Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 303: 114122, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838387

RESUMO

Rivers regulated by dams display several ecosystem alterations due to modified flow and sediment regimes. Downstream from a dam, ecosystem degradation occurs because of reduced disturbance, mostly derived from limitations on flow variability and sediment supply. In the last decade, most flow restoration/dam impact mitigation was oriented towards the development of environmental flows. Flow variability (and consequent disturbance) can be reintroduced by releasing artificial high flows (experimental floods). Flow-sediment interactions during experimental floods represent strong ecosystem drivers, influencing nutrient dynamics, and metabolic and functional properties. In river networks, sediment and water inputs from tributaries generate points of discontinuity that can drive major changes in environmental conditions, affecting habitat structure and determining functional differences between upstream and downstream. However, despite the relevance for management, flow/sediment relations during environmental flows - and more importantly during experimental floods - remain poorly understood, mostly due to the lack of empirical evidence. In this study, we examined how a major tributary (source of water and sediments) modified the physical habitat template of a regulated river, thereby influencing ecological and geomorphological responses to experimental floods. Methods combined high-resolution drone mapping techniques with a wide range of biological samples collected in field surveys before, during, and after experimental floods in an alpine river. Data were used to quantify changes in relevant functional and structural ecosystem properties, relating ecological responses to geomorphological dynamics. Results highlight the importance of tributaries in restoring ecosystem properties lost after damming, enhancing the resilience of the system. In addition, we observed that disturbance legacy played a fundamental role in determining ecological conditions of a river prior to experimental floods, thus confirming that considering flow variability and sediment availability is crucial in adaptive dam management and environmental flows design.


Assuntos
Ecossistema , Inundações , Rios , Dispositivos Aéreos não Tripulados , Água
2.
Sci Total Environ ; 882: 163569, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080315

RESUMO

Artificial high flows attempt to simulate natural flood pulses in flow-regulated rivers with the intent to improve their ecological integrity. The long-term use of such high flow events have shown beneficial ecological effects on various rivers globally. However, such responses are often non-linear and characterized by underlying feedback mechanisms among ecosystem components. The question arises as to what happens when such high flow releases are disrupted or even discontinued. Here, we used the long-term (22 years) monitoring dataset from the river Spöl to examine whether discontinuation (2016-2021) of the flood program (annual artificial high flows from 2000 to 2016) resulted in the ecological degradation of the river. We used monitoring data of physico-chemistry, periphyton, benthic organic matter, macroinvertebrates and fish (brown trout, Salmo trutta fario L.) in the analysis. The flood program had no long-term effect on water physico-chemistry with most parameters showing typical variations associated with season and inter-annual weather patterns. The floods were effective at mobilizing bed sediments that reduced periphyton biomass and benthic organic matter following each flood. Increases in periphyton biomass and benthic organic matter occurred between floods, but both parameters showed no significant increase with discontinuation of the flood program. Floods reduced macroinvertebrate densities, but with density increases occurring between floods. The pulsed disturbances, and the progressive change in the habitat template, resulted in shifts in community assembly by reducing densities of Gammarus fossarum, a dominant crustacean, which allowed other taxa to colonize the system. Macroinvertebrate densities remained low after discontinuation of the floods, although G. fossarum densities have increased substantially while other taxa, especially some stoneflies, remained low in abundance. Notably, community assembly returned to a pre-flood composition with discontinuation of the floods. The abundance of brown trout increased substantially during the flood program but returned to low pre-flood numbers with discontinuation of the floods. We conclude that the flood program was beneficial to the ecology of the river Spöl and discontinuation of the floods resulted in degradation of the system after a relatively short lag period. However, the system showed high resilience to an earlier perturbation, a sediment spill in 2013, suggesting a rapid positive response by biota with resumption of the flood program.


Assuntos
Ecossistema , Rios , Animais , Insetos , Inundações , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA