635

RESUMO

From a biological point of view, alcohol human attentional impairment occurs before reaching a Blood Alcohol Content (BAC index) of 0.08% (0.05% under the Italian legislation), thus generating a significant impact on driving safety if the drinker subject is driving a car. Car drivers must keep a safe driving dynamic, having an unaltered physiological status while processing the surrounding information coming from the driving scenario (e.g., traffic signs, other vehicles and pedestrians). Specifically, the identification and tracking of pedestrians in the driving scene is a widely investigated problem in the scientific community. The authors propose a full, deep pipeline for the identification, monitoring and tracking of the salient pedestrians, combined with an intelligent electronic alcohol sensing system to properly assess the physiological status of the driver. More in detail, the authors propose an intelligent sensing system that makes a common air quality sensor selective to alcohol. A downstream Deep 1D Temporal Residual Convolutional Neural Network architecture will be able to learn specific embedded alcohol-dynamic features in the collected sensing data coming from the GHT25S air-quality sensor of STMicroelectronics. A parallel deep attention-augmented architecture identifies and tracks the salient pedestrians in the driving scenario. A risk assessment system evaluates the sobriety of the driver in case of the presence of salient pedestrians in the driving scene. The collected preliminary results confirmed the effectiveness of the proposed approach.


Assuntos
Condução de Veículo , Pedestres , Acidentes de Trânsito/prevenção & controle , Automóveis , Concentração Alcoólica no Sangue , Humanos
4.
Sensors (Basel) ; 22(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36433351

RESUMO

Air quality monitoring is an increasingly debated topic nowadays. The increasing spillage of waste products released into the environment has contributed to the increase in air pollution. Consequently, the production of increasingly performing devices in air monitoring is increasingly in demand. In this scenario, the attention dedicated to workplace safety monitoring has led to the developing and improving of new sensors. Despite technological advancements, sensors based on nanostructured materials are difficult to introduce into the manufacturing flow due to the high costs of the processes and the approaches that are incompatible with the microelectronics industry. The synthesis of a low-cost ultra-thin silicon nanowires (Si NWs)-based sensor is here reported, which allows us the detection of various dangerous gases such as acetone, ethanol, and the ammonia test as a proof of concept in a nitrogen-based mixture. A modified metal-assisted chemical etching (MACE) approach enables to obtain ultra-thin Si NWs by a cost-effective, rapid and industrially compatible process that exhibit an intense light emission at room temperature. All these gases are common substances that we find not only in research or industrial laboratories, but also in our daily life and can pose a serious danger to health, even at small concentrations of a few ppm. The exploitation of the Si NWs optical and electrical properties for the detection of low concentrations of these gases through their photoluminescence and resistance changes will be shown in a nitrogen-based gas mixture. These sensing platforms give fast and reversible responses with both optical and electrical transductions. These high performances and the scalable synthesis of Si NWs could pave the way for market-competitive sensors for ambient air quality monitoring.


Assuntos
Poluição do Ar , Nanofios , Nanofios/química , Silício/química , Gases/análise , Controle de Qualidade , Nitrogênio
5.
Int J Mol Sci ; 23(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36077119

RESUMO

Bone tissue is a nanocomposite consisting of an organic and inorganic matrix, in which the collagen component and the mineral phase are organized into complex and porous structures. Hydroxyapatite (HA) is the most used ceramic biomaterial since it mimics the mineral composition of the bone in vertebrates. However, this biomimetic material has poor mechanical properties, such as low tensile and compressive strength, which make it not suitable for bone tissue engineering (BTE). For this reason, HA is often used in combination with different polymers and crosslinkers in the form of composites to improve their mechanical properties and the overall performance of the implantable biomaterials developed for orthopedic applications. This review summarizes recent advances in HA-based biocomposites for bone regeneration, addressing the most widely employed inorganic matrices, the natural and synthetic polymers used as reinforcing components, and the crosslinkers added to improve the mechanical properties of the scaffolds. Besides presenting the main physical and chemical methods in tissue engineering applications, this survey shows that HA biocomposites are generally biocompatible, as per most in vitro and in vivo studies involving animal models and that the results of clinical studies on humans sometimes remain controversial. We believe this review will be helpful as introductory information for scientists studying HA materials in the biomedical field.


Assuntos
Regeneração Óssea , Durapatita , Animais , Materiais Biocompatíveis/química , Osso e Ossos , Durapatita/química , Humanos , Polímeros/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
6.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955847

RESUMO

Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease represent some of the most prevalent neurodegenerative disorders afflicting millions of people worldwide. Unfortunately, there is a lack of efficacious treatments to cure or stop the progression of these disorders. While the causes of such a lack of therapies can be attributed to various reasons, the disappointing results of recent clinical trials suggest the need for novel and innovative approaches. Since its discovery, there has been a growing excitement around the potential for CRISPR-Cas9 mediated gene editing to identify novel mechanistic insights into disease pathogenesis and to mediate accurate gene therapy. To this end, the literature is rich with experiments aimed at generating novel models of these disorders and offering proof-of-concept studies in preclinical animal models validating the great potential and versatility of this gene-editing system. In this review, we provide an overview of how the CRISPR-Cas9 systems have been used in these neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Terapia Genética/métodos , Humanos , Doenças Neurodegenerativas/tratamento farmacológico
7.
Int J Mol Sci ; 23(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35806393

RESUMO

Articular cartilage is characterized by a poor self-healing capacity due to its aneural and avascular nature. Once injured, it undergoes a series of catabolic processes which lead to its progressive degeneration and the onset of a severe chronic disease called osteoarthritis (OA). In OA, important alterations of the morpho-functional organization occur in the cartilage extracellular matrix, involving all the nearby tissues, including the subchondral bone. Osteochondral engineering, based on a perfect combination of cells, biomaterials and biomolecules, is becoming increasingly successful for the regeneration of injured cartilage and underlying subchondral bone tissue. To this end, recently, several peptides have been explored as active molecules and enrichment motifs for the functionalization of biomaterials due to their ability to be easily chemically synthesized, as well as their tunable physico-chemical features, low immunogenicity issues and functional group modeling properties. In addition, they have shown a good aptitude to penetrate into the tissue due to their small size and stability at room temperature. In particular, growth-factor-derived peptides can play multiple functions in bone and cartilage repair, exhibiting chondrogenic/osteogenic differentiation properties. Among the most studied peptides, great attention has been paid to transforming growth factor-ß and bone morphogenetic protein mimetic peptides, cell-penetrating peptides, cell-binding peptides, self-assembling peptides and extracellular matrix-derived peptides. Moreover, recently, phage display technology is emerging as a powerful selection technique for obtaining functional peptides on a large scale and at a low cost. In particular, these peptides have demonstrated advantages such as high biocompatibility; the ability to be immobilized directly on chondro- and osteoinductive nanomaterials; and improving the cell attachment, differentiation, development and regeneration of osteochondral tissue. In this context, the aim of the present review was to go through the recent literature underlining the importance of studying novel functional motifs related to growth factor mimetic peptides that could be a useful tool in osteochondral repair strategies. Moreover, the review summarizes the current knowledge of the use of phage display peptides in osteochondral tissue regeneration.


Assuntos
Cartilagem Articular , Osteoartrite , Materiais Biocompatíveis/química , Cartilagem Articular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Osteoartrite/terapia , Osteogênese , Peptídeos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
8.
Molecules ; 27(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35889284

RESUMO

Silicon nanowires (NWs) are appealing building blocks for low-cost novel concept devices with improved performances. In this research paper, we realized a hybrid platform combining an array of vertically oriented Si NWs with different types of bucky gels, obtained from carbon nanotubes (CNT) dispersed into an ionic liquid (IL) matrix. Three types of CNT bucky gels were obtained from imidazolium-based ionic liquids (BMIM-I, BIMI-BF4, and BMIM-Tf2N) and semiconductive CNTs, whose structural and optical responses to the hybrid platforms were analyzed and compared. We investigated the electrical response of the IL-CNT/NW hybrid junctions in dark and under illumination for each platform and its correlation to the ionic liquid characteristics and charge mobility. The reported results confirm the attractiveness of such IL-CNT/NW hybrid platforms as novel light-responsive materials for photovoltaic applications. In particular, our best performing cell reported a short-circuit current density of 5.6 mA/cm2 and an open-circuit voltage of 0.53 V.

9.
Biotechnol Bioeng ; 118(4): 1456-1465, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33289093

RESUMO

The heavy metals pollution represents one of the important issues in the environmental field since it is involved in many pathologies from cancer, neurodegenerative, and metabolic diseases. We propose an innovative portable biosensor for the determination of traces of trivalent arsenic (As(III)) and bivalent mercury (Hg(II)) in water. The system implements a strategy combining two advanced sensing modules consisting in (a) a whole cell based on engineered Escherichia coli as selective sensing element towards the metals and (b) an electrochemical miniaturised silicon device with three microelectrodes and a portable reading system. The sensing mechanism relies on the selective recognition from the bacterium of given metals producing the 4-aminophenol redox active mediator detected through a cyclic voltammetry analysis. The miniaturized biosensor is able to operate a portable, robust, and high-sensitivity detection of As(III) with a sensitivity of 0.122 µA ppb-1 , LoD of 1.5 ppb, and a LoQ of 5 ppb. The LoD value is one order of magnitude below of the value indicated to WHO to be dangerous (10 µg/L). The system was proved to be fully versatile being effective in the detection of Hg(II) as well. A first study on Hg(II) showed sensitivity value of 2.11 µA/ppb a LOD value of 0.1 ppb and LoQ value of 0.34 ppb. Also in this case, the detected LOD was 10 times lower than that indicated by WHO (1 ppb). These results pave the way for advanced sensing strategies suitable for the environmental monitoring and the public safety.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Escherichia coli , Mercúrio/análise , Poluentes Químicos da Água/análise , Água/análise , Cátions Bivalentes/análise , Escherichia coli/genética , Escherichia coli/metabolismo
10.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769212

RESUMO

Brain tumors are particularly aggressive and represent a significant cause of morbidity and mortality in adults and children, affecting the global population and being responsible for 2.6% of all cancer deaths (as well as 30% of those in children and 20% in young adults). The blood-brain barrier (BBB) excludes almost 100% of the drugs targeting brain neoplasms, representing one of the most significant challenges to current brain cancer therapy. In the last decades, carbon dots have increasingly played the role of drug delivery systems with theranostic applications against cancer, thanks to their bright photoluminescence, solubility in bodily fluids, chemical stability, and biocompatibility. After a summary outlining brain tumors and the current drug delivery strategies devised in their therapeutic management, this review explores the most recent literature about the advances and open challenges in the employment of carbon dots as both diagnostic and therapeutic agents in the treatment of brain cancers, together with the strategies devised to allow them to cross the BBB effectively.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Carbono/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Animais , Antineoplásicos/farmacocinética , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Humanos
11.
Molecules ; 26(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669712

RESUMO

Hydroxyapatite (HA) is the main inorganic mineral that constitutes bone matrix and represents the most used biomaterial for bone regeneration. Over the years, it has been demonstrated that HA exhibits good biocompatibility, osteoconductivity, and osteoinductivity both in vitro and in vivo, and can be prepared by synthetic and natural sources via easy fabrication strategies. However, its low antibacterial property and its fragile nature restricts its usage for bone graft applications. In this study we functionalized a MgHA scaffold with gold nanorods (AuNRs) and evaluated its antibacterial effect against S. aureus and E. coli in both suspension and adhesion and its cytotoxicity over time (1 to 24 days). Results show that the AuNRs nano-functionalization improves the antibacterial activity with 100% bacterial reduction after 24 h. The toxicity study, however, indicates a 4.38-fold cell number decrease at 24 days. Although further optimization on nano-functionalization process are needed for cytotoxicity, these data indicated that Au-NRs nano-functionalization is a very promising method for improving the antibacterial properties of HA.


Assuntos
Anti-Infecciosos/farmacologia , Durapatita/farmacologia , Ouro/farmacologia , Magnésio/farmacologia , Nanotubos/química , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Nanotubos/ultraestrutura , Espectroscopia Fotoeletrônica , Staphylococcus aureus/efeitos dos fármacos , Alicerces Teciduais/química
12.
Biotechnol Bioeng ; 117(5): 1554-1561, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31997343

RESUMO

The development of portable systems for analysis of nucleic acids (NAs) is crucial for the evolution of biosensing in the context of future healthcare technologies. The integration of NA extraction, purification, and detection modules, properly actuated by microfluidics technologies, is a key point for the development of portable diagnostic systems. In this paper, we describe an integrated biosensor platform based on a silicon-plastic hybrid lab-on-disk technology capable of managing NA extraction, purification, and detection processes in an integrated format. The sample preparation process is performed by solid-phase extraction technology using magnetic beads on a plastic disk, while detection is done through quantitative real-time polymerase chain reaction (qRT-PCR) on a miniaturized silicon device. The movement of sample and reagents is actuated by a centrifugal force induced by a disk actuator instrument. The assessment of the NA extraction and detection performance has been carried out by using hepatitis B virus (HBV) DNA genome as a biological target. The quantification of the qRT-PCR chip in the hybrid disk showed an improvement in sensitivity with respect to the qRT-PCR commercial platforms, which means an optimization of time and cost. Limit of detection and limit of quantification values of about 8 cps/reaction and 26 cps/reaction, respectively, were found by using analytical samples (synthetic clone), while the results with real samples (serum with spiked HBV genome) indicate that the system performs as well as the standard methods.


Assuntos
Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Ácidos Nucleicos , DNA Viral/sangue , Hepatite B/diagnóstico , Vírus da Hepatite B/genética , Humanos , Limite de Detecção , Técnicas Analíticas Microfluídicas , Técnicas de Diagnóstico Molecular , Ácidos Nucleicos/análise , Ácidos Nucleicos/genética , Ácidos Nucleicos/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Extração em Fase Sólida
13.
Chemistry ; 25(64): 14638-14643, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31512779

RESUMO

A simple and green synthetic protocol for the rapid and effective preparation of Ag, Au and Au@Ag core-shell nanoparticles (NPs) is reported based on the light irradiation of a biocompatible, water-soluble dextran functionalized with benzophenone (BP) in the presence of AgNO3 , HAuCl4 , or both. Photoactivation of the BP moiety produces the highly reducing ketyl radicals through fast (<50 ns) intramolecular H-abstraction from the dextran scaffold, which, in turn, ensures excellent dispersibility of the obtained metal NPs in water. The antibacterial activity of the AgNPs and the photothermal action of the Au@Ag core-shell are also shown.

14.
Biotechnol Bioeng ; 116(8): 2087-2094, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30963547

RESUMO

In this paper, a miniaturized biosensor containing 96 silicon microchambers electroloaded with nano-volumes of liquid (EW-chip) is presented. The liquid electroloading is achieved by the appropriate modulation of interface properties. The surface chemistries have been studied to guarantee effective interface properties for both electrowetting on dielectric actuation and biocompatibility versus biochemical reactions. The silicon microchambers are 200 nl in volume and are connected to a specific system of electrodes able to deliver liquid sample on each well. The device also integrates temperature sensors and heaters to perform biochemical reactions. On that, the effectiveness of this device has been successfully proven towards the nucleic acids detection via real-time polymerase chain reaction amplification. Hepatitis B virus genome target has been used to assess the device performance. Results show very uniform amplification over the 96 microchambers without any cross-contamination process. These features make this system a very appealing potential solution for genetic point-of-care devices where a high level of parallelism of analysis is required.


Assuntos
Técnicas Biossensoriais/instrumentação , Dispositivos Lab-On-A-Chip , Ácidos Nucleicos/análise , Reação em Cadeia da Polimerase em Tempo Real/instrumentação , Silício/química , Eletrodos , Galvanoplastia , Desenho de Equipamento
15.
Analyst ; 144(7): 2353-2358, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30789186

RESUMO

An innovative miniaturized silicon-chip was developed for highly sensitive detection of pathogen genomes of both viruses and bacteria through real time PCR (qRT-PCR). The device was properly designed to enhance the optical signal and perform accurate thermal control. Results show an improvement of PCR amplification by one order of magnitude in sensitivity compared to the standard RT-PCR method. In particular for hepatitis B virus a decrease of the mean value of Ct of about 2.9 ± 0.9 compared to the standard system was observed. Similarly, for the bacteria Pseudomonas aeruginosa, Staphylococcus aureus and Acinetobacter baumannii, a decrease of the mean values of Ct of 1.8 ± 0.5, 3.1 ± 0.5 and 3.9 ± 0.9, respectively, was observed.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/instrumentação , Silício , Desenho de Equipamento , Genoma Viral/genética , Limite de Detecção
16.
Sensors (Basel) ; 18(9)2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30227672

RESUMO

Surface substrate and chemical functionalization are crucial aspects for the fabrication of the sensitive biosensor based on microarray technology. In this paper, an advanced, silicon-based substrate (A-MA) allowing enhancement of optical signal for microarray application is described. The substrate consists in a multilayer of Si/Al/SiO2 layers. The optical signal enhancement is reached by a combination of the mirror effect of Al film and the SiO2 thickness around 830 nm, which is able to reach the maximum of interference for the emission wavelength of the Cy5 fluorescent label. Moreover, SiO2 layer is suitable for the immobilization of single-strand DNA through standard silane chemistry, and probe densities of about 2000 F/um² are reached. The microarray is investigated in the detection of HBV (Hepatitis B Virus) pathogen with analytical samples, resulting in a dynamic linear range of 0.05⁻0.5 nM, a sensitivity of about 18000 a.u. nM-1, and a Limit of Detection in the range of 0.031⁻0.043 Nm as a function of the capture probe sequence.


Assuntos
Técnicas Biossensoriais/métodos , Ácidos Nucleicos/análise , Dióxido de Silício/química , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação
17.
Sensors (Basel) ; 18(2)2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29385774

RESUMO

Physiological signals are widely used to perform medical assessment for monitoring an extensive range of pathologies, usually related to cardio-vascular diseases. Among these, both PhotoPlethysmoGraphy (PPG) and Electrocardiography (ECG) signals are those more employed. PPG signals are an emerging non-invasive measurement technique used to study blood volume pulsations through the detection and analysis of the back-scattered optical radiation coming from the skin. ECG is the process of recording the electrical activity of the heart over a period of time using electrodes placed on the skin. In the present paper we propose a physiological ECG/PPG "combo" pipeline using an innovative bio-inspired nonlinear system based on a reaction-diffusion mathematical model, implemented by means of the Cellular Neural Network (CNN) methodology, to filter PPG signal by assigning a recognition score to the waveforms in the time series. The resulting "clean" PPG signal exempts from distortion and artifacts is used to validate for diagnostic purpose an EGC signal simultaneously detected for a same patient. The multisite combo PPG-ECG system proposed in this work overpasses the limitations of the state of the art in this field providing a reliable system for assessing the above-mentioned physiological parameters and their monitoring over time for robust medical assessment. The proposed system has been validated and the results confirmed the robustness of the proposed approach.


Assuntos
Eletrocardiografia , Artefatos , Frequência Cardíaca , Humanos , Reconhecimento Automatizado de Padrão , Fotopletismografia , Processamento de Sinais Assistido por Computador
18.
Sensors (Basel) ; 18(3)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495639

RESUMO

The monitoring of water-soluble pollutants is receiving a growing interest from the scientific community. In this context, sulfide anion species S2- and HS- are particularly relevant since they can cause acute and chronic toxicity including neurological effects and at high concentrations, even death. In this study, a new strategy for fast and sensitive optical detection of sulfide species in water samples is described. The method uses an integrated silicon photomultiplier (SiPM) device coupled with the appropriate analytical strategy applied in a plastic microchip with dried reagents on board. More specifically, all sulfide species (H2S, HS- and S2-) in water samples are detected by the fluorescence signal emitted upon the reaction with N,N-dimethyl-phenylenediamine sulfate in the presence of Fe3+, leading to the formation of the fluorescent methylene blue (MB) species. It has been proven that the system herein proposed is able to measure sulfide concentration in a linear range from 0-10 mg L-1 with a sensitivity value of about 6.7 µA mg-1 L and a detection limit of 0.5 mg L-1. A comparison with conventional UV-Vis detection method has been also carried out. Data show a very good linear correlation (R² = 0.98093), proving the effectiveness of the method. Results pave the way toward the development of portable and low-cost device systems for water-soluble sulfide pollutants.

19.
Chemistry ; 23(32): 7672-7676, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28444786

RESUMO

A mesoporous silica material prepared by using folic acid (FA) as a template enables the effective encapsulation of meso-tetrakis(4-carboxyphenyl)porphyrin (TCPP) in its interior. Combination of steady-state and time-resolved absorption and emission spectroscopy demonstrate that FA and TCPP are released from the silica material to the aqueous phase in the form of a non-covalent assembly. This assembly does not form by simple mixing of the two components in the absence of silica, suggesting the key role of the material in the assembling process. The FA/TCPP assembly exhibits dual color fluorescence in the visible region, good photosensitization capability of singlet oxygen, and enhanced photo-induced mortality in KB cancer cells overexpressing folate receptor, if compared with the free components.

20.
Sensors (Basel) ; 17(4)2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28398227

RESUMO

Colorectal cancer (CRC) is an aggressive human malignancy with a complex genomic landscape harboring KRAS mutations. In 40%-60% of patients with CRC, constantly active KRAS proteins affect the prognosis, surgical strategy, and clinical benefit from therapy with anti-epidermal growth factor receptor (EGFR) agents. For this reason, there is a greater demand for minimally-invasive diagnostic devices to characterize the genetic pattern and prevent the acquired mechanism to drug resistance. The rapid developments in cutting-edge diagnostic techniques are expected to play a growing role in medicine and represent an attractive promise to identify potential responders to personalized medicine. Here we propose a new method to simultaneously detect the main KRAS mutations on the portable real-time PCR Q3 platform. This platform is based on hybrid silicon-plastic technology implemented in a miniaturized chip able to achieve a sample-in answer-out rapid analysis, allowing a new approach to genetic counseling and testing.


Assuntos
Reação em Cadeia da Polimerase em Tempo Real , Antineoplásicos , Neoplasias Colorretais , Receptores ErbB , Genótipo , Humanos , Mutação , Proteínas Proto-Oncogênicas p21(ras)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA