Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Environ Sci Technol ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36623253

RESUMO

U.S. Environmental Protection Agency (EPA) air quality (AQ) monitors, the "gold standard" for measuring air pollutants, are sparsely positioned across the U.S. Low-cost sensors (LCS) are increasingly being used by the public to fill in the gaps in AQ monitoring; however, LCS are not as accurate as EPA monitors. In this work, we investigate factors impacting the differences between an individual's true (unobserved) exposure to air pollution and the exposure reported by their nearest AQ instrument (which could be either an LCS or an EPA monitor). We use simulations based on California data to explore different combinations of hypothetical LCS placement strategies (e.g., at schools or near major roads), for different numbers of LCS, with varying plausible amounts of LCS device measurement errors. We illustrate how real-time AQ reporting could be improved (or, in some cases, worsened) by using LCS, both for the population overall and for marginalized communities specifically. This work has implications for the integration of LCS into real-time AQ reporting platforms.

2.
Environ Sci Technol ; 57(5): 2031-2041, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36693177

RESUMO

Investigating the health impacts of wildfire smoke requires data on people's exposure to fine particulate matter (PM2.5) across space and time. In recent years, it has become common to use machine learning models to fill gaps in monitoring data. However, it remains unclear how well these models are able to capture spikes in PM2.5 during and across wildfire events. Here, we evaluate the accuracy of two sets of high-coverage and high-resolution machine learning-derived PM2.5 data sets created by Di et al. and Reid et al. In general, the Reid estimates are more accurate than the Di estimates when compared to independent validation data from mobile smoke monitors deployed by the US Forest Service. However, both models tend to severely under-predict PM2.5 on high-pollution days. Our findings complement other recent studies calling for increased air pollution monitoring in the western US and support the inclusion of wildfire-specific monitoring observations and predictor variables in model-based estimates of PM2.5. Lastly, we call for more rigorous error quantification of machine-learning derived exposure data sets, with special attention to extreme events.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios Florestais , Humanos , Fumaça/análise , Material Particulado/análise , Poluentes Atmosféricos/análise
3.
J Pediatr ; 234: 134-141.e5, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33794220

RESUMO

OBJECTIVE: To investigate the prevalence of Noonan spectrum disorders in a pediatric population with pulmonary valve stenosis (PVS) and explore other characteristics of Noonan spectrum disorders associated with PVS. STUDY DESIGN: A retrospective medical record review was completed for patients with a diagnosis of PVS seen at the Children's Hospital Colorado Cardiology clinic between 2009 and 2019. Syndromic diagnoses, genotypes, cardiac characteristics, and extracardiac characteristics associated with Noonan spectrum disorders were recorded; statistical analysis was conducted using R. RESULTS: Syndromic diagnoses were made in 16% of 686 pediatric patients with PVS, with Noonan spectrum disorders accounting for 9% of the total diagnoses. Individuals with Noonan spectrum disorders were significantly more likely to have an atrial septal defect and/or hypertrophic cardiomyopathy than the non-Noonan spectrum disorder individuals. Supravalvar pulmonary stenosis was also correlated significantly with Noonan spectrum disorders. Extracardiac clinical features presenting with PVS that were significantly associated with Noonan spectrum disorders included feeding issues, failure to thrive, developmental delay, short stature, and ocular findings. The strongest predictors of a Noonan spectrum disorder diagnosis were cryptorchidism (70%), pectus abnormalities (66%), and ocular findings (48%). The presence of a second characteristic further increased this likelihood, with the highest probability occurring with cryptorchidism combined with ocular findings (92%). CONCLUSIONS: The 9% prevalence of Noonan spectrum disorder in patients with PVS should alert clinicians to consider Noonan spectrum disorders when encountering a pediatric patient with PVS. The presence of PVS with 1 or more Noonan spectrum disorder-related features should prompt a genetic evaluation and genetic testing for RAS pathway defects. Noonan spectrum disorders should also be included in the differential when a patient presents with supravalvar pulmonary stenosis.


Assuntos
Síndrome de Noonan/epidemiologia , Estenose da Valva Pulmonar/epidemiologia , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação , Síndrome de Noonan/genética , Síndrome de Noonan/fisiopatologia , Fenótipo , Prevalência , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Estudos Retrospectivos
4.
Sci Data ; 8(1): 112, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875665

RESUMO

We created daily concentration estimates for fine particulate matter (PM2.5) at the centroids of each county, ZIP code, and census tract across the western US, from 2008-2018. These estimates are predictions from ensemble machine learning models trained on 24-hour PM2.5 measurements from monitoring station data across 11 states in the western US. Predictor variables were derived from satellite, land cover, chemical transport model (just for the 2008-2016 model), and meteorological data. Ten-fold spatial and random CV R2 were 0.66 and 0.73, respectively, for the 2008-2016 model and 0.58 and 0.72, respectively for the 2008-2018 model. Comparing areal predictions to nearby monitored observations demonstrated overall R2 of 0.70 for the 2008-2016 model and 0.58 for the 2008-2018 model, but we observed higher R2 (>0.80) in many urban areas. These data can be used to understand spatiotemporal patterns of, exposures to, and health impacts of PM2.5 in the western US, where PM2.5 levels have been heavily impacted by wildfire smoke over this time period.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Exposição Ambiental , Material Particulado/análise , Censos , Humanos , Aprendizado de Máquina , Estados Unidos
5.
Environ Pollut ; 268(Pt B): 115833, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120139

RESUMO

Low-cost air quality sensors can help increase spatial and temporal resolution of air pollution exposure measurements. These sensors, however, most often produce data of lower accuracy than higher-end instruments. In this study, we investigated linear and random forest models to correct PM2.5 measurements from the Denver Department of Public Health and Environment (DDPHE)'s network of low-cost sensors against measurements from co-located U.S. Environmental Protection Agency Federal Equivalence Method (FEM) monitors. Our training set included data from five DDPHE sensors from August 2018 through May 2019. Our testing set included data from two newly deployed DDPHE sensors from September 2019 through mid-December 2019. In addition to PM2.5, temperature, and relative humidity from the low-cost sensors, we explored using additional temporal and spatial variables to capture unexplained variability in sensor measurements. We evaluated results using spatial and temporal cross-validation techniques. For the long-term dataset, a random forest model with all time-varying covariates and length of arterial roads within 500 m was the most accurate (testing RMSE = 2.9 µg/m3 and R2 = 0.75; leave-one-location-out (LOLO)-validation metrics on the training set: RMSE = 2.2 µg/m3 and R2 = 0.93). For on-the-fly correction, we found that a multiple linear regression model using the past eight weeks of low-cost sensor PM2.5, temperature, and humidity data plus a near-highway indicator predicted each new week of data best (testing RMSE = 3.1 µg/m3 and R2 = 0.78; LOLO-validation metrics on the training set: RMSE = 2.3 µg/m3 and R2 = 0.90). The statistical methods detailed here will be used to correct low-cost sensor measurements to better understand PM2.5 pollution within the city of Denver. This work can also guide similar implementations in other municipalities by highlighting the improved accuracy from inclusion of variables other than temperature and relative humidity to improve accuracy of low-cost sensor PM2.5 data.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Monitoramento Ambiental , Material Particulado/análise
6.
Environ Int ; 129: 291-298, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31146163

RESUMO

Wildfires have been increasing in frequency in the western United States (US) with the 2017 and 2018 fire seasons experiencing some of the worst wildfires in terms of suppression costs and air pollution that the western US has seen. Although growing evidence suggests respiratory exacerbations from elevated fine particulate matter (PM2.5) during wildfires, significantly less is known about the impacts on human health of ozone (O3) that may also be increased due to wildfires. Using machine learning, we created daily surface concentration maps for PM2.5 and O3 during an intense wildfire in California in 2008. We then linked these daily exposures to counts of respiratory hospitalizations and emergency department visits at the ZIP code level. We calculated relative risks of respiratory health outcomes using Poisson generalized estimating equations models for each exposure in separate and mutually-adjusted models, additionally adjusted for pertinent covariates. During the active fire periods, PM2.5 was significantly associated with exacerbations of asthma and chronic obstructive pulmonary disease (COPD) and these effects remained after controlling for O3. Effect estimates of O3 during the fire period were non-significant for respiratory hospitalizations but were significant for ED visits for asthma (RR = 1.05 and 95% CI = (1.022, 1.078) for a 10 ppb increase in O3). In mutually-adjusted models, the significant findings for PM2.5 remained whereas the associations with O3 were confounded. Adjusted for O3, the RR for asthma ED visits associated with a 10 µg/m3 increase in PM2.5 was 1.112 and 95% CI = (1.087, 1.138). The significant findings for PM2.5 but not for O3 in mutually-adjusted models is likely due to the fact that PM2.5 levels during these fires exceeded the 24-hour National Ambient Air Quality Standard (NAAQS) of 35 µg/m3 for 4976 ZIP-code days and reached levels up to 6.073 times the NAAQS, whereas our estimated O3 levels during the fire period only occasionally exceeded the NAAQS of 70 ppb with low exceedance levels. Future studies should continue to investigate the combined role of O3 and PM2.5 during wildfires to get a more comprehensive assessment of the cumulative burden on health from wildfire smoke.


Assuntos
Ozônio/toxicidade , Material Particulado/toxicidade , Respiração/efeitos dos fármacos , Incêndios Florestais , Poluição do Ar , Asma/induzido quimicamente , California , Serviço Hospitalar de Emergência , Hospitalização , Humanos , Risco , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA