Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomech Model Mechanobiol ; 23(3): 721-735, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38206531

RESUMO

Cranial dura mater is a dense interwoven vascularized connective tissue that helps regulate neurocranial remodeling by responding to strains from the growing brain. Previous ex vivo experimentation has failed to account for the role of prestretch in the mechanical behavior of the dura. Here we aim to estimate the prestretch in mouse cranial dura mater and determine its dependency on direction and age. We performed transverse and longitudinal incisions in parietal dura excised from newborn (day ∼ 4) and mature (12 weeks) mice and calculated the ex vivo normalized incision opening (measured width over length). Then, similar incisions were simulated under isotropic stretching within Abaqus/Standard. Finally, prestretch was estimated by comparing the ex vivo and in silico normalized openings. There were no significant differences between the neonatal and adult mice when comparing cuts in the same direction, but adult mice were found to have significantly greater stretch in the anterior-posterior direction than in the medial-lateral direction, while neonatal dura was essentially isotropic. Additionally, our simulations show that increasing curvature impacts the incision opening, indicating that flat in silico models may overestimate prestretch.


Assuntos
Envelhecimento , Animais Recém-Nascidos , Dura-Máter , Animais , Envelhecimento/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Simulação por Computador , Fenômenos Biomecânicos , Estresse Mecânico , Crânio
2.
J Biomech ; 139: 110851, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34802706

RESUMO

The process of gyrification, by which the brain develops the intricate pattern of gyral hills and sulcal valleys, is the result of interactions between biological and mechanical processes during brain development. Researchers have developed a vast array of computational models in order to investigate cortical folding. This review aims to summarize these studies, focusing on five essential elements of the brain that affect development and gyrification and how they are represented in computational models: (i) the constraints of skull, meninges, and cerebrospinal fluid; (ii) heterogeneity of cortical layers and regions; (iii) anisotropic behavior of subcortical fiber tracts; (iv) material properties of brain tissue; and (v) the complex geometry of the brain. Finally, we highlight areas of need for future simulations of brain development.


Assuntos
Córtex Cerebral , Simulação por Computador , Córtex Cerebral/diagnóstico por imagem , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA