Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Environ Res ; 230: 115607, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36965793

RESUMO

This paper summarizes recent insights into causal biological mechanisms underlying the carcinogenicity of asbestos. It addresses their implications for the shapes of exposure-response curves and considers recent epidemiologic trends in malignant mesotheliomas (MMs) and lung fiber burden studies. Since the commercial amphiboles crocidolite and amosite pose the highest risk of MMs and contain high levels of iron, endogenous and exogenous pathways of iron injury and repair are discussed. Some practical implications of recent developments are that: (1) Asbestos-cancer exposure-response relationships should be expected to have non-zero background rates; (2) Evidence from inflammation biology and other sources suggests that there are exposure concentration thresholds below which exposures do not increase inflammasome-mediated inflammation or resulting inflammation-mediated cancer risks above background risk rates; and (3) The size of the suggested exposure concentration threshold depends on both the detailed time patterns of exposure on a time scale of hours to days and also on the composition of asbestos fibers in terms of their physiochemical properties. These conclusions are supported by complementary strands of evidence including biomathematical modeling, cell biology and biochemistry of asbestos-cell interactions in vitro and in vivo, lung fiber burden analyses and epidemiology showing trends in human exposures and MM rates.


Assuntos
Amianto , Neoplasias Pulmonares , Mesotelioma , Humanos , Amianto/toxicidade , Mesotelioma/induzido quimicamente , Mesotelioma/epidemiologia , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/epidemiologia , Pulmão/patologia , Amiantos Anfibólicos/toxicidade , Inflamação/metabolismo
2.
Environ Sci Technol ; 53(18): 11002-11012, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31436975

RESUMO

Exposure to environmental contaminants can lead to adverse outcomes in both human and nonhuman receptors. The Aggregate Exposure Pathway (AEP) and Adverse Outcome Pathway (AOP) frameworks can mechanistically inform cumulative risk assessment for human health and ecological end points by linking together environmental transport and transformation, external exposure, toxicokinetics, and toxicodynamics. This work presents a case study of a hypothetical contaminated site to demonstrate a quantitative approach for implementing the AEP framework and linking this framework to AOPs. We construct an AEP transport and transformation model and then quantify external exposure pathways for humans, fishes, and small herbivorous mammals at the hypothetical site. A Monte Carlo approach was used to address parameter variability. Source apportionment was quantified for each species, and published pharmacokinetic models were used to estimate internal target site exposure from external exposures. Published dose-response data for a multispecies AOP network were used to interpret AEP results in the context of species-specific effects. This work demonstrates (1) the construction, analysis, and application of a quantitative AEP model, (2) the utility of AEPs for organizing mechanistic exposure data and highlighting data gaps, and (3) the advantages provided by a source-to-outcome construct for leveraging exposure data and to aid transparency regarding assumptions.


Assuntos
Rotas de Resultados Adversos , Animais , Ecologia , Peixes , Humanos , Medição de Risco , Toxicocinética
3.
Environ Sci Technol ; 52(2): 839-849, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29236470

RESUMO

Cumulative risk assessment (CRA) methods promote the use of a conceptual site model (CSM) to apportion exposures and integrate risk from multiple stressors. While CSMs may encompass multiple species, evaluating end points across taxa can be challenging due to data availability and physiological differences among organisms. Adverse outcome pathways (AOPs) describe biological mechanisms leading to adverse outcomes (AOs) by assembling causal pathways with measurable intermediate steps termed key events (KEs), thereby providing a framework for integrating data across species. In this work, we used a case study focused on the perchlorate anion (ClO4-) to highlight the value of the AOP framework for cross-species data integration. Computational models and dose-response data were used to evaluate the effects of ClO4- in 12 species and revealed a dose-response concordance across KEs and taxa. The aggregate exposure pathway (AEP) tracks stressors from sources to the exposures and serves as a complement to the AOP. We discuss how the combined AEP-AOP construct helps to maximize the use of existing data and advances CRA by (1) organizing toxicity and exposure data, (2) providing a mechanistic framework of KEs for integrating data across human health and ecological end points, (3) facilitating cross-species dose-response evaluation, and (4) highlighting data gaps and technical limitations.


Assuntos
Rotas de Resultados Adversos , Ecologia , Humanos , Modelos Teóricos , Medição de Risco
4.
Environ Sci Technol ; 51(8): 4661-4672, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28355063

RESUMO

A quantitative adverse outcome pathway (qAOP) consists of one or more biologically based, computational models describing key event relationships linking a molecular initiating event (MIE) to an adverse outcome. A qAOP provides quantitative, dose-response, and time-course predictions that can support regulatory decision-making. Herein we describe several facets of qAOPs, including (a) motivation for development, (b) technical considerations, (c) evaluation of confidence, and (d) potential applications. The qAOP used as an illustrative example for these points describes the linkage between inhibition of cytochrome P450 19A aromatase (the MIE) and population-level decreases in the fathead minnow (FHM; Pimephales promelas). The qAOP consists of three linked computational models for the following: (a) the hypothalamic-pitutitary-gonadal axis in female FHMs, where aromatase inhibition decreases the conversion of testosterone to 17ß-estradiol (E2), thereby reducing E2-dependent vitellogenin (VTG; egg yolk protein precursor) synthesis, (b) VTG-dependent egg development and spawning (fecundity), and (c) fecundity-dependent population trajectory. While development of the example qAOP was based on experiments with FHMs exposed to the aromatase inhibitor fadrozole, we also show how a toxic equivalence (TEQ) calculation allows use of the qAOP to predict effects of another, untested aromatase inhibitor, iprodione. While qAOP development can be resource-intensive, the quantitative predictions obtained, and TEQ-based application to multiple chemicals, may be sufficient to justify the cost for some applications in regulatory decision-making.


Assuntos
Inibidores da Aromatase/toxicidade , Fadrozol/toxicidade , Animais , Cyprinidae , Estradiol/metabolismo , Modelos Teóricos , Valor Preditivo dos Testes , Vitelogeninas/metabolismo
5.
Inhal Toxicol ; 29(12-14): 586-597, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29405084

RESUMO

Study of the mode of action (MOA) relating exposure to a given chemical with an associated adverse outcome is an iterative process with each iteration driven by new understandings of the relevant biology. Here, we revisit a previously described, MOA-based clonal growth model of the human respiratory tract cancer risk associated with formaldehyde inhalation. Changes reflect a better understanding of populations of cells at risk of carcinogenic transformation in the pharynx, larynx and respiratory bronchiolar portions of the human respiratory tract and inclusion of basal cells in the pool of cells at risk. The focus of this report is not on cancer risk per se, but rather on the sensitivity of model parameters and predicted risks to alternative descriptions of the fraction of cells at risk for carcinogenic transformation. For a population of formaldehyde-exposed nonsmokers, revised specification of cells at risk resulted in changes in both parameter estimates and in predicted risks. Compared to our previous assessment, predicted additional risks were up to 87% greater at exposure levels ≤1 ppm, but up to about 130% lower at high exposure levels (2-5 ppm). While this work should not be considered an update to MOA-based risk assessments for formaldehyde described previously, it illustrates the sensitivity of parameter estimates and risk predictions to the quantitative specification of cells at risk of carcinogenic transformation and, therefore, the motivation for describing the relevant biology as accurately as possible.


Assuntos
Carcinogênese/induzido quimicamente , Formaldeído/toxicidade , Modelos Biológicos , Mucosa Respiratória/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , Carcinogênese/patologia , Células Cultivadas , Desinfetantes/toxicidade , Humanos , Exposição por Inalação/efeitos adversos , Mucosa Respiratória/patologia , Sistema Respiratório/patologia , Fatores de Risco
6.
Regul Toxicol Pharmacol ; 69(3): 434-42, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24845241

RESUMO

Biomonitoring data are now available for hundreds of chemicals through state and national health surveys. Exposure guidance values also exist for many of these chemicals. Several methods are frequently used to evaluate biomarker data with respect to a guidance value. The "biomonitoring equivalent" (BE) approach estimates a single biomarker concentration (called the BE) that corresponds to a guidance value (e.g., Maximum Contaminant Level, Reference Dose, etc.), which can then be compared with measured biomarker data. The resulting "hazard quotient" estimates (HQ=biomarker concentration/BE) can then be used to prioritize chemicals for follow-up examinations. This approach is used exclusively for population-level assessments, and works best when the central tendency of measurement data is considered. Complementary approaches are therefore needed for assessing individual biomarker levels, particularly those that fall within the upper percentiles of measurement distributions. In this case study, probabilistic models were first used to generate distributions of BEs for perchlorate based on the point-of-departure (POD) of 7µg/kg/day. These distributions reflect possible biomarker concentrations in a hypothetical population where all individuals are exposed at the POD. A statistical analysis was then performed to evaluate urinary perchlorate measurements from adults in the 2001 to 2002 National Health and Nutrition Examination Survey (NHANES). Each NHANES adult was assumed to have experienced repeated exposure at the POD, and their biomarker concentration was interpreted probabilistically with respect to a BE distribution. The HQ based on the geometric mean (GM) urinary perchlorate concentration was estimated to be much lower than unity (HQ≈0.07). This result suggests that the average NHANES adult was exposed to perchlorate at a level well below the POD. Regarding individuals, at least a 99.8% probability was calculated for all but two NHANES adults that a higher biomarker concentration would have been observed compared to what was actually measured if the daily dietary exposure had been at the POD. This is strong evidence that individual perchlorate exposures in the 2001-2002 NHANES adult population were likely well below the POD. This case study demonstrates that the "stochastic BE approach" provides useful quantitative metrics, in addition to HQ estimates, for comparison across chemicals. This methodology should be considered when evaluating biomarker measurements against exposure guidance values, and when examining chemicals that have been identified as needing follow-up investigation based on existing HQ estimates.


Assuntos
Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Poluentes Ambientais/efeitos adversos , Adulto , Idoso de 80 Anos ou mais , Biomarcadores/química , Biomarcadores/urina , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/urina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Inquéritos Nutricionais , Percloratos/efeitos adversos , Percloratos/química , Percloratos/urina , Medição de Risco , Adulto Jovem
7.
Toxicol Appl Pharmacol ; 268(1): 17-26, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23357550

RESUMO

Many environmental contaminants can disrupt the adaptive immune response. Exposure to the ubiquitous aryl hydrocarbon receptor (AhR) ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other agonists suppresses the antibody response. The underlying pathway mechanism by which TCDD alters B cell function is not well understood. The present study investigated the mechanism of AhR-mediated pathways and mode of suppression by which TCDD perturbs terminal differentiation of B cells to plasma cells and thereby impairs antibody production. An integrated approach combining computational pathway modeling and in vitro assays with primary mouse B cells activated by lipopolysaccharide was employed. We demonstrated that suppression of the IgM response by TCDD occurs in an all-or-none (binary) rather than graded mode: i.e., it reduces the number of IgM-secreting cells in a concentration-dependent manner without affecting the IgM content in individual plasma cells. The mathematical model of the gene regulatory circuit underpinning B cell differentiation revealed that two previously identified AhR-regulated pathways, inhibition of signaling protein AP-1 and activation of transcription factor Bach2, could account for the all-or-none mode of suppression. Both pathways disrupt the operation of a bistable-switch circuit that contains transcription factors Bcl6, Prdm1, Pax5, and Bach2 and regulates B cell fate. The model further predicted that by transcriptionally activating Bach2, TCDD might delay B cell differentiation and increase the likelihood of isotype switching, thereby altering the antibody repertoire. In conclusion, the present study revealed the mode and specific pathway mechanisms by which the environmental immunosuppressant TCDD suppresses B cell differentiation.


Assuntos
Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Modelos Imunológicos , Dibenzodioxinas Policloradas/toxicidade , Imunidade Adaptativa/efeitos dos fármacos , Imunidade Adaptativa/imunologia , Animais , Linfócitos B/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/antagonistas & inibidores , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Simulação por Computador , Feminino , Citometria de Fluxo , Imunoglobulina M/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Receptores de Hidrocarboneto Arílico/imunologia , Fator de Transcrição AP-1/antagonistas & inibidores , Fator de Transcrição AP-1/imunologia
8.
Regul Toxicol Pharmacol ; 66(2): 234-40, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23567188

RESUMO

The NRC report Science and Decisions: Advancing Risk Assessment made several recommendations to improve chemical risk assessment, with a focus on in-depth chronic dose-response assessments conducted by the U.S. Environmental Protection Agency. The recommendations addressed two broad elements: improving technical analysis and utility for decision making. To advance the discussions in the NRC report, in three multi-stakeholder workshops organized by the Alliance for Risk Assessment, available and evolving risk assessment methodologies were considered through the development and application of case studies. A key product was a framework (http://www.allianceforrisk.org/Workshop/Framework/ProblemFormulation.html) to guide risk assessors and managers to various dose-response assessment methods relevant to a range of decision contexts ranging from priority setting to full assessment, as illustrated by case studies. It is designed to facilitate selection of appropriate methodology for a variety of problem formulations and includes a variety of methods with supporting case studies, for areas flagged specifically by the NRC committee for consideration--e.g., susceptible sub-populations, population variability and background. The framewok contributes to organization and communication about methodologies for incorporating increasingly biologically informed and chemical specific knowledge into dose-response analysis, which is considered critical in evolving fit-for-purpose assessment to address relevant problem formulations.


Assuntos
Relação Dose-Resposta a Droga , Animais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Medição de Risco/métodos
9.
J Radiol Prot ; 33(3): 573-88, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23803503

RESUMO

The information for the present discussion on the uncertainties associated with estimation of radiation risks and probability of disease causation was assembled for the recently published NCRP Report No. 171 on this topic. This memorandum provides a timely overview of the topic, given that quantitative uncertainty analysis is the state of the art in health risk assessment and given its potential importance to developments in radiation protection. Over the past decade the increasing volume of epidemiology data and the supporting radiobiology findings have aided in the reduction of uncertainty in the risk estimates derived. However, it is equally apparent that there remain significant uncertainties related to dose assessment, low dose and low dose-rate extrapolation approaches (e.g. the selection of an appropriate dose and dose-rate effectiveness factor), the biological effectiveness where considerations of the health effects of high-LET and lower-energy low-LET radiations are required and the transfer of risks from a population for which health effects data are available to one for which such data are not available. The impact of radiation on human health has focused in recent years on cancer, although there has been a decided increase in the data for noncancer effects together with more reliable estimates of the risk following radiation exposure, even at relatively low doses (notably for cataracts and cardiovascular disease). New approaches for the estimation of hereditary risk have been developed with the use of human data whenever feasible, although the current estimates of heritable radiation effects still are based on mouse data because of an absence of effects in human studies. Uncertainties associated with estimation of these different types of health effects are discussed in a qualitative and semi-quantitative manner as appropriate. The way forward would seem to require additional epidemiological studies, especially studies of low dose and low dose-rate occupational and perhaps environmental exposures and for exposures to x rays and high-LET radiations used in medicine. The development of models for more reliably combining the epidemiology data with experimental laboratory animal and cellular data can enhance the overall risk assessment approach by providing biologically refined data to strengthen the estimation of effects at low doses as opposed to the sole use of mathematical models of epidemiological data that are primarily driven by medium/high doses. NASA's approach to radiation protection for astronauts, although a unique occupational group, indicates the possible applicability of estimates of risk and their uncertainty in a broader context for developing recommendations on: (1) dose limits for occupational exposure and exposure of members of the public; (2) criteria to limit exposures of workers and members of the public to radon and its short-lived decay products; and (3) the dosimetric quantity (effective dose) used in radiation protection.


Assuntos
Lesões por Radiação/epidemiologia , Lesões por Radiação/prevenção & controle , Radiação Ionizante , Saúde Radiológica , Animais , Animais de Laboratório , Relação Dose-Resposta à Radiação , Exposição Ambiental , Humanos , Exposição Ocupacional , Fótons , Doses de Radiação , Proteção Radiológica , Radônio , Medição de Risco , Incerteza , Estados Unidos , United States National Aeronautics and Space Administration/normas
10.
Toxicol Sci ; 193(1): 1-17, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-36912747

RESUMO

Chronic inhalation of formaldehyde by F344 rats causes nasal squamous cell carcinoma (SCC). This outcome is well-characterized: including dose-response and time course data for SCC, mechanistic endpoints, and nasal dosimetry. Conolly et al. (Toxicol. Sci. 75, 432-447, 2003) used these resources to develop a biologically based dose-response (BBDR) model for SCC in F344 rats. This model, scaled up to humans, has informed dose-response conclusions reached by several international regulatory agencies. However, USEPA concluded that uncertainties precluded its use for cancer risk assessment. Here, we describe an updated BBDR model that addresses uncertainties through refined dosimetry modeling, revised analysis of labeling index data, and an extended dataset where both inhaled (exogenous) and endogenous formaldehyde (exogF, endoF) form DNA adducts. Further, since Conolly et al. (ibid) was published, it has become clear that, when controls from all F344 inhalation bioassays are considered, accounting for over 4000 rats, at most one nasal SCC occurred. This low spontaneous incidence constrains possible contribution of endoF to the formation of nasal SCC via DNA reactivity. Further, since both exogF and endoF form DNA adducts, this constraint also applies to exogF. The revised BBDR model therefore drives SCC formation through the cytotoxicity of high concentration exogF. An option for direct mutagenicity associated with DNA adducts is retained to allow estimation of an upper bound on adduct mutagenicity consistent with the lack of a spontaneous SCC incidence. These updates represent an iterative refinement of the 2003 model, incorporating new data and insights to reduce identified model uncertainties.


Assuntos
Carcinoma de Células Escamosas , Adutos de DNA , Ratos , Humanos , Animais , Ratos Endogâmicos F344 , Modelos Biológicos , Formaldeído/toxicidade , Nariz/patologia , Carcinoma de Células Escamosas/patologia
11.
Toxicol Sci ; 191(1): 15-24, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36409013

RESUMO

Understanding the dose-response for formaldehyde-induced nasal cancer in rats is complicated by (1) the uneven distribution of inhaled formaldehyde across the interior surface of the nasal cavity and, (2) the presence of endogenous formaldehyde (endoF) in the nasal mucosa. In this work, we used computational fluid dynamics (CFD) modeling to predict flux of inhaled (exogenous) formaldehyde (exogF) from air into tissue at the specific locations where DNA adducts were measured. Experimental work has identified DNA-protein crosslink (DPX) adducts due to exogF and deoxyguanosine (DG) adducts due to both exogF and endoF. These adducts can be considered biomarkers of exposure for effects of endoF and exogF on DNA that may be part of the mechanism of tumor formation. We describe a computational model linking CFD-predicted flux of formaldehyde from air into tissue, and the intracellular production of endoF, with the formation of DPX and DG adducts. We assumed that, like exogF, endoF can produce DPX. The model accurately reproduces exogDPX, exogDG, and endoDG data after inhalation from 0.7 to 15 ppm. The dose-dependent concentrations of exogDPX and exogDG are predicted to exceed the concentrations of their endogenous counterparts at about 2 and 6 ppm exogF, respectively. At all concentrations examined, the concentrations of endoDPX and exogDPX were predicted to be at least 10-fold higher than that of their DG counterparts. The modeled dose-dependent concentrations of these adducts are suitable to be used together with data on the dose-dependence of cell proliferation to conduct quantitative modeling of formaldehyde-induced rat nasal carcinogenicity.


Assuntos
Adutos de DNA , DNA , Ratos , Animais , Ratos Endogâmicos F344 , Mucosa Nasal , Formaldeído/toxicidade , Desoxiguanosina
12.
Front Pharmacol ; 14: 1088011, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909196

RESUMO

Introduction: A physiologically based pharmacokinetic (PBPK) model for 3-chloroallyl alcohol (3-CAA) was developed and used to evaluate the design of assays for the in vivo genotoxicity of 3-CAA. Methods: Model development was supported by read across from a published PBPK model for ethanol. Read across was motivated by the expectation that 3-CAA, which like ethanol is a primary alcohol, is metabolized largely by hepatic alcohol dehydrogenases. The PBPK model was used to evaluate how two metrics of tissue dosimetry, maximum blood concentration (Cmax; mg/L) and area under the curve (AUC; mg-hr/L) vary with dose of 3-CAA and with dose route (oral gavage, drinking water). Results: The model predicted that oral gavage results in a 6-fold higher Cmax than the same dose administered in drinking water, but in similar AUCs. Predicted Cmax provided the best correlation with severe toxicity (e.g., lethality) from 3-CAA, consistent with the production of a reactive metabolite. Therefore, drinking water administration can achieve higher sustained concentration without severe toxicity in vivo. Discussion: This evaluation is significant because cytotoxicity is a potential confounder of mutagenicity testing. The PBPK model can be used to ensure that studies meet OECD and USEPA test guidelines and that the highest dose used is not associated with severe toxicity. In addition, PBPK modeling provides assurance of target tissue (e.g., bone marrow) exposure even in the absence of laboratory data, by defining the relationship between applied dose and target tissue dose based on accepted principles of pharmacokinetics, relevant physiology and biochemistry of the dosed animals, and chemical-specific information.

13.
Environ Toxicol Chem ; 42(1): 100-116, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36282016

RESUMO

To reduce the use of intact animals for chemical safety testing, while ensuring protection of ecosystems and human health, there is a demand for new approach methodologies (NAMs) that provide relevant scientific information at a quality equivalent to or better than traditional approaches. The present case study examined whether bioactivity and associated potency measured in an in vitro screening assay for aromatase inhibition could be used together with an adverse outcome pathway (AOP) and mechanistically based computational models to predict previously uncharacterized in vivo effects. Model simulations were used to inform designs of 60-h and 10-21-day in vivo exposures of adult fathead minnows (Pimephales promelas) to three or four test concentrations of the in vitro aromatase inhibitor imazalil ranging from 0.12 to 260 µg/L water. Consistent with an AOP linking aromatase inhibition to reproductive impairment in fish, exposure to the fungicide resulted in significant reductions in ex vivo production of 17ß-estradiol (E2) by ovary tissue (≥165 µg imazalil/L), plasma E2 concentrations (≥74 µg imazalil/L), vitellogenin (Vtg) messenger RNA expression (≥165 µg imazalil/L), Vtg plasma concentrations (≥74 µg imazalil/L), uptake of Vtg into oocytes (≥260 µg imazalil/L), and overall reproductive output in terms of cumulative fecundity, number of spawning events, and eggs per spawning event (≥24 µg imazalil/L). Despite many potential sources of uncertainty in potency and efficacy estimates based on model simulations, observed magnitudes of apical effects were quite consistent with model predictions, and in vivo potency was within an order of magnitude of that predicted based on in vitro relative potency. Overall, our study suggests that NAMs and AOP-based approaches can support meaningful reduction and refinement of animal testing. Environ Toxicol Chem 2023;42:100-116. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Cyprinidae , Ovário , Humanos , Animais , Feminino , Aromatase/genética , Aromatase/metabolismo , Fadrozol/toxicidade , Ecotoxicologia , Ecossistema , Estradiol/metabolismo , Cyprinidae/fisiologia , Vitelogeninas/metabolismo
14.
Toxics ; 10(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36422908

RESUMO

Humans are exposed to persistent organic pollutants, such as dioxin-like compounds (DLCs), as mixtures. Understanding and predicting the toxicokinetics and thus internal burden of major constituents of a DLC mixture is important for assessing their contributions to health risks. PBPK models, including dioxin models, traditionally focus on one or a small number of compounds; developing new or extending existing models for mixtures often requires tedious, error-prone coding work. This lack of efficiency to scale up for multi-compound exposures is a major technical barrier toward large-scale mixture PBPK simulations. Congeners in the DLC family, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), share similar albeit quantitatively different toxicokinetic and toxicodynamic properties. Taking advantage of these similarities, here we reported the development of a human PBPK modeling framework for DLC mixtures that can flexibly accommodate an arbitrary number of congeners. Adapted from existing TCDD models, our mixture model contains the blood and three diffusion-limited compartments-liver, fat, and rest of the body. Depending on the number of congeners in a mixture, varying-length vectors of ordinary differential equations (ODEs) are automatically generated to track the tissue concentrations of the congeners. Shared ODEs are used to account for common variables, including the aryl hydrocarbon receptor (AHR) and CYP1A2, to which the congeners compete for binding. Binary and multi-congener mixture simulations showed that the AHR-mediated cross-induction of CYP1A2 accelerates the sequestration and metabolism of DLC congeners, resulting in consistently lower tissue burdens than in single exposure, except for the liver. Using dietary intake data to simulate lifetime exposures to DLC mixtures, the model demonstrated that the relative contributions of individual congeners to blood or tissue toxic equivalency (TEQ) values are markedly different than those to intake TEQ. In summary, we developed a mixture PBPK modeling framework for DLCs that may be utilized upon further improvement as a quantitative tool to estimate tissue dosimetry and health risks of DLC mixtures.

15.
Crit Rev Toxicol ; 41(6): 507-44, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21591905

RESUMO

Quantitative methods for estimation of cancer risk have been developed for daily, lifetime human exposures. There are a variety of studies or methodologies available to address less-than-lifetime exposures. However, a common framework for evaluating risk from less-than-lifetime exposures (including short-term and/or intermittent exposures) does not exist, which could result in inconsistencies in risk assessment practice. To address this risk assessment need, a committee of the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute conducted a multisector workshop in late 2009 to discuss available literature, different methodologies, and a proposed framework. The proposed framework provides a decision tree and guidance for cancer risk assessments for less-than-lifetime exposures based on current knowledge of mode of action and dose-response. Available data from rodent studies and epidemiological studies involving less-than-lifetime exposures are considered, in addition to statistical approaches described in the literature for evaluating the impact of changing the dose rate and exposure duration for exposure to carcinogens. The decision tree also provides for scenarios in which an assumption of potential carcinogenicity is appropriate (e.g., based on structural alerts or genotoxicity data), but bioassay or other data are lacking from which a chemical-specific cancer potency can be determined. This paper presents an overview of the rationale for the workshop, reviews historical background, describes the proposed framework for assessing less-than-lifetime exposures to potential human carcinogens, and suggests next steps.


Assuntos
Carcinógenos/toxicidade , Exposição Ambiental/normas , Mutagênicos/toxicidade , Bioensaio/métodos , Carcinógenos/administração & dosagem , Bases de Dados Factuais , Árvores de Decisões , Relação Dose-Resposta a Droga , Determinação de Ponto Final , Contaminação de Alimentos/análise , Guias como Assunto , Produtos Domésticos/efeitos adversos , Humanos , Mutagênicos/administração & dosagem , National Institute of Environmental Health Sciences (U.S.) , Neoplasias/induzido quimicamente , Praguicidas/efeitos adversos , Medição de Risco , Fatores de Tempo , Estados Unidos , United States Environmental Protection Agency , United States Food and Drug Administration
16.
Inhal Toxicol ; 23(12): 689-706, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21888524

RESUMO

Clonal growth modeling of carcinogenesis requires data on the number of cells at risk of becoming cancerous. We synthesized literature data to estimate the fraction of respiratory tract epithelial cells that are progenitor cells, and therefore at risk, in formaldehyde carcinogenesis for specific respiratory tract regions. We concluded that the progenitor cells for the transitional and respiratory epithelia of the nose are basal and nonciliated cells and Type II cells in the alveolar region. In the conducting airways, our evaluation indicated that ciliated and basal cells are not in the progenitor pool. Respiratory tract epithelial cell fractions of 0.819 in rats and 0.668 in humans were estimated from the data. The total numbers of epithelial cells in the lower respiratory tract of humans and rats were allocated to individual generations. Cell cycle times were also estimated from literature data, since the reciprocal of cell cycle time is an important variable in clonal growth modeling. Sensitivity analyses of a previously published risk model for formaldehyde carcinogenesis showed that specification of the fraction of cells at risk markedly affects estimates of some parameters of the clonal growth model. When all epithelial cells are considered part of the progenitor pool, additional risks for the non-smoking population was typically over predicted by about 35% for high exposure levels. These results demonstrate the importance of accurately identifying cell populations at risk when applying quantitative models in risk assessments.


Assuntos
Carcinógenos/toxicidade , Células Epiteliais/efeitos dos fármacos , Formaldeído/toxicidade , Mucosa Respiratória/citologia , Animais , Bioensaio , Proliferação de Células , Células Cultivadas , Células Epiteliais/citologia , Humanos , Modelos Biológicos , Ratos , Mucosa Respiratória/efeitos dos fármacos , Fumar
17.
Environ Int ; 147: 106301, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33360411

RESUMO

Predictions from physiologically based toxicokinetic (PBTK) models can help inform human health risk assessment for potentially toxic chemicals in the environment. Bisphenol S (BPS) is the second most abundant bisphenol detected in humans in the United States, after bisphenol A (BPA). We have recently demonstrated that BPS, much like BPA, can cross the placental barrier and disrupt placental function. Differences in physicochemical properties, toxicokinetics, and exposure outcomes between BPA and other bisphenols prevent direct extrapolation of existing BPA PBTK models to BPS. The current study aimed to develop pregnancy-specific PBTK (p-PBTK) models for BPA and BPS, using a common p-PBTK model structure. Novel paired maternal and fetal pregnancy data sets for total, unconjugated, and conjugated BPA and BPS plasma concentrations from three independent studies in pregnant sheep were used for model calibration. The nine-compartment (maternal blood, liver, kidney, fat, placenta and rest of body, and fetal liver, blood and rest of body) models simulated maternal and fetal experimental data for both BPA and BPS within one standard deviation for the majority of the experimental data points, highlighting the robustness of both models. Simulations were run to examine fetal exposure following daily maternal exposure to BPA or BPS at their tolerable daily intake dose over a two-week period. These predictive simulations show fetal accumulation of both bisphenols over time. Interestingly, the steady-state approximation following this dosing strategy achieved a fetal concentration of unconjugated BPA to levels observed in cord blood from human biomonitoring studies. These models advance our understanding of bisphenolic compound toxicokinetics during pregnancy and may be used as a quantitative comparison tool in future p-PBTK models for related chemicals.


Assuntos
Compostos Benzidrílicos , Fenóis , Animais , Compostos Benzidrílicos/toxicidade , Feminino , Humanos , Fenóis/toxicidade , Gravidez , Ovinos , Sulfonas , Toxicocinética
18.
Chem Res Toxicol ; 23(2): 327-35, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20035570

RESUMO

Exposure to inorganic arsenic (iAs) induces cancer in human lungs, urinary bladder, skin, kidney, and liver, with the majority of deaths from lung and bladder cancer. To date, cancer risk assessments for iAs have not relied on mechanistic data, as we have lacked sufficient understanding of arsenic's pharmacokinetics and mode(s) of carcinogenic action (MOA). Furthermore, while there are vast amounts of toxicological data on iAs, relatively little of it has been collected using experimental designs that efficiently support development of biologically based dose-response (BBDR) models and subsequently risk assessment. This review outlines an efficient approach to the development of a BBDR model for iAs that would reduce uncertainties in its cancer risk assessment. This BBDR-based approach is illustrated by using oxidative stress as the carcinogenic MOA for iAs but would be generically applicable to other MOAs. Six major research needs that will facilitate BBDR model development for arsenic-induced cancer are (1) MOA research, which is needed to reduce the uncertainty in risk assessment; (2) development and integration of the pharmacodynamic component (MOA) of the BBDR model; (3) dose-response and extrapolation model selection; (4) the determination of internal human speciated arsenical concentrations to improve physiologically based pharmacokinetic (PBPK) models; (5) animal models of arsenic carcinogenesis; and (6) the determination of the low dose human relationship for death from cancer, particularly in lungs and urinary bladder. The major parts of the BBDR model are arsenic exposure, a physiologically based pharmacokinetic model, reactive species, antioxidant defenses, oxidative stress, cytotoxicity, growth factors, transcription factors, DNA damage, chromosome damage, cell proliferation, mutation accumulation, and cancer. The BBDR model will need to be developed concurrently with data collection so that model uncertainties can be identified and addressed through an iterative process of targeted additional research.


Assuntos
Arsênio/toxicidade , Carcinógenos/toxicidade , Neoplasias/induzido quimicamente , Estresse Oxidativo , Carcinógenos/farmacologia , Humanos , Modelos Biológicos , Medição de Risco
19.
J Toxicol Environ Health B Crit Rev ; 13(2-4): 253-76, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20574901

RESUMO

The new paradigm envisioned for toxicity testing in the 21st century advocates shifting from the current animal-based testing process to a combination of in vitro cell-based studies, high-throughput techniques, and in silico modeling. A strategic component of the vision is the adoption of the systems biology approach to acquire, analyze, and interpret toxicity pathway data. As key toxicity pathways are identified and their wiring details elucidated using traditional and high-throughput techniques, there is a pressing need to understand their qualitative and quantitative behaviors in response to perturbation by both physiological signals and exogenous stressors. The complexity of these molecular networks makes the task of understanding cellular responses merely by human intuition challenging, if not impossible. This process can be aided by mathematical modeling and computer simulation of the networks and their dynamic behaviors. A number of theoretical frameworks were developed in the last century for understanding dynamical systems in science and engineering disciplines. These frameworks, which include metabolic control analysis, biochemical systems theory, nonlinear dynamics, and control theory, can greatly facilitate the process of organizing, analyzing, and understanding toxicity pathways. Such analysis will require a comprehensive examination of the dynamic properties of "network motifs"--the basic building blocks of molecular circuits. Network motifs like feedback and feedforward loops appear repeatedly in various molecular circuits across cell types and enable vital cellular functions like homeostasis, all-or-none response, memory, and biological rhythm. These functional motifs and associated qualitative and quantitative properties are the predominant source of nonlinearities observed in cellular dose response data. Complex response behaviors can arise from toxicity pathways built upon combinations of network motifs. While the field of computational cell biology has advanced rapidly with increasing availability of new data and powerful simulation techniques, a quantitative orientation is still lacking in life sciences education to make efficient use of these new tools to implement the new toxicity testing paradigm. A revamped undergraduate curriculum in the biological sciences including compulsory courses in mathematics and analysis of dynamical systems is required to address this gap. In parallel, dissemination of computational systems biology techniques and other analytical tools among practicing toxicologists and risk assessment professionals will help accelerate implementation of the new toxicity testing vision.


Assuntos
Biologia Computacional/métodos , Poluentes Ambientais/análise , Modelos Biológicos , Biologia de Sistemas/métodos , Testes de Toxicidade/métodos , Animais , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Relação Dose-Resposta a Droga , Poluentes Ambientais/toxicidade , Humanos
20.
Toxicol Sci ; 172(1): 1-10, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31407013

RESUMO

Traditional methods for carcinogenicity testing rely heavily on the rodent bioassay as the standard for identification of tumorigenic risk. As such, identification of species-specific outcomes and/or metabolism are a frequent argument for regulatory exemption. One example is the association of tumor formation in the mouse lung after exposure to Cyp2F2 ligands. The adverse outcome pathway (AOP) framework offers a theoretical platform to address issues of species specificity that is consistent, transparent, and capable of integrating data from new approach methodologies as well as traditional data streams. A central premise of the AOP concept is that pathway progression from the molecular initiating event (MIE) implies a definable "response-response" (R-R) relationship between each key event (KE) that drives the pathway towards a specific adverse outcome (AO). This article describes an AOP for lung cancer in the mouse from an MIE of Cyp2F2-specific reactive metabolite formation, advancing through KE that include protein and/or nucleic acid adducts, diminished Club Cell 10 kDa (CC10) protein expression, hyperplasia of CC10 deficient Club cells, and culminating in the AO of mixed-cell tumor formation in the distal airways. This tumor formation is independent of route of exposure and our AOP construct is based on overlapping mechanistic events for naphthalene, styrene, ethyl benzene, isoniazid, and fluensulfone in the mouse. This AOP is intended to accelerate the explication of an apparent mouse-specific outcome and serve as a starting point for a quantitative analysis of mouse-human differences in susceptibility to the tumorigenic effects of Cyp2F2 ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA