Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 8(24): 12867-12878, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30619589

RESUMO

Species distribution models can be made more accurate by use of new "Spatiotemporal Exploratory Models" (STEMs), a type of spatially explicit ensemble model (SEEM) developed at the continental scale that averages regional models pixel by pixel. Although SEEMs can generate more accurate predictions of species distributions, they are computationally expensive. We compared the accuracies of each model for 11 grassland bird species and examined whether they improve accuracy at a statewide scale for fine and coarse predictor resolutions. We used a combination of survey data and citizen science data for 11 grassland bird species in Oklahoma to test a spatially explicit ensemble model at a smaller scale for its effects on accuracy of current models. We found that only four species performed best with either a statewide model or SEEM; the most accurate model for the remaining seven species varied with data resolution and performance measure. Policy implications: Determination of nonheterogeneity may depend on the spatial resolution of the examined dataset. Managers should be cautious if any regional differences are expected when developing policy from range-wide results that show a single model or timeframe. We recommend use of standard species distribution models or other types of nonspatially explicit ensemble models for local species prediction models. Further study is necessary to understand at what point SEEMs become necessary with varying dataset resolutions.

2.
Mov Ecol ; 6: 2, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29340153

RESUMO

BACKGROUND: Autumn latitudinal migrations generally exhibit one of two different temporal migration patterns: type 1 where southern populations migrate south before northern populations, or type 2 where northern populations overtake southern populations en route. The ruby-throated hummingbird (Archilochus colubris) is a species with an expansive breeding range, which allows opportunities to examine variation in the timing of migration. Our objective was to determine a relationship between natal origin of ruby-throated hummingbirds and arrival at a Gulf coast stopover site; and if so, what factors, such as differences in body size across the range as well as the cost of migration, might drive such a pattern. To carry out our objectives, we captured hummingbirds at a coastal stopover site during autumn migration, at which time we collected feathers from juveniles for analysis of hydrogen stable isotopes. Using the hydrogen stable isotope gradient of precipitation across North America and published hydrogen isotope values of feathers from populations of breeding ruby-throated hummingbirds, we assigned migrants to probable natal latitudes. RESULTS: Our results confirm that individuals from across the range (30-50° N) stopover along the Gulf of Mexico and there is a positive relationship between arrival day and latitude, suggesting a type 1 migration pattern. We also found no relationship between fuel load (proxy for migration cost) or fat-free body mass (proxy for body size) and natal latitude. CONCLUSIONS: Our results, coupled with previous work on the spatial migration patterns of hummingbirds, show a type 1 chain migration pattern. While the mechanisms we tested do not seem to influence the evolution of migratory patterns, other factors such as resource availability may play a prominent role in the evolution of this migration system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA